This manuscript is devoted to presenting some convergence results of a three-step iterative scheme under the Chatterjea–Suzuki–C ((CSC), for short) condition in the setting of a Banach space. Also, an example of mappings satisfying the (CSC) condition with a unique fixed point is provided. This example proves that the proposed scheme converges to a fixed point of a weak contraction faster than some known and leading schemes. Finally, our main results will be applied to find a solution to functional and fractional differential equations (FDEs) as an application.
Citation: Junaid Ahmad, Kifayat Ullah, Hasanen A. Hammad, Reny George. A solution of a fractional differential equation via novel fixed-point approaches in Banach spaces[J]. AIMS Mathematics, 2023, 8(6): 12657-12670. doi: 10.3934/math.2023636
This manuscript is devoted to presenting some convergence results of a three-step iterative scheme under the Chatterjea–Suzuki–C ((CSC), for short) condition in the setting of a Banach space. Also, an example of mappings satisfying the (CSC) condition with a unique fixed point is provided. This example proves that the proposed scheme converges to a fixed point of a weak contraction faster than some known and leading schemes. Finally, our main results will be applied to find a solution to functional and fractional differential equations (FDEs) as an application.
[1] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations integrales, Fund. Math., 3 (1922), 133–181. https://doi.org/10.4064/fm-3-1-133-181 doi: 10.4064/fm-3-1-133-181 |
[2] | E. Picard, Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives, J. Math. Pures Appl., 6 (1880), 145–210. http://www.numdam.org/item/?id = JMPA_1890_4_6__145_0 |
[3] | F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041 |
[4] | D. Gohde, Zum Prinzip der Kontraktiven Abbildung, Math. Nachr., 30 (1965), 251–258. https://doi.org/10.1002/mana.19650300312 doi: 10.1002/mana.19650300312 |
[5] | W. A. Kirk, A fixed point theorem for mappings which do not increase distance, Am. Math. Mon., 72 (1965), 1004–1006. https://doi.org/10.2307/2313345 doi: 10.2307/2313345 |
[6] | T. Suzuki, Fixed point theorems and convergence theorems for some generalized non-expansive mapping, J. Math. Anal. Appl., 340 (2008), 1088–1095. https://doi.org/10.1016/j.jmaa.2007.09.023 doi: 10.1016/j.jmaa.2007.09.023 |
[7] | B. S. Thakur, D. Thakur, M. Postolache, A new iterative scheme for numerical reckoning fixed points of Suzuki's generalized nonexpansive mappings, Appl. Math. Comput., 225 (2016), 147–155. https://doi.org/10.1016/j.amc.2015.11.065 doi: 10.1016/j.amc.2015.11.065 |
[8] | K. Ullah, M. Arshad, Numerical reckoning fixed points for Suzuki's generalized nonexpansive mappings via new iteration process, Filomat, 32 (2018), 187–196. https://doi.org/10.2298/FIL1801187U doi: 10.2298/FIL1801187U |
[9] | E. Karapinar, K. Tas, Generalized (C)–conditions and related fixed point theorems, Comput. Math. Appl., 61 (2011), 3370–3380. |
[10] | Y. Jia, M. Xu, Y. Lin, D. Jiang, An efficient technique based on least-squares method for fractional integro-differential equations, Alex. Eng. J., 64 (2023), 97–105. https://doi.org/10.1016/j.aej.2022.08.033 doi: 10.1016/j.aej.2022.08.033 |
[11] | W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc., 4 (1953), 506–510. https://doi.org/10.1090/S0002-9939-1953-0054846-3 doi: 10.1090/S0002-9939-1953-0054846-3 |
[12] | S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150. https://doi.org/10.1090/S0002-9939-1974-0336469-5 doi: 10.1090/S0002-9939-1974-0336469-5 |
[13] | M. A. Noor, New approximation schemes for general variational inequalities, J. Math. Anal. Appl., 251 (2000), 217–229. https://doi.org/10.1006/jmaa.2000.7042 doi: 10.1006/jmaa.2000.7042 |
[14] | R. P. Agarwal, D. O'Regon, D. R. Sahu, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex Anal., 8 (2007), 61–79. |
[15] | M. Abbas, T. Nazir, A new faster iteration process applied to constrained minimization and feasibility problems, Mat. Vestn., 66 (2014), 223–234. |
[16] | N. Wairojjana, N. Pakkaranang, N. Pholasa, Strong convergence inertial projection algorithm with self-adaptive step size rule for pseudomonotone variational inequalities in Hilbert spaces, Demonstratio Math., 54, (2021), 110–128. https://doi.org/10.1515/dema-2021-0011 doi: 10.1515/dema-2021-0011 |
[17] | S. Khatoon, I. Uddin, Convergence analysis of modified Abbas iteration process for two G-nonexpansive mappings, Rendiconti del Circolo Matematico di Palermo Series, 2 (2021), 31–44. |
[18] | H. A. Hammad, H. U. Rehman, M. Zayed, Applying faster algorithm for obtaining convergence, stability, and data dependence results with application to functional-integral equations, AIMS Math., 7 (2020), 19026–19056. https://doi.org/10.3934/math.20221046 doi: 10.3934/math.20221046 |
[19] | H. A. Hammad, H. U. Rehman, M. De la Sen, M. A novel four-step iterative scheme for approximating the fixed point with a supportive application, Inf. Sci. Lett., 10 (2021), 14. |
[20] | H. A. Hammad, H. U. Rehman, M. De la Sen, Shrinking projection methods for accelerating relaxed inertial Tseng-type algorithm with applications, Math. Prob. Eng., 2020 (2020), Article ID 7487383, 14 pages. https://doi.org/10.1155/2020/7487383 |
[21] | J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40 (1936), 396–414. https://doi.org/10.1090/S0002-9947-1936-1501880-4 doi: 10.1155/2020/7487383 |
[22] | R. P. Agarwal, D. O'Regan, D. R. Sahu, Fixed Point Theory for Lipschitzian-Type Mappings with Applications Series, New York: Springer, (2009). |
[23] | W. Takahashi, Nonlinear Functional Analysis, Yokohoma: Yokohoma Publishers, (2000). |
[24] | Z. Opial, Weak convergence of the sequence of successive approximations for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 591–597. https://doi.org/10.1090/S0002-9904-1967-11761-0 doi: 10.1090/S0002-9904-1967-11761-0 |
[25] | H. F. Senter, W. G. Dotson, Approximating fixed points of nonexpansive mappings, Proc. Amer. Math. Soc., 44 (1974), 375–380. https://doi.org/10.1090/S0002-9939-1974-0346608-8 doi: 10.1090/S0002-9939-1974-0346608-8 |
[26] | J. Schu, Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. Aust. Math. Soc., 43 (1991), 153–159. https://doi.org/10.1017/S0004972700028884 doi: 10.1017/S0004972700028884 |
[27] | J. Ali, M. Jubair, F. Ali, Stability and convergence of $F$ iterative scheme with an application tot the fractional differential equation, Eng. Comput., 38 (2022), 693–702. https://doi.org/10.1007/s00366-020-01172-y doi: 10.1007/s00366-020-01172-y |
[28] | E. Karapnar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Eq. 421 (2019), 1–25. |
[29] | S. Khatoon, I. Uddin, D. Beleanu, Approximation of fixed point and its application to fractional differential equation, J. Appl. Math. Comput., 2020 (2020), 1–20. |
[30] | H. A. Hammad, H. U. Rehman, M. De la Sen, A New four-step iterative procedure for approximating fixed points with application to 2D Volterra integral equations, Mathematics, 10 (2022), 4257. https://doi.org/10.3390/math10224257 doi: 10.3390/math10224257 |
[31] | H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159 |
[32] | H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388 |