In this paper, we introduce a new fixed point iterative scheme called the AG iterative scheme that is used to approximate the fixed point of a contraction mapping in a uniformly convex Banach space. The iterative scheme is used to prove some convergence result. The stability of the new scheme is shown. Furthermore, weak convergence of Suzuki's generalized non-expansive mapping satisfying condition (C) is shown. The rate of convergence result is proved and it is demonstrated via an illustrative example which shows that our iterative scheme converges faster than the Picard, Mann, Noor, Picard-Mann, M and Thakur iterative schemes. Data dependence results for the iterative scheme are shown. Finally, our result is used to approximate the solution of a nonlinear fractional differential equation of Caputo type.
Citation: Godwin Amechi Okeke, Akanimo Victor Udo, Rubayyi T. Alqahtani, Nadiyah Hussain Alharthi. A faster iterative scheme for solving nonlinear fractional differential equations of the Caputo type[J]. AIMS Mathematics, 2023, 8(12): 28488-28516. doi: 10.3934/math.20231458
In this paper, we introduce a new fixed point iterative scheme called the AG iterative scheme that is used to approximate the fixed point of a contraction mapping in a uniformly convex Banach space. The iterative scheme is used to prove some convergence result. The stability of the new scheme is shown. Furthermore, weak convergence of Suzuki's generalized non-expansive mapping satisfying condition (C) is shown. The rate of convergence result is proved and it is demonstrated via an illustrative example which shows that our iterative scheme converges faster than the Picard, Mann, Noor, Picard-Mann, M and Thakur iterative schemes. Data dependence results for the iterative scheme are shown. Finally, our result is used to approximate the solution of a nonlinear fractional differential equation of Caputo type.
[1] | A. Atangana, D. Baleanu, Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative, Filomat, 31 (2017), 2243–2248. https://doi.org/10.2298/FIL1708243A doi: 10.2298/FIL1708243A |
[2] | E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 421. https://doi.org/10.1186/s13662-019-2354-3 |
[3] | G. A. Okeke, D. Francis, C. A. Nse, A generalized contraction mapping applied in solving modified implicit $\phi$-Hilfer pantograph fractional differential equations, J. Anal., 31 (2023), 1143–1173. |
[4] | M. Syam, M. Al-Refai, Fractional differential equations with Atangana–Baleanu fractional derivative: Analysis and applications, Chaos Soliton. Fract. X, 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013 |
[5] | X. Zhang, P. Chen, Y. Wu, B. Wiwatanapataphee, A necessary and sufficient condition for the existence of entire large solutions to a $k$-Hessian system, Appl. Math. Lett., 145 (2023), 108745. https://doi.org/10.1016/j.aml.2023.108745 doi: 10.1016/j.aml.2023.108745 |
[6] | X. Zhang, P. Xu, Y. Wu, B. Wiwatanapataphee, The uniqueness and iterative properties of solutions for a general Hadamard-type singular fractional turbulent flow model, Nonlinear Anal.-Model., 27 (2022), 428–444. https://doi.org/10.15388/namc.2022.27.25473 doi: 10.15388/namc.2022.27.25473 |
[7] | X. Zhang, J. Jiang, Y. Wu, B. Wiwatanapataphee, Iterative properties of solution for a general singular $n$-Hessian equation with decreasing nonlinearity, Appl. Math. Lett., 112 (2021), 106826. https://doi.org/10.1016/j.aml.2020.106826 doi: 10.1016/j.aml.2020.106826 |
[8] | X. Zhang, J. Jiang, L. Liu, Y. Wu, Extremal solutions for a class of tempered fractional turbulent flow equations in a porous medium, Math. Probl. Eng., 2020 (2020), 2492193. https://doi.org/10.1155/2020/2492193 |
[9] | X. Zhang, L. Liu, Y. Wu, Y. Cui, A sufficient and necessary condition of existenceof blow-up radial solutions for a k-Hessian equationwith a nonlinear operator, Nonlinear Anal.-Model., 25 (2020), 126–143. https://doi.org/10.15388/namc.2020.25.15736 doi: 10.15388/namc.2020.25.15736 |
[10] | X. Zhang, J. Xu, J. Jiang, Y. Wu, Y. Cui, The convergence analysis and uniqueness of blow-up solutions for a Dirichlet problem of the general $k$-Hessian equations, Appl. Math. Lett., 102 (2020), 106124. https://doi.org/10.1016/j.aml.2019.106124 doi: 10.1016/j.aml.2019.106124 |
[11] | J. Wu, X. Zhang, L. Liu, Y. Wu, Y. Cui, The convergence analysis and error estimation for unique solution of a p-Laplacian fractional differential equation with singular decreasing nonlinearity, Bound. Value Probl. 2018 (2018), 82. https://doi.org/10.1186/s13661-018-1003-1 |
[12] | J. Ali, M. Jubair, F. Ali, Stability and convergence of $F$ iterative scheme with an application to the fractional differential equation, Eng. Comput., 38 (2022), 693–702. https://doi.org/10.1007/s00366-020-01172-y doi: 10.1007/s00366-020-01172-y |
[13] | M. Jubair, J. Ali, S. Kumar, Estimating fixed points via new iterative scheme with an application, J. Funct. Space., 2022 (2022), 3740809. https://doi.org/10.1155/2022/3740809 doi: 10.1155/2022/3740809 |
[14] | J. Ahmad, K. Ullah, H. A. Hammad, R. George, A solution of a fractional differential equation via novel fixed-point approaches in Banach spaces, AIMS Mathematics, 8 (2023), 12657–12670. https://doi.org/10.3934/math.2023636 doi: 10.3934/math.2023636 |
[15] | S. Khatoon, I. Uddin, D. Baleanu, Approximation of fixed point and its application to fractional to fractional differential equation, J. Appl. Math. Comput., 66 (2021), 507–525. http://doi.org/10.1007/s12190-020-01445-1 doi: 10.1007/s12190-020-01445-1 |
[16] | M. Kaur, S. Chandok, Convergence and stability of a novel $\mathfrak{M}$-iterative algorithm with application, Math. Probl. Eng., 2022 (2022), 9327527. https://doi.org/10.1155/2022/9327527 |
[17] | G. A. Okeke, A. E. Ofem, H. Isik, A faster iterative method for solving nonlinear third-order BVPs based on Green's function, Bound. Value Probl., 2022 (2022), 103. https://doi.org/10.1186/s13661-022-01686-y doi: 10.1186/s13661-022-01686-y |
[18] | G. A. Okeke, A. E. Ofem, T. Abdeljawad, M. A. Alqudah, A. Khan, A solution of a nonlinear Volterra integral equation with delay via a faster iteration method, AIMS Mathematics, 8 (2023), 102–124. https://doi.org/10.3934/math.2023005 |
[19] | S. Panja, K. Roy, M. V. Paunovic, M. Saha, V. Parvaneh, Fixed points of weakly K-nonexpansive mappings and a stability result for fixed point iterative process with an application, J. Inequal. Appl., 2022 (2022), 90. https://doi.org/10.1186/s13660-022-02826-9 doi: 10.1186/s13660-022-02826-9 |
[20] | I. Uddin, C. Garodia, T. Abdelwajad, N. Mlaiki, Convergence analysis of a novel iteration process with application to a fractional differential equation, Adv. Cont. Discr. Mod., 2022 (2022), 16. https://doi.org/10.1186/s13662-022-03690-z |
[21] | K. Ullah, S. T. M. Thabet, A. Kamal, J. Ahmad, Convergence analysis of an iteration process for a class of generalized nonexpansive mappings with application to fractional differential equations, Discrete Dyn. Nat. Soc., 2023 (2023), 8432560. https://doi.org/10.1155/2023/8432560 doi: 10.1155/2023/8432560 |
[22] | F. A. Khan, Approximating fixed points and the solution of a nonlinear fractional difference equation via an iterative method, J. Math., 2022 (2022), 6962430. https://doi.org/10.1155/2022/6962430 doi: 10.1155/2022/6962430 |
[23] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023 |
[24] | K. Goebel, W. A. Kirk, Topics in metric fixed theory, Cambridge: Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152 |
[25] | W. Phuengrattana, Approximating fixed points of Suzuki-generalized nonexpansive mappings, Nonlinear Anal.-Hybri., 5 (2011), 583–590. https://doi.org/10.1016/j.nahs.2010.12.006 doi: 10.1016/j.nahs.2010.12.006 |
[26] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0 |
[27] | V. Berinde, Picard iteration converges faster than Mann iteration for a class of quasi-contractive operator, Fixed Point Theory Appl., 2004 (2004), 716359, http://doi.org/10.1155/s1687182004311058 doi: 10.1155/s1687182004311058 |
[28] | A. M. Harder, T. L. Hicks, A stable iteration procedure for nonexpansive mappings, Math. Japon, 33 (1988), 687–692. |
[29] | V. Berinde, On the stability of some fixed procedure, Bul. Ştiinţ. Univ. Baia Mare, Ser. B, 18 (2002), 7–14. |
[30] | J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, B. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884 |
[31] | Ş. M. Şultuz, T. Grosan, Data dependence for Ishikawa iteration when dealing with contractive-like operators, Fixed Point Theory Appl., 2008 (2008), 242916. https://doi.org/10.1155/2008/242916 doi: 10.1155/2008/242916 |
[32] | X. Weng, Fixed point iteration for local strictly pseudo-contractive mapping, P. Am. Math. Soc., 113 (1991), 727–731. |
[33] | W. R. Mann, Mean value method in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. |
[34] | S. H. Khan, A Picard-Mann hybrid iterative process, Fixed Point Theory Appl., 2013 (2013), 69. https://doi.org/10.1186/1687-1812-2013-69 doi: 10.1186/1687-1812-2013-69 |
[35] | B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 275 (2016), 147–155, http://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065 |
[36] | K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mapping via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U |
[37] | M. A. Noor, New approximation scheme for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[38] | G. A. Okeke, Convergence of the Picard-Ishikawa hybrid iterative process with applications, Afr. Mat., 30 (2019), 817–835. https://doi.org/10.1007/s13370-019-00686-z doi: 10.1007/s13370-019-00686-z |
[39] | M. A. Krasnosel'skii, Two observations about the method of successive approximations, Uspeh Mat. Nauk., 10 (1957), 131–140. |
[40] | S. Ishikawa, Fixed points by a new iteration method, P. Am. Math. Soc., 44 (1974), 147–150. |
[41] | G. A. Okeke, M. Abbas, A solution of delay differential equation via Picard-Krasnoselskii hybrid iterative process, Arab. J. Math., 6 (2017), 21–29. https://doi.org/10.1007/s40065-017-0162-8 doi: 10.1007/s40065-017-0162-8 |
[42] | E. Ameer, H. Aydi, H. Işik, M. Nazam, V. Parvaneh, M. Arshad, Some existence results for a system of nonlinear fractional differential equations, J. Math., 2020 (2020), 4786053. https://doi.org/10.1155/2020/4786053 doi: 10.1155/2020/4786053 |
[43] | S. Kuma, A. Kumar, J. J. Nieto, B. Sharma, Atangana–Baleanu derivative with fractional order applied to the gas dynamics equations, In: Fractional derivatives with Mittag-Leffler Kernel, Springer, 2019,235–251. https://doi.org/10.1007/978-3-030-11662-0_14 |
[44] | N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani, et al., Comparison and analysis of the Atangana–Baleanu and Caputo–Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results phys., 7 (2017), 789–800. https://doi.org/10.1016/j.rinp.2017.01.025 doi: 10.1016/j.rinp.2017.01.025 |