Research article

On the strong convergence of the solution of a generalized non-Newtonian fluid with Coulomb law in a thin film

  • Received: 12 December 2022 Revised: 02 March 2023 Accepted: 06 March 2023 Published: 29 March 2023
  • MSC : 35R35, 76F10, 78M35, 35B40, 35J85

  • The goal of this paper is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter $ \varepsilon $. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.

    Citation: Hana Taklit Lahlah, Hamid Benseridi, Bahri Cherif, Mourad Dilmi, Salah Boulaaras, Rabab Alharbi. On the strong convergence of the solution of a generalized non-Newtonian fluid with Coulomb law in a thin film[J]. AIMS Mathematics, 2023, 8(6): 12637-12656. doi: 10.3934/math.2023635

    Related Papers:

  • The goal of this paper is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter $ \varepsilon $. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.



    加载中


    [1] M. Anguiano, F. J. Suárez-Grau, Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary, IMA J. Appl. Math., 84 (2019), 63–95. https://doi.org/10.1093/imamat/hxy052 doi: 10.1093/imamat/hxy052
    [2] G. Bayada, K. Lhalouani, Asymptotic and numerical analysis for unilateral contact problem with Coulomb's friction between an elastic body and a thin elastic soft layer, Asymptotic Anal., 25 (2001), 329–362.
    [3] H. Benseridi, Y. Letoufa, M. Dilmi, On the asymptotic behavior of an interface problem in a thin domain, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 90 (2020), 547–556. https://doi.org/10.1007/s40010-019-00598-4 doi: 10.1007/s40010-019-00598-4
    [4] M. Boukrouche, G. Łukaszewicz, Asymptotic analysis of solutions of a thin film lubrication problem with Coulomb fluid-solid interface law, Int. J. Eng. Sci., 41 (2003), 521–537. https://doi.org/10.1016/S0020-7225(02)00282-3 doi: 10.1016/S0020-7225(02)00282-3
    [5] M. Boukrouche, R. E. Mir, On a non-isothermal, non-Newtonian lubrication problem with Tresca law: existence and the behavior of weak solutions, Nonlinear Anal., 9 (2008), 674–692. https://doi.org/10.1016/j.nonrwa.2006.12.012 doi: 10.1016/j.nonrwa.2006.12.012
    [6] M. Boukrouche, R. E. Mir, Asymptotic analysis of non-Newtonian fluid in a thin domain with Tresca law, Nonlinear Anal., 59 (2004), 85–105. https://doi.org/10.1016/j.na.2004.07.003 doi: 10.1016/j.na.2004.07.003
    [7] L. Consiglieri, Stationary solutions for a Bingham flow with nonlocal friction, Chapman and Hall/CRC, 1 Ed., 1992.
    [8] M. Dilmi, H. Benseridi, A. Saadallah, Asymptotic analysis of a Bingham fluid in a thin domain with Fourier and Tresca boundary conditions, Adv. Appl. Math. Mech., 6 (2014), 797–810. https://doi.org/10.1017/S2070073300001466 doi: 10.1017/S2070073300001466
    [9] B. Q. Dong, Z. M. Chen, Asymptotic stability of non-Newtonian flows with large perturbation in $R_{2}$, Appl. Math. Comput., 173 (2006), 243–250. https://doi.org/10.1016/j.amc.2005.04.002 doi: 10.1016/j.amc.2005.04.002
    [10] G. Duvaut, J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
    [11] G. Duvaut, Equilibre d'un solide élastique avec contact unilatéral et frottement de Coulomb, C. R. Math. Acad. Sci. Paris, 290 (1980), 263–265.
    [12] I. Ekeland, R. Temam, Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, Paris, 1974.
    [13] V. Girault, P. A. Raviart, Finite element approximation of the Navier-Stokes equations, Springer-Verlag, 1979. https://doi.org/10.1007/BFb0063447
    [14] B. Guo, G. Lin, Existence and uniqueness of stationary solutions of non-Newtonian viscous incompressible fluids, Commun. Nonlinear Sci. Numer. Simul., 4 (1999), 63–68. https://doi.org/10.1016/S1007-5704(99)90060-6 doi: 10.1016/S1007-5704(99)90060-6
    [15] W. H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollösungen, Kolloid-Z., 39 (1926), 291–300. https://doi.org/10.1007/BF01432034 doi: 10.1007/BF01432034
    [16] A. Massmeyer, E. Di Giuseppe, A. Davaille, T. Rolf, P. J. Tackley, Numerical simulation of thermal plumes in a Herschel-Bulkley fluid, J. Non-Newtonian Fluid Mech., 195 (2013), 32–45. https://doi.org/10.1016/j.jnnfm.2012.12.004 doi: 10.1016/j.jnnfm.2012.12.004
    [17] G. P. Matson, A. J. Hogg, Two-dimensional dam break flows of Herschel-Bulkley fluids: the approach to the arrested state, J. Non-Newtonian Fluid Mech., 142 (2007), 79–94. https://doi.org/10.1016/j.jnnfm.2006.05.003 doi: 10.1016/j.jnnfm.2006.05.003
    [18] C. Nouar, M. Lebouché, R. Devienne, C. Riou, Numerical analysis of the thermal convection for Herschel-Bulkley fluids, Int. J. Heat Fluid Flow, 16 (1995), 223–232. https://doi.org/10.1016/0142-727X(95)00010-N doi: 10.1016/0142-727X(95)00010-N
    [19] C. Nouar, C. Desaubry, H. Zenaidi, Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder, Eur. J. Mech.-B/Fluids, 17 (1998), 875–900. https://doi.org/10.1016/S0997-7546(99)80018-1 doi: 10.1016/S0997-7546(99)80018-1
    [20] S. Poyiadji, K. D. Housiadas, K. Kaouri, G. C. Georgiou, Asymptotic solutions of weakly compressible Newtonian Poiseuille flows with pressure-dependent viscosity, Eur. J. Mech.-B/Fluids, 49 (2015), 217–225. https://doi.org/10.1016/j.euromechflu.2014.09.002 doi: 10.1016/j.euromechflu.2014.09.002
    [21] Y. Qin, X. Liu, X. G. Yang, Global existence and exponential stability of solutions to the one-dimensional full non-Newtonian fluids, Nonlinear Anal., 13 (2012), 607–633. https://doi.org/10.1016/j.nonrwa.2011.07.053 doi: 10.1016/j.nonrwa.2011.07.053
    [22] A. Saadallah, H. Benseridi, M. Dilmi, Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law, J. Sib. Federal Univ.-Math. Phys., 11 (2018), 738–752.
    [23] A. Saadallah, H. Benseridi, M. Dilmi, Asymptotic convergence of a generalized non-Newtonian fluid with Tresca boundary conditions, Acta Math. Sci., 40 (2020), 700–712. https://doi.org/10.1007/s10473-020-0308-1 doi: 10.1007/s10473-020-0308-1
    [24] K. C. Sahu, P. Valluri, P. D. M. Spelt, O. K. Matar, Linear instability of pressure-driven channel flow of a Newtonian and a Herschel-Bulkley fluid, Phys. Fluids, 19 (2007), 122101. https://doi.org/10.1063/1.2814385 doi: 10.1063/1.2814385
    [25] F. J. Suárez-Grau, Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary, Nonlinear Anal., 117 (2015), 99–123. https://doi.org/10.1016/j.na.2015.01.013 doi: 10.1016/j.na.2015.01.013
    [26] H. S. Tang, D. M. Kalyon, Estimation of the parameters of Herschel–Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers, Rheol. Acta, 43 (2004), 80–88. https://doi.org/10.1007/s00397-003-0322-y doi: 10.1007/s00397-003-0322-y
    [27] C. Zhao, Y. Li, A note on the asymptotic smoothing effect of solutions to a non-Newtonian system in 2-D unbounded domains, Nonlinear Anal., 60 (2005), 475–483. https://doi.org/10.1016/j.na.2004.09.014 doi: 10.1016/j.na.2004.09.014
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(988) PDF downloads(77) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog