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1. Introduction

Fixed point theory is widely becoming an indispensable area of mathematics in its right and the tools
involved are used to solve nonlinear problems that sometimes appear unsolvable with the traditional
analytical methods [1]. Practically, invoking some tools in fixed point theory have helped to circumvent
the challenge encountered while trying to obtain the analytical solution of certain nonlinear problems.
The reader can refer to [2]. Ways to address the challenge include the transformation of the nonlinear
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problem into a fixed point operator equation that is subsequently solved via approximation of the fixed
point operator equation by using any suitable fixed point iterative scheme.

Many physical problems are usually formulated as differential equations (which could be ordinary
or partial) and subsequently transformed into an integral equation of any type or kind. It is in this
manner that the majority of physical problems have been formulated and represented as fractional
differential equations. It is common knowledge through research, that fractional differential equations
tend to have wider a range of application to real life situations (see, e.g., [3—11] and the references
therein). As mentioned in the previous paragraph, it has been observed in several studies that obtaining
the analytical solutions of quite a large number of nonlinear problems has been difficult and sometimes,
impossible. Therefore, as a measure to circumvent this challenge, many methods including the fixed
point method have been adopted by many researchers in an effort to obtain solutions to nonlinear
fractional differential equations (NFDEs). Specifically, fixed point iterative schemes have been applied
to solve nonlinear differential equations (see, e.g., [3,12-22]

It is our purpose in this paper to introduce a new fixed point iterative scheme called the AG iterative
scheme that approximates the fixed point of a contraction mapping in a uniformly convex Banach
space. We use the new scheme to prove some convergence, stability and data dependence results.
Also, we show that our scheme converges faster than some existing schemes in literature, and we use
a numerical example to substantiate our result. We show that our scheme converges weakly to a fixed
point of Suzuki’s generalized nonexpansive mapping that satisfies condition (C). As an application, we
use the new scheme (2.9) to approximate the solution of an NFDEs of the Caputo type. Our result
generalizes and extends many existing results in literature.

2. Preliminaries

Let .2 be a Banach space and D be a nonempty, closed and convex subset of 2. Assume that N,
in this section and elsewhere, is the set of natural numbers and R represents the set of real numbers.
The mapping J : D — D is called a contraction mapping if it satisfies the following condition:

IS w - IVl < dllw =l (2.1)
for 6 € [0, 1). If condition (2.1) reduces to
ITw=IVI < llw =,

then the mapping 7 is said to be a nonexpansive mapping having a fixed point p* € % (J) # 0.
Alternatively, Suzuki in 2008 (see [23]), gave the following definition for a generalized
nonexpansive mapping.

Definition 2.1. [23] Let D be a nonempty closed convex subset of a Banach space 2. Let J : D — D
be a mapping. Then, J is said to satisfy condition (C) if the following condition holds

1
Ellw —Jull 2w -V = [Tw-IJVI < llw - ©)
forall w,v € D.
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Let D be a nonempty closed convex subset of a Banach space 2" and {u,} be a bounded sequence
in 2. For each u € 2", we define the following (see, for example, [24])

(a) asymptotic radius of {u,} at u according to Z(u, {u,}) = lim sup ||lu — u,|],

(b) asymptotic radius of {u,} relative to the set D according to
A (D, {u,}) = inf{%(u,{u,}) : u € D} and
(c) asymptotic center of {u,} relative to the set 2~ according to
A (D, {up}) = {u € 2 : Z(u,{un}) = Z(D,{un})}.

Remark 2.1. [25] It is obvious that the set </ (D, {u,}) is a singleton in a uniformly convex Banach
space.

Definition 2.2. [24] A Banach space 2 is said to satisfy the Opial condition [26] if for each sequence
{u,} in Z', converging weakly to u € Z', we have

lim sup |[u,, — u|| < limsup ||u,, — w|| (2.2)

n—o00 n—o00
forallw e X such that u # w.

Definition 2.3. [27] Let {a,};" , and {b,} ", be two iterative schemes converging respectively to a and

b. Suppose that there exists
lla, — all

im =0;
wos [lb, — bl
then, {a,}, converges faster to a than {b,} ", to b.

Definition 2.4. [27] Suppose that for two fixed point iterations {u,},’ , and {v,},. , converging to the
same fixed point y*, the error estimates

lww =yl <@y, n=0,1,2,...,
v, =y 1< by, n=0,1,2,...,

hold, where {a,}, and {b,}, are two sequences of positive numbers converging to zero. Furthermore,
if{a,};, converges faster than {b,};. , then {u,} converges faster than {v,} to a fixed point p*.

Definition 2.5. [28] Let {s,} be any arbitrary sequence in C[0, 1]. Then an iterative scheme u,,, =
(T, u,), converging to a fixed point p*, is said to be J-stable, or stable with respect to J, if, for
& = llsnet = f(T> 50l Y €N, lim & = 0 iff lim 5, = p°.

Lemma 2.1. [29] If p € [0, 1) is a real number and {€,};, is a sequence of positive numbers such
that lim €, = O, then, for any sequence of positive numbers, {s,}", satisfies that s,.| < ps, + €, (n =

n—oo

0,1,2,...) such that lim s, = 0.

n—oo

Lemma 2.2. [30] Let 2" be a uniformly convex Banach space and {y,}:", be any sequence of numbers
suchthat 0 < a <y, < b <1,n2>1, fora,b € R. Let {u,}, and {v,} >, be sequences in Z such
that lim supllun|| @, limsup ||r,|| < ¢ and limsup ||y, u, + (1 = y)r.ll = ¢ for some ¢ > 0. Then,

n—oo n—oo n—oo

lim ”un - rn” =
n—oo
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Lemma 2.3. [23] Let J be a self mapping on a uniformly convex subset D of a Banach space Z .
Suppose that [J satisfies condition (C). Then

llw = IV < 3T w — vl + |lw — V]
holds for w,v € D.

Lemma 2.4. [23] Let J be a mapping on a subset D of a Banach space Z with the Opial condition
satisfying (2.2). Suppose that J is a Suzuki generalized nonexpansive mapping satisfying condition
(C). If {u,} converges weakly to p* and lim ||Ju, —u,|| = 0, then I p* = p*. That is, I - T is demiclosed
at zero.

Lemma 2.5. [31] Let {0} be a nonnegative sequence for which one assumes that there exists ng € N
such that for all n > ny, we can suppose that the following inequality is satisfied:
On+l < (1 - wn)o-n + Wyl

where @, € (0,1), Vn e N, ¥ 7 @, = o0 andn, > 0 Vn € N. Then,

0 < limsup o, < limsupn,.

n—-oo n—oo

Lemma 2.6. [32] Let o, be a nonnegative sequence satisfying the inequality
On+l < (1 - nn)o-n + /ln
withn, € [0, 1], X320 n; = o and 4, = o(n,). Then lim o, = 0.

Lemma 2.7. [23] Let D be a nonempty subset of a Banach space 2 and J : D — D. If  is a Suzuki
generalized nonexpansive mapping, then for all x € D and p* € F(J), |Tx - T p*|l < |lx — p*|| holds.

Approximation via a fixed point iterative scheme has been adopted by several researchers as a method
to approximate several classes of operators. For example, Mann [33], in 1953, introduced the following

iterative scheme:

the D

(2.3)
i1 = (1 - a/n)tn + a/njtn» ne N’

where {a,} is a sequence in [0, 1].
Khan [34] and Thakur et al. [35], in 2013 and 2016, respectively constructed the following schemes,
called the Picard-Mann hybrid and Thakur iterative schemes:

so €D

Sp+1 = jtn (24)
t, = (1 - a’n)sn + a’njsn’ neN,

po €D

Pt = TG

gn = I = an)pn + @ury]

rn = =B)pn+BuI Pns n€EN,

(2.5)
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where {«,} and {8, } are real sequences in (0, 1). Khan proved that (2.4) converges faster than the Picard,
Mann and Ishikawa iterative schemes.
In 2018, Ullah and Arshad [36] introduced the M iterative scheme as follows:

mog € D

M1 = Jd,

dy = Jcy

cn=0-ay)m, +a,9Im,, neN,

(2.6)

where {«,} is a real sequence in [0, 1]. The scheme was used to prove weak and strong convergence
theorems for Suzuki generalized nonexpansive mappings in the framework of uniformly convex
Banach spaces.

Noor [37], in 2000, introduced an iterative scheme that included both the Mann and the Ishikawa
iterative schemes as special cases. The scheme was defined as follows:

up=ue€bD

U1 = (1 — @u, + @, Jw,

wy = (1 = B)tn + BuT Yu

Yo = (1 =Yty + ynJtty, n €N,

2.7)

where {a,}, {8,} and {y,} are real sequences in [0, 1].
Recently in 2019, Okeke [38] introduced the following iterative scheme:

Xo=x€D

Xne1 = TV

v = (1 —a,)x, + Ju,

up = (1 = Bu)xn + BuJ Xn, n €N,

(2.8)

where {a,} and {8,} are sequences in (0, 1) and it was shown that the scheme converges faster than
the Picard, Krasnoselskii [39], Mann, Ishikawa [40], Noor, Picard-Mann and Picard-Krasnoselkii [41]
iterative schemes.

Motivated by the aforementioned developments, it is our aim in this paper to introduce a new fixed
point iterative scheme that is more efficient than the ones highlighted above and others in literature. To
achieve this, the AG fixed point iterative scheme is defined by the sequence {u,} as follows:

up=u€bD
Upy1 = jvn
Vn = j[(l - an)wn + a/njwn] (29)

Wy = (1 _Bn)jun +ﬁnjxn
Xn = (1 - ’}/n)un + ynjun’ neN,

where {a,}, {8,} and {y,} are sequences of real numbers in [0, 1].
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3. Main results

In this section, we consider and prove the main results of this paper.

3.1. Convergence and stability results

Theorem 3.1. Let D be a nonempty closed convex subset of a Banach space & and J : D — D

[ee)

be a contraction mapping satisfying condition (2.1) such that #(J) # 0. Suppose that {u,}:", is an
iterative sequence generated by the AG iterative scheme (2.9) satisfying 3., o a, = oo. Then {u,}>
converges to a unique fixed point p* of .

Proof. Let p* € #(J) be a fixed point of a contraction mapping 7. The Banach contraction mapping
principle guarantees the existence and uniqueness of the fixed point p*. So, we want to show that
u, = p*asn— oo.
From (2.1) and (2.9), we have
I, =PIl = (L = Yty + ¥uT un = Pl
< =yllun = pll + ¥ull T un = pll
< (I =yl = p7ll + 6yallun — p7ll
= [(1 = u) + 6¥ulllun — p7ll
=[1 - = 6)yalllu, — p7ll. (3.1
Using (2.1), (2.9) and (3.1), we have
wa = p7ll = I(1 = BT un + BuT X0 — Pl
< =BT uy = p*ll + Bull T X, — Pl
< 6(1 = Blluy — prll + 6Bullxa — Pl
=61 = Blluy — prll + 6Bu[1 — (1 = S)yulllun — p°ll
= {61 = B.) + Bul1 = (1 = 6)yu(1 = )}l — P’
< O[1 = Buya(l = Ollun — p7II. (3.2)
Again, using (2.1), (2.9) and (3.2), we have
v =PIl = 1T 11 = @)wn + @n T wal = Pl
<Ol = a)w, + @anIwa] = pill
< S{(1 = a)llwn = pll + @allTwa = P71}
< 6{(1 — apliw, — p'll + daullwy — p°lI}
= o{[(1 — @,) + Sa,]llw, — plI}
= 0[(1 — @) + Sanlllw, — Pl
< &1 = (1 = 8)aulll = (1 = )Buyulllitn = Pl (3.3)
Using (2.1), (2.9) and (3.3), we have
s =PIl = 1T v = Pl
<6l = Pl
<& = (1 = 8aulll = (1 = )Bayulllies = Pl
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Since B, ¥, € [0, 1] and ¢ € (0, 1), then
s = p'Il < 811 = (1 = &)l = pill.
Repeating the process, we have
llun = p*Il < 811 = (1 = Sy Mty = p’ll
llupy = p*ll < 811 = (1 = &)y 2]llty2 = p’ll
lltn—2 = p*Il < 8°[1 = (1 = &)avus1llutn-3 — p°ll

lluy = p*ll < &1 = (1 = S)ao]lluo — p’]|
Hence,
i = p°ll < 8 Ollug = p Il | |11 = an(1 = 6))
k=0
0€[0,1)and a, € [0, 1]; thus, 1 —a,(1 —6) <1 forall n € N.
It is obvious from classical analysis that 1 — x = e™* for x € (0, 1). Thus,

n
3(n+1 —(1-6
liter = p*ll < 8 Py = p*ll [ [ e
k=0
< 63(n+1)”u0 _ p*”n+le—(1—5)z;;°=0a/k.

From the hypothesis of the theorem, Y, a; = oo such that ™" Zio% — (0 as n — oo, that s,

k=0
lim ||u, — p*|| = 0.
n—oo

This completes the proof.

(3.4)

O

Theorem 3.2. Let D be a nonempty closed convex subset of a Banach space 2 and J : D — D be
a contraction mapping satisfying condition (2.1) with the fixed point p* € F#(J) # 0. Let xy € D
generate the sequence {x,}" , C D, as defined in (2.3), and uy € D, given {u,} >, C D as defined by
(2.9) with real sequences {a,},. ,, {Bu} o (V}oo€ [0, 1] satisfying Yo @y = co. Then, the following

statements are equivalent:

(i) The Mann iterative scheme (2.3) converges to the fixed point p* € 7 ().
(i) The AG iterative scheme (2.9) converges to the fixed point p* € % (J).

Proof. We shall show that (i) = (ii), that is, if the Mann iterative scheme (2.3) converges to a fixed

point p*, then the AG iterative scheme (2.9) also converges.
Using (2.3), (2.9) and condition (2.1), we have

||-xn+1 - Mn+1|| = ”(1 - an)xn + anjxn - jvn”

< (1 - a'n)”xn - jvn” + an”jxn - jvn”

< (1 - an)”-xn - jxn + jxn - jvn” + a’n”jxn - jvn”
< (1 - an){”xn - j—an + ”jxn - jvn”} + anlljxn - jvn”

< (1 - a’n)”xn - jxn” + 6(1 - an)llxn - Vn” + a’néllxn - Vn”

= (l - a'n)”xn - jxn” + 5”)6,, - Vn”’

(3.5)

AIMS Mathematics Volume 8, Issue 12, 28488-28516.



28495

12 = vall = [l = T (1 = @)wy, + @I willl
< |lxn =T X0+ Tx = T = @)Wy, + @, I wi]ll
< lxn = T xall + 1T %0 = T = @)Wy + @I wi]ll
< Ixa = T xall + 6llx, = (1 = @)y, — @n I will
< lxn = T xall + (1 = @p)llxy = wall + @,ullx, — Twall}
< 1w = T xall + 6{(1 — a)llxy — wall + @ullx, — T x0 + T %0 — Twill}
< lxa = T xall + (1 = @p)llx, = wall + @ullx, — T xall + @,6llx, — will}
< N1 = T xall + 6(1 = @), = wall + 6@ullx, = Twall + @u6l1x, — will
= 1%, = T xall + 6@ullxy = T x4l + [6(1 = @) + 8 ]llx, — wyl
= 1% = T xall + 6anllx, = T xall + 611 = (1 = S)alllx, — will,

10 = wall = llx, = (1 = BTty — BuT Xall
< (1 = Bollxy = Tunll + Bullx, = T x4l
< (1 =Bllxn = T xn + T xn = Tttll + Bull X — T Xall
< (1 =B, — Txall + 1T X0 — Tuall} + Ballxw — T Xl
< lxw = T xall + (1 = BIINT %0 = T ull
< Py = T xall + 6(1 = Bu)llxn — |-

Putting (3.7) in (3.6), we have

12 = vall <llx = T xall + Sallx, = T x|
+0[1 = (1 =), lllx, = T xall + 6(1 = B)llx, — ull}
<lx, = T xall + 0aullx, = T xall + 6[1 = (1 = S)a,llx, — T x|
+6°[1 = (1 = &), (1 = BlIxs — wl
=62 (1 = BI1 = (1 = ), llx, — |
+{(1 +6a,) +o[1 - (1 = O)a,l}x, — T xll.

Since ¢ € (0, 1) and S, € [0, 1], then for each n € N, 6*(1 — 3,) < 1 such that (3.8) reduces to
1, = vall < [T = (1 = &)an]llxn — tnll + {(1 + 6c,) + 6[1 = (1 = S)a,L}|x, — T xall-
Putting (3.9) in (3.5), we have

X041 = et |l <(1 = @)X, = T xall + 6{[1 = (1 = )y lllx, — uyll
+{(1 +6a,) +6[1 = (1 = O)a,l}lx, — T xall}
=(1 = ap)llx, = Txall + 6[1 = (1 = S)a]llx,, — wsl
+[6(1 + 6, + 6°[1 — (1 = ) llx, — T Xl
<[1 = = Oaulllx, — usll + [(1 = @) + (1 + )
+6°[1 = (1 = &)aullllx, — Txall-

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)
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Let Oy .= ”xn_un”’ Mn = an(l_é) € (Oa 1) and /ln = [(1_an)+6(1+6an)+62[1_(1_6)an]]||xn_jxn”-

Using the fact that /' p* = p* and ||x, — p*|| = 0 as n — oo, we have that

X, — T xall = Iy =T p* + T P" = T xll
<l =IP N+ 1T p" = T xll
< |lxw =IP Il + 6llx, = Pl
= (1 +0)llx, — p°ll;
thus,
X, = T xall < (1 +0)llx, — p*ll > Oas n — oo.
This implies that 4, — 0 as n — co. By Lemma 2.6, we have that gl_)rg [1x,, = u,|| = 0.

Since
* *
e, — Pl = Ity — Xn + X, — Pl
< oty = xall + Nl = Pl
< ”xn - un” + ”xn - p*”,

we have that ||y, — p*|| = 0asn — oo.
Next, we shall show that (ii)= (i). Using (2.3), (2.9) and condition (2.1), we have

lttns1 = Xns1 = T v = (1 = @)Xy — @n T x|
< =allIve = xll + @ullT v — T xll
S (I =a)llTvn = T x0 + T x0 = Xl + @llT Ve = Tl
< =a)llIve = Txll+ (A = a)llT x, = Xl + @ullT v — T X4l
SNIve = Txll + (A = a)llT x, = x4l

< Ollve = xall + (1 = @)l x4 = 2l

Vi = Xall =T [(1 = @)Wy + @n T wa] = Xl
<ITI = @ )w, + @ Iwp] = Ty + Ty — x|
<IT = @ )w, + T w,] = Tull + | T w, — x|
<Ol = an)wn + an I wy — gl + lT wn — X3l
<o[1 = (1 = 9, {lTu, — ul
+ Bullten — xall} + 6|l T un — wnll + T i — Xall-
Combining (3.11) and (3.12), we have

1 = Xl <A = @IT X0 = %4ll + 6°[1 = (1 = O T 1t — wll
+6°[1 = (1 = 8)a,|Bullty, — X,ll + 8@l Tty — |l + ST 1t —
=6"[1 — (1 = )ty + @l Tty =l + (1 = NT X — Xl
+ Tty — xall + [1 = (1 = s 1Bt — x|
=[1 = (1 = 8)@, 18,6’ llup, — Xl + [1 = 60, 16°| Tt — wll
+ (I = a)llT x, = xall + ST uy — x|l
<[1 = (1 = O)aullluy — x4l + [1 = 62,1671 Tt — wll
+ (I = a)llT xn = xall + ST uy — xll.

(3.11)

(3.12)
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Let oy, = ||un - )C,,”, M = (1 - 6)01’1 € (0, 1) and /ln = [62 - 63an]|ljun - un” + (1 - an)Hjxn - xn” +
5lljun - xn”

Since J p* = p* and ||u, — p*|| = 0, as n — oo, then

1T un = wnll = |\t = TPl + IT " —
< Olluy — Pl + 11" — wall
<1 +0)llu, — p’ll;

thus, ||Tu, — u,|| = 0 as n — oo.
Also, if
1T %0 = xall < N T %0 = TP+ 11T P" — %l
<1 +9)lx, = pll
then ||x, — p*|| = 0 as n — oo; thus, | x, — x,|| = 0 as n — co. Similarly, [|Ju, — x,/| = 0asn — oo,
which is consequent to the fact that

T, = x| < N Tun = TP+ 11T P = Xl
< Ollu, — p7ll + llx, — P7I
< Olluy = Juty + Juy — poll + I = T X0 + T X0 = Pl
< O{llun — Juull + Sllu, = p*II} + llx, = T xall + 6llx, = p7II.

Thus, from Lemma 2.6, o, = ||u,, — x,|| and lim ||u, — x,|| = O.
n—oo
Since

2 = P7Il < Mty = Xall + |ty — p7Il > O as n — oo,

we have that lim ||x, — p*|| = 0. Hence, we have completed the proof. |

Theorem 3.3. Let 2 be a Banach space and J : D — D be a contraction mapping satisfying
condition (2.1) with 6 € [0,1). Assume that J has a fixed point p* € F(J) # 0. Let {u,};, be
a sequence generated by the AG iterative scheme (2.9) satisfying Y. o, = oo, n € N, and that
converges to p*. Then, the AG iterative scheme is ‘J -stable.

Proof. Suppose that {s,}>  C Z is an arbitrary sequence in D and suppose that the sequence generated
by (2.9) is u,+1 = f(J, u,) converging to a unique fixed point p*.
Let €, = ||s,+1 — f(T, sn)ll. We want to show that lim ¢, = 0 if and only if lim ||s,, — p*|| = O.

n—oo

Suppose that lim €, = 0. Using the triangle inequality, we have

sne1 = P7ll = Isnsr = (T 80) + (T, 80) = P
<Iswer = f(T, sl + 11T s0) = Pl
<&+ /(T s0-pll
<&+ ITv—pl
<€ +0lv, = p°ll, (3.13)
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”Vn - P*” = ”j[(l —a,)w, + anjwn] - P*”

< 5“(1 - a'n)wn + a’njwn - P*H

< o{(1 — aplw, — p'll + aallTw, — P71}
< 6(1 = ay)lw, = p'll + @,6°lw, = Pl

= [6(1 = @) + @6 1lIw, — P, (3.14)
”Wn - P*” = ||(1 _ﬁn)jsn +ﬁnjxn - P*”
< (1 =BT 50 = Pl + BallT %0 = D7l
< (1 =Bu)dllsy = p'll + Badllx, — pll, (3.15)
1, = Pl = [I(L = ¥)Sn + ¥uT 50 — D7l

< A =yllsw = P+ ¥ullT 50 = Pl
< (L =y)llsa = p*ll + vi6lls, = pll
= [(1 =) + ¥aSllls, — Pl
< [1 = =0)yllls, — pll. (3.16)

Combining (3.13)—(3.16), we have

I$ns1 = Pl < € + (1 = B35 + Budl1 = (1 = 8)ya}6°(1 = @) + @, llsn = Pl

Since § € (0, 1) and {a,}, {B.}, {y.} € [0, 1], then {(1 = 8,)S + B,6[1 — (1 = 8)y, }[6*(1 — a,) + @, 6°] < 1;

thus,
Isnr1 =PIl < & + [ls, — P7II.
By Lemma 2.1, we have that lim ||s,, — p*|| = 0, that is, lim s, = p*.
n—o0o n—-oo

Conversely, suppose that lim s, = p*; then,
n—o00

€ =llsn+1 = f(T, sn)ll
<lswe1 = PN+ lp" = f(T, sl
s = P+ 11p* = Tvall
<l[$ns1 = Pl + Ollvy = Pl
<Isuer = PNl + 016(1 — @) + @6 1llw, — Pl

lswer = Pl +616(1 = @) + @, 6" U = Bu)Sllsw = Il + Budllx, — p*Il}

w1 = Pl +616(1 = @) + @, 6° U1 = Bo)dlls, = p7ll
+Bu0l1 — (1 = 8)yullls, — p7lI}

<lsuwer = pll + 616(1 = @) + @, H{(1 = B,)6 + Bu6l1 = (1 = &)y, llls, = p’ll

S”Sn+l - P*” + {62[6(1 - a’n) + andz](l _:871)
+ B0’ [6(1 — ) + @, 0°1[1 = (1 = Sy)lls, — pll-

By assumption, we have that lim ||s,, — p*|| = 0. On taking the limit as n — oo, lim €, = 0. Hence, the
n—o00

AG iterative scheme (2.9) is J-stable.
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3.2. Weak convergence for Suzuki’s generalized nonexpansive mapping

Before we continue with the next result in this section, it would be necessary to outline the following
lemmas, as they will be important in proving subsequent results.

Lemma 3.1. Let D be a nonempty closed convex subset of a Banach space 2 and J : D — D be
a Suzuki generalized nonexpansive mapping satisfying condition (C) with Z(J) # 0. Let {u,}", be

n=

a sequence generated by the AG iterative scheme (2.9) for uy € D; then, lim ||lu, — p*|| exists for all
p€FI).
Proof. Let p* € Z(J) and {u,}, for all n € N. Since J is a Suzuki generalized nonexpansive
mapping, by Lemma 2.7, we have that for x € D and p* € Z# (), |Tx - I p*ll < |lx — p*ll.
Using (2.9), we have
”xn - P*” = ||(1 - yn)un + 7njun - P*“

< (I =yllun = Pl + yullTwn = Pl

< (I =y, = p7ll + yallu, — Pl

= llw, = p7II; (3.17)

using (2.9) and (3.17), we have

wn = Pl = (1 = BT tn + BuT Xu — Pl
< (=BT un = p'll + BallT X, — Pl
< (1 =B, = p*Il + Ballx, — Pl
= llu, — p7ll (3.18)
and
Ve = p7ll = 1T = @)w, + @I wa] = Pl
<A = @)w, + @I wa] = Pl
< (1 =aylw, = p'll + &llTwn = Pl
= [w, = pll
< llu, = p7ll- (3.19)
And using (3.19) and (2.9), we have

i1 =PIl = 1T v = Pl
<|va—pll
< let = Pl

Hence, {||u, — p*||} is bounded and a non-increasing sequence for p* € .%(J). Therefore, lim ||u, — p*||

exists. O

Lemma 3.2. Let D be a nonempty closed convex subset of a Banach space 2. Assume thatJ : D — D
is a Suzuki generalized nonexpansive mapping satisfying condition (C). Let {u,} >, be a sequence
generated by the AG iterative scheme (2.9). Then, #(J) # 0 if and only if {u,} is bounded and
lim [|Ju, — | = 0.
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Proof. Suppose that .#(J) # 0 and p* € #(J). Then, by Lemma 3.1, we have that lim |ju, — p*|

(o)

o s bounded.

exists and {u,}
Let

lim |lu, = p'll = &.
From (3.17), (3.18) and (3.19),

lim sup ||, — p*|| < limsup [lu, — p*|| < ¢,

n—oo n—oo

limsup |jw, — p*|| < limsup||u, — p*|| < ¢

n—0oo n—00
and
lim sup [|v, — p*|| < lim sup [lu, — p*|| < ¢.

n—o00 n—00

Since 7 satisfies condition (C), we have that

ITun — Pl = 1T un = TPl < Mt = Pl

and
lim sup || Ju, — p*l| < limsup|lu, — p*|| < ¢.

n—o0
Now,
lttns1 = Pl = 1T v = Pl
<lva =Pl

Taking the lim inf on both sides, we have
¢ = liminf|ju,.; — p’|| < liminf ||y, — p7|l.
Thus, (3.23) and (3.25) will give

¢ < liminf ||y, — p*|| < limsup|lv, — p’ll < ¢,

Tim [lv, = p°ll = ¢;
again,
v, =PIl = ITTA = @)w, + @I w,] = Pl
<A = a)w, + @, Iw, = Pl
< (1 - a’n)llwn - P*” + anlljwn - P*”
= |lw, =PIl
Taking the lim inf on both sides, we have
¢ = liminf [|v, — p*|| < liminf ||w, — p7||.

Thus, (3.22) and (3.27) will give

¢ < liminf |lw, — p*ll < limsup [lw, - p’ll < ¢,

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)
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lim [lw, — Pll=¢ (3.28)
and
w, = "Il = (1 = B)T ttn + BuT X0 — P’
S1_n Mn_*"'n-xn_*
(1 =BT *p I+ BallT * Pl (3.29)
< =By — p7ll + Bullx, — p7ll
= lun, = 7l + Bulllxn — 7Nl = llun — P71
Obviously,
W =PIl = llun = Pl < Bulllx, = 7l = llun — P71
Given that {8,,} € (0, 1) and considering (3.29), it is convenient to have that
. e Wn =PIl = llu, — p7ll ) )
wn = p7Il = llun = p7Il < Vi < lxx = pll = llun = P71,
which results in
w, = p*Il < llx, = p7II.
Taking the lim inf on both sides, we have
¢ < liminf ||w, — p*|| < liminf||x, — p*|. (3.30)
Thus, using (3.21) and (3.30), we have
¢ < liminf ||x, — p*|| < limsup||x, — p*l| < ¢
and
lim flx, — Pl =e. (3.31)
From (3.31),
¢ = lim |x, = p7l|
= 1}1—2;10 ”(1 - Yn)un + ’}/njun - P*”
im [I(1 = 7,)(t = p) + ¥u(T 1t = P
Therefore,
o = Tim 11 = y)aty = p*) + 72T ttn = POl (332)

Using (3.20), (3.24), (3.32) and Lemma 2.2, we end by stating that lim || Ju, — u,|| = 0. Conversely,
suppose that {u,} is bounded and lim |lu, — Ju,|| = 0. We want to show that .#(J) # 0. Let p* €
(D, {u,}). By Lemma 2.3, we have that

Z(Ip*{un}) = limsup lu, — T p’l

n—oo
< 3limsup || T u, — u,|| + limsup ||u, — p°||
n—-oo n—-o0o

= limsup [lu, — p’||

n—oo

=X (", {un}).
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It follows that J p* € </ (D, {u,}). By Remark 2.1, we have that Jp* = p*. Hence the fixed point set

Z(J) is nonempty. ]
At this point, we now consider the weak convergence result for a Suzuki generalized nonexpansive

mapping satisfying condition (C).

Theorem 3.4. Let D be a nonempty closed convex subset of a uniformly convex Banach space 2 . Let

J : D — D be a mapping satisfying condition (C). For any arbitrary uy € D, the sequence {u,} , is

generated by the AG iterative scheme (2.9) for n > 1, where {a,}, {B,} and {y,} are sequences of real

numbers in [0, 1] such that % (J) # 0. Assume that Z~ satisfies the Opial condition (2.2). Then, {u,}

converges weakly to the fixed point p* € .7 (J).

Proof. From Lemma 3.2, we have that {u,} is bounded and lim ||u, — u,|| = O is subject to the fact

that #(J) # 0. Since 2 is uniformly convex, we can say that it is reflexive. By Eberlin’s theorem
there exists a subsequence {u,,} of {u,} such that u,, — p, for some p, € D.

By Lemma 2.4, p; € .#(J). We want to prove that p; is a weak limit of {u,}, that is, {u,} converges
weakly to p;. On the contrary, suppose that {u,} does not converge weakly to p;; then, we can construct
another subsequence {u, } of {u,} such that u,, — p, for some p, € D and p; # p,.

Again by Lemma 2.4, p, € .#(9). Since ’}1_210 lu, — p*|| exists for all p* € .#(9J), by Lemma 3.2 and

Opial condition (2.2), we have

lim |[u, — p:1ll = lim [ju,,, — prl|

n—o00 11—
< lim[ju,, — po|

1—00
= lim ||, — pal|

n—oo
= lim [Ju,; = pal|
< lim [Ju,;, = pl|
= lim ||lu, — pall,

n—oo

which is a contradiction. So p; = p,. This implies that {u,} converges weakly to a fixed point of 7,
thereby completing the proof. m|

3.3. Rate of convergence and data dependence result

Theorem 3.5. Let D be a nonempty closed convex subset of a Banach space 2 and J : D — D be a
contraction mapping satisfying (2.1) with 6 € (0, 1) such that % () # 0. If {s,.}, {pn}, {m,} and {u,} are
sequences respectively defined by the Picard-Mann, Thakur, M and AG iterative schemes converging
to a fixed point p* € F(J). Then, the AG iterative scheme is faster than (2.4)—(2.6).

Proof. From (3.4) in Theorem 3.1, we have that

it = Il < o = p7118° 0 | |11 = @ = 6)] (3.33)

k=0
From Picard-Mann iterative scheme (2.4), we have

sne1 = p*ll = 1Tt = Pl
< 6llt, = p7ll, (3.34)
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ltn = P7Il = (1 = @n)sn + T su = Pl
<A =a)ls, = p'll + @llT s, — Pl
<A =a)lls, — p'll + a,dlls, — p’ll
=[1 - a, +a,dllls, — p’ll
<[ = =0allls. = p'll.

Now, by combining (3.34) and (3.35), we have

I$5+1 =PIl < 011 = (1 = ), llls, — Pl

such that, by induction, we have

n

Iswer = 7l < 8" | |01 = (0 = O)adliso - p'l

k=0
= llso = p7lI6" " [1 = (1 = &)ax]™",

This implies that
11 =PIl < llso = plI6" ' [1 = (1 = &)a]™".

From Thakur iterative scheme (2.5), we have

Ipnet — Pl = 1T gn — Pl
<dllg, = p°ll

”qn - P*” = ”j[(l - a’n)pn + a’nrn] - P*”
< 6”[(1 - an)pn + in"n] - P*”
< o{(1 = apllp. = Pl + aullr, = plI}

I = p*ll = I(1 = B)pu + BuT Pn — Pl
< (1 =BIlpa =Pl + BallT pr — Pl
< (1 =BIlpn = Pl + BudllTllpn = Pl
={(1 = Ba) + BuS}llpn — Pl
=[1 =1 =0)Bullp. - Pl
Combining (3.38) and (3.39), we have

lgn = P7Il < 6(1 — @)llpn — P7ll + 6aull — (1 = &)Bulllpn — Pl
= {0(1 — @y) + 6au[1 = (1 = 6)B.Bllp. — Pl
<O[1 = (1 = SanBulllp. — Pl

Again, combining (3.37) and (3.40), we have

IPns1 = Pl < 8°[1 = (1 = O)aBulllpn = Pl

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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By induction,

Ipast =PIl < llpo = pll6™™*? l_l[l — (1 = )bl
k=0

= llpo = pIIO*™ V1 = (1 = S)ayBi]™!
< llpo = pl8*"* V1 = (1 = 6)aBI"™.

From M iterative scheme (2.6), using the same approach as in (3.34)—(3.40), we have

I = p*ll = 1T dn = Pl
< dlld, - p°ll,

ldn = Pl = T e = Pl
< dlle, = p7ll

and
llc, = pll = (1 = a)my, + @, I m, — p°l

< (I = apllm, = p*ll + axllTm, — p’l
< (I = apllm, — p*ll + 6aylim, — p’l
= [(1 — @) + 6a,llim, — p’l|

< [1 -0 =8)aylllm, — p°ll.

Combining (3.43) and (3.44), we have
i, — p7ll < 6[1 = (1 = 8)a,lllm, — p°ll.
Combining (3.42) and (3.45), we have
1 = Pl < 6°[1 = (1 = )a]llm, — p*l.

Inductively,

s = Il = 80 [ 11 = (1 = Saudlimg - pl|
k=0

such that - )
I, — p*ll = 2" V11 = (1 = )] |lmo — p||

<& = (1 = 8)al™ img — p|l.
From (3.33), (3.36) and (3.46), let

a, = 8"V - (1 - 8)al™||uo — p*l

by =81 = (1 = &)al"Iso - p°ll
cn = 62"V = (1 = &)al"lmo — pll.

Hence,
a, 8" = (1= §)al™ lup — p'l

— = — 0 as n— o0

by, o[l - (1=l so— p7

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)
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and
a, _ 8"V = (1= 8)al™ lup - p’| 0
— = — 0, as n — oo.
¢ 02D = (1 = o0)a]™lmg — p*|l
It can be concluded that the AG iterative scheme (2.9) converges to the fixed point p* faster than

(2.4)—(2.6), thus completing the proof. O

Example 3.1. Let 2 = Rand D = [0,20] € 2. Let J : D — D be a mapping defined by
Ju = Vu? = 9u + 54 for all u € D. Choose a, = B, = v, = % or each n € N with the initial value
uy = 10.  is a contraction mapping with contraction constant %5*4 and F(9) = {6}. Tables 1 and
2 show that the AG fixed point iterative scheme (2.9) converges faster than the Picard-Mann, Mann,
Thakur, Picard, Noor and M iterative schemes. Again, Figures 1 and 2 graphically display the fast

convergence of the AG iterative scheme.

Table 1. Comparison of speed of convergence of some iterative schemes for Example 3.1.

Step AG Picard-Mann Mann Thakur

1 10.0000000000  10.0000000000  10.0000000000  10.0000000000
2 6.0521589007 7.0533679898 8.5000000000 6.4371793563
3 6.0002097324 6.1515367954 7.4150259924 6.0180141243
4 6.0000008289 6.0172649142 6.7286051421 6.0006544493
5 6.0000000033 6.0018971898 6.3488560110 6.0000236518
6 6.0000000000 6.0002076117 6.1596478250 6.0000008546
7 6.0000000000 6.0000227088 6.0713292161 6.0000000309
8 6.0000000000 6.0000024838 6.0315037555 6.0000000011
9 6.0000000000 6.0000002717 6.0138409699 6.0000000000
10 6.0000000000 6.0000000297 6.0060666428 6.0000000000
11 6.0000000000 6.0000000032 6.0026563122 6.0000000000
12 6.0000000000 6.0000000004 6.0011625500 6.0000000000
13 6.0000000000 6.0000000000 6.0005086948 6.0000000000
14 6.0000000000 6.0000000000 6.0002225691 6.0000000000
15 6.0000000000 6.0000000000 6.0000973769 6.0000000000
16 6.0000000000 6.0000000000 6.0000426029 6.0000000000
17 6.0000000000 6.0000000000 6.0000186389 6.0000000000
18 6.0000000000 6.0000000000 6.0000081545 6.0000000000
19 6.0000000000 6.0000000000 6.0000035676 6.0000000000
20 6.0000000000 6.0000000000 6.0000015608 6.0000000000
21 6.0000000000 6.0000000000 6.0000006829 6.0000000000
22 6.0000000000 6.0000000000 6.0000002988 6.0000000000
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Table 2. Comparison of speed of convergence of some iterative schemes for Example 3.1.

Step AG Picard Noor M

1 10.0000000000  10.0000000000  10.0000000000  10.0000000000
2 6.0521589007 8.0000000000 7.5072974202 6.3458402195
3 6.0002097324 6.7823299831 6.4993253300 6.0105078956
4 6.0000008289 6.2417169234 6.1587218874 6.0002882471
5 6.0000000033 6.0649466478 6.0498343531 6.0000078824
6 6.0000000000 6.0165653001 6.0155875999 6.0000002155
7 6.0000000000 6.0041627484 6.0048699050 6.0000000059
8 6.0000000000 6.0010420407 6.0015209084 6.0000000002
9 6.0000000000 6.0002605950 6.0004749371 6.0000000000
10 6.0000000000 6.0000651541 6.0001483043 6.0000000000
11 6.0000000000 6.0000162888 6.0000463091 6.0000000000
12 6.0000000000 6.0000040722 6.0000144603 6.0000000000
13 6.0000000000 6.0000010181 6.0000045153 6.0000000000
14 6.0000000000 6.0000002545 6.0000014099 6.0000000000
15 6.0000000000 6.0000000636 6.0000004403 6.0000000000
16 6.0000000000 6.0000000159 6.0000001375 6.0000000000
17 6.0000000000 6.0000000040 6.0000000429 6.0000000000
18 6.0000000000 6.0000000010 6.0000000134 6.0000000000
19 6.0000000000 6.0000000002 6.0000000042 6.0000000000
20 6.0000000000 6.0000000001 6.0000000013 6.0000000000
21 6.0000000000 6.0000000000 6.0000000004 6.0000000000
22 6.0000000000 6.0000000000 6.0000000001 6.0000000000
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Figure 2. Graph corresponding to Table 2 results.

Remark 3.1. (1) The graphs in Figures 1 and 2 compare the rate of convergence of various iterative
schemes based on the values in Tables I and 2 for Example 3.1. The values in Tables 1 and 2 marked in
blue indicate the fixed point at each step, and it can be seen that different iterative schemes converge at
different steps. Moreover, where there is no such indication implies that the iterative scheme converges
at a step beyond 22. Consequently, our iterative scheme converging at Step 6 which is faster than the
Picard-Mann (Step 13), Mann (not visible within 22 steps), Picard (Step 21), Noor (not visible within
22 steps), Thakur and M (Step 9) schemes.

Example 3.2. Let C = [1,6] € 2" = Rand J : D — D be an operator defined by Ju = 5 + 1 for
all u € D. Choose «, = % Bn = % and vy, = }lfor each n € N with the initial value up = 2.5. g is
a contraction mapping and the set of fixed points ¥ () = {2}. The values obtained via computation
of the mapping for various iterative schemes are shown in Tables 3 and 4. And, the corresponding
plots for the values are shown in Figure 3, indicating that the AG iterative converges faster than the
Picard-Mann, Noor, Mann, Picard, M and Thakur iterative schemes.

—%— Picard-Mann
Noor
Mann
—EB—AG
—v—M
—<+— Thakur
—©6— Picard

24+ |

2371

n

221

Values of u

21r

0 5 10 15 20 25
Number of iterations

Figure 3. Graph corresponding to results listed in Tables 3 and 4.
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Table 3. Comparison of the rate of convergence of several iteration processes for Example 2.

Steps AG Picard-Mann Noor Mann

1 2.5000000000 2.5000000000 2.5000000000 2.5000000000
2 2.0449414063 2.2087500000 2.3278906250 2.3750000000
3 2.0040394600 2.0871531250 2.2150245239 2.2812500000
4 2.0003630780 2.0363864297 2.1410090511 2.2109375000
5 2.0000326345 2.0151913344 2.0924710918 2.1582031250
6 2.0000029333 2.0063423821 2.0606408082 2.1186523438
7 2.0000002637 2.0026479445 2.0397671050 2.0889892578
8 2.0000000237 2.0011055168 2.0260785218 2.0667419434
9 2.0000000021 2.0004615533 2.0171018056 2.0500564575
10 2.0000000002 2.0001926985 2.0112150435 2.0375423431
11 2.0000000000 2.0000804516 2.0073546152 2.0281567574
12 2.0000000000 2.0000335886 2.0048230188 2.0211175680
13 2.0000000000 2.0000140232 2.0031628453 2.0158381760
14 2.0000000000 2.0000058547 2.0020741346 2.0118786320
15 2.0000000000 2.0000024443 2.0013601786 2.0089089740
16 2.0000000000 2.0000010205 2.0008919796 2.0066817305
17 2.0000000000 2.0000004261 2.0005849435 2.0050112979
18 2.0000000000 2.0000001779 2.0003835950 2.0037584734
19 2.0000000000 2.0000000743 2.0002515544 2.0028188551
20 2.0000000000 2.0000000310 2.0001649647 2.0021141413
21 2.0000000000 2.0000000129 2.0001081807 2.0015856060
22 2.0000000000 2.0000000054 2.0000709429 2.0011892045
23 2.0000000000 2.0000000023 2.0000465230 2.0008919034
24 2.0000000000 2.0000000009 2.0000305089 2.0006689275
25 2.0000000000 2.0000000004 2.0000200072 2.0005016956
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Table 4. Comparison of the rate of convergence of several iteration processes for Example 2.

Steps Thakur Picard M

1 2.5000000000 2.5000000000 2.5000000000
2 2.1146875000 2.2500000000 2.0937500000
3 2.0263064453 2.1250000000 2.0175781250
4 2.0060340409 2.0625000000 2.0032958984
5 2.0013840581 2.0312500000 2.0006179810
6 2.0003174683 2.0156250000 2.0001158714
7 2.0000728193 2.0078125000 2.0000217259
8 2.0000167029 2.0039062500 2.0000040736
9 2.0000038312 2.0019531250 2.0000007638
10 2.0000008788 2.0009765625 2.0000001432
11 2.0000002016 2.0004882813 2.0000000269
12 2.0000000462 2.0002441406 2.0000000050
13 2.0000000106 2.0001220703 2.0000000009
14 2.0000000024 2.0000610352 2.0000000002
15 2.0000000006 2.0000305176 2.0000000000
16 2.0000000001 2.0000152588 2.0000000000
17 2.0000000000 2.0000076294 2.0000000000
18 2.0000000000 2.0000038147 2.0000000000
19 2.0000000000 2.0000019073 2.0000000000
20 2.0000000000 2.0000009537 2.0000000000
21 2.0000000000 2.0000004768 2.0000000000
22 2.0000000000 2.0000002384 2.0000000000
23 2.0000000000 2.0000001192 2.0000000000
24 2.0000000000 2.0000000596 2.0000000000
25 2.0000000000 2.0000000298 2.0000000000

Theorem 3.6. Let 7 be an approximate operator of J satisfying the contraction mapping
condition (2.1). Let {u,},’ , be an iterative sequence generated by the AG iterative scheme (2.9) for ;J
and define an iterative sequence {}," , as follows

Yo=2€D

Vi1 = T iy

Hn =T I(1 — @)y + T 4] (3.47)
Ay = =BT + BT 6,

0y = (1 = y)0n + v, T, n €N,

where {a,}, {B,} and {y,} are real sequences in [0, 1] satisfying the following conditions: (a) % < a, for
alln € N, and (b) ), a, = co. If Ip* = p* and T p* = p* such that lim 9, = p*, then we have that
n=0 n—oo

llp* = Pl < 19765 where € > 0 is a fixed constant.
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Proof. Using (2.1), (2.9) and (3.47), we have

%0 = Oull = ICT = y)utn + ¥uT tty = (1 = y) 0 = ¥u T 0l
< (I =ylluy = Fll + yull Tt = Tl
< (0 =yl = Sl + VallT n = T 00 + T 00 = Tl
< (I =yllup = Gl + yullT ey = TOull + yall T 00 = Tl
< (I =ylluy = Full + 6yullun = Gull + yne
= [1 =1 = 8)yullluy, — Full + vue,

Wy = all = I(1 = B) Tt + BrT X0 — (1 = B)T Ty — BT Gl
< (1 =BT un = T Ol + BallT %, — T Ol
<A =BT un = I + T = T Oull + BallT %0 = T O + T 6, — T Ol
< (I =BT un = Tl + (1 = BINT Fn = T Full + Bull T X0 — T Ol
+ BallT 0, — T4l
< (1 = B)dlluy — Full + Budllxy — Oull + (1 = Bu)€ + Br€;
putting (3.48) in (3.49), we have

W = all <= Bl = Sall + Bub{[1 = (1 = 6ylllity = Bl + Ve
+(1=B)e +Bue
<(1 = B8y = Ball + Bubl1 = (1 = 8)yullltey = Full + Bryue +
=16 = Buyad(1 = )ty — Ol + Byyade + €.

Vi = wall =ITTA — @)w, + @I w,] = TI(1 = @) A, + @, T ]l
<ITLA = ap)wy + @, Iw,] = T = @), + @, T A,]
+ I = @), + @, T A,] = TI(1 = @), + @, T 4l
<IT1A = @ )w, + @I w,] = T (1 — @), + @, T ]l
+ T = @) + @, T ] = T U1 = @), + a7 4]l
<O|(1 — aw, + a, Iw, — (1 —a)A, — a, T 4| + €
<6{(1 = anlwy = Aall + @l Tw, = T A} + €
<6(1 — a)llw, = Al + S llTw, = T Al + €
<6(1 = a)lwy, = Aull + 6@ llT Wy = Ty + T Ay = T |l + €
<6(1 — a)lwn — il + S @ullwn — Al + Sa,e + €
=[6(1 — @,) + S, llw, — || + Sarpe + €;
putting (3.50) into (3.51) yields

Vi = pall <61 = @) + 5> {6 = Buyn6(1 = O)]lluty — Dl
+ B,Yn0€ + €} + 0, € + €
<6[1 = (1 = 8)an][6 = Buynd(1 — )l — Gl
+[1 = (1 = 0)anl6’Buyne + [1 — (1 = 6)a,16%€ + dane + €.

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)
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Again,

”un+l - ﬂn+1” :”JVn - T:un”
S”g‘j-vn - j/ln + j,un - T:un”
<NT Ve = Tl + 1Tt = T |

(3.53)
<O|lv, — all + €
<8*[1 = (1 = )16 — Buyud(1 = 6)]lluty — 3|
+[1 = (1 = 0)nl6Buyne + [1 — (1 — 8,16 € + 5°aye + 5€ + €.
Since 6 € [0, 1) and @, B,,, v, € [0, 1], n € N, then
o<1
5 <1
&1 = (1= 6)Buyal < 1
63[1 - (1 - 6)an]ﬁn7n <1
Sl -1 -6a,] <1,
and from assumption (a) where 1 — @, < @,, we have that
lttns1 = Fniall < [1 = (1 = Oanlllen — Tl + ne + 4€
<[1-01-=-0allu, — %l +a,e+4(1 —a, + a,)e (3.54)
O¢ .
<[1-0-=-0allu, — %l +a,(1 =6 .
<[1-( ]|l Il + an( )(1_5)

Leto, = |lu, — 4|, @w, == @,(1 =96) € (0,1) and n,, := (19%5).
From Lemma 2.5, it follows that

0 < lim sup |[u,, — 3,|| < lim sup

n—00 n—oo

From Theorem 3.1, we know that lim u, = p*. Using this fact alongside the assumption that lim ¥, =

n—oo n—-oo

p*, we obtain

9¢
*_~* <—'
lp" =Pl < 7—

This completes the proof. O
4. Application to nonlinear fractional differential equations of Caputo type

The evolution of research involving fractional differential equations has been expansive since its
discovery and the relevant significant studies in that area have been attributed to the fact that
fractional differential equations have a wide range of applications in different domains. The extent of
application of fractional differential equations include, but are not limited to the following areas: fluid
flow, signal processing, electronics, biology, robotics, telecommunication systems, electrical
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networks, diffusive transport, traffic flow, gas dynamics, generalized Casson fluid modeling with heat
generation and chemical reaction (see for example, [4, 12,42-44] and the references therein).

We want to consider approximation of the solution of an NFDE of the Caputo type by using the AG
fixed point iterative scheme (2.9).

To achieve our aim in this section, we consider the following NFDE of Caputo type with initial

conditions:

CDF x(0) + f(1, x(1)) = 0,

x(0) = x(1) =0, 4.1)

0<r<0,1<¢<2,
where ©DF is a Caputo fractional derivative of order £ and f : [0, 1] xR — R is a continuous function.

Let X = C[0, 1] be a Banach space of continuous real functions from [0, 1] into R, endowed with
the usual supremum norm. The corresponding Green function associated with the NFDE (4.1) is given
by
(1 =)' =@ —s)Hif0<s<t<1,
Git.s) - {w( (1= ) = (= 9

g1 ]
t(lr(sz)) fo0<tr<s<l.

Lemma 4.1. Let 2 = C[0, 1] be a Banach space with the supremum norm || - ||w. Suppose that
10,11 X Z — Z is a continuous function; also, for 6 € (0, 1), assume the following condition:

(ODE |f(t,g) — f(t,h)| < 6|lg — h| holds for all t € [0,1] and g,h € Z .

Theorem 4.1. Let 2" = C[0, 1] be a Banach space endowed with the supremum norm as in Lemma 4. 1.
Let {u,} be a sequence defined by AG iterative scheme (2.9) for the integral operator J : X — X
defined by

1
TOW) = fo G(t, ) (5. y(5))ds.

VYt e [0,1], Yy e Z. Suppose that condition (C,) of Lemma 4.1 is satisfied. Then the sequence defined
by the AG iterative scheme (2.9) converges to the solution of problem (4.1).

Proof. 1t is obvious to note that y € 2" is a solution of (4.1) if and only if y € 2 is a solution of the
integral equation

1
1) = fo G(t, 5)f(2, y(s))ds.

Let x,y € Z forall t € [0, 1]. Invoking Lemma 4.1, we have
\Ty(@) = Jz(0)] = Ifo1 G(t,5)f(s,y(s))ds — fol G(t, 5)f(s,2(s))ds]
< j: G(t, 9)|f(s,y(5)) = f(s,2(s))ld s
< j; | G(t, ){0ly(s) — z(s)l}ds

1
< (sup f G(t, 5)ds)olly — I
0

1€(0,1]
< Olly —zll.
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Consequently, ||y — Jzl| < 6lly — zl|. Therefore, J is a contraction mapping. By Theorem 3.1,
the sequence {u,} ", generated by the AG iterative scheme converges to a fixed point of J; hence, it
converges to the solution of the NFDE (4.1). O

5. Conclusions

We have been able to show that the AG iterative scheme converges faster than the Picard, Mann,
Picard-Mann, Thakur, Noor and M iterative schemes through the example given in Section 3, with
the results presented in Tables 1 and 2 and Figures 1 and 2. Weak convergence result of AG iterative
scheme for a Suzuki generalized nonexpansive mapping was presented. Moreover, the stability and
data dependence results have been proved for the new scheme. Finally, the new scheme has been
applied to approximate the solution of an NFDE of the Caputo type. Our result has generalized and
extended other existing results.
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