Loading [MathJax]/jax/output/SVG/jax.js
Research article

On the strong convergence of the solution of a generalized non-Newtonian fluid with Coulomb law in a thin film

  • Received: 12 December 2022 Revised: 02 March 2023 Accepted: 06 March 2023 Published: 29 March 2023
  • MSC : 35R35, 76F10, 78M35, 35B40, 35J85

  • The goal of this paper is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter ε. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.

    Citation: Hana Taklit Lahlah, Hamid Benseridi, Bahri Cherif, Mourad Dilmi, Salah Boulaaras, Rabab Alharbi. On the strong convergence of the solution of a generalized non-Newtonian fluid with Coulomb law in a thin film[J]. AIMS Mathematics, 2023, 8(6): 12637-12656. doi: 10.3934/math.2023635

    Related Papers:

    [1] Huashui Zhan, Yuan Zhi, Xiaohua Niu . On a non-Newtonian fluid type equation with variable diffusion coefficient. AIMS Mathematics, 2022, 7(10): 17747-17766. doi: 10.3934/math.2022977
    [2] Zhi Guang Li . Global regularity and blowup for a class of non-Newtonian polytropic variation-inequality problem from investment-consumption problems. AIMS Mathematics, 2023, 8(8): 18174-18184. doi: 10.3934/math.2023923
    [3] Muhammad Tahir, Yasir Khan, Adeel Ahmad . Impact of pseudoplastic and dilatants behavior of Reiner-Philippoff nanofluid on peristaltic motion with heat and mass transfer analysis in a tapered channel. AIMS Mathematics, 2023, 8(3): 7115-7141. doi: 10.3934/math.2023359
    [4] Amal Al-Hanaya, Munirah Alotaibi, Mohammed Shqair, Ahmed Eissa Hagag . MHD effects on Casson fluid flow squeezing between parallel plates. AIMS Mathematics, 2023, 8(12): 29440-29452. doi: 10.3934/math.20231507
    [5] Khalil Ur Rehman, Wasfi Shatanawi, Zeeshan Asghar, Haitham M. S. Bahaidarah . Neural networking analysis for MHD mixed convection Casson flow past a multiple surfaces: A numerical solution. AIMS Mathematics, 2023, 8(7): 15805-15823. doi: 10.3934/math.2023807
    [6] Aziz Ur Rehman, Muhammad Bilal Riaz, Ilyas Khan, Abdullah Mohamed . Time fractional analysis of Casson fluid with application of novel hybrid fractional derivative operator. AIMS Mathematics, 2023, 8(4): 8185-8209. doi: 10.3934/math.2023414
    [7] Maxime Krier, Julia Orlik . Solvability of a fluid-structure interaction problem with semigroup theory. AIMS Mathematics, 2023, 8(12): 29490-29516. doi: 10.3934/math.20231510
    [8] Zongqi Sun . Regularity and higher integrability of weak solutions to a class of non-Newtonian variation-inequality problems arising from American lookback options. AIMS Mathematics, 2023, 8(6): 14633-14643. doi: 10.3934/math.2023749
    [9] Khalil Ur Rehman, Nosheen Fatima, Wasfi Shatanawi, Nabeela Kousar . Mathematical solutions for coupled nonlinear equations based on bioconvection in MHD Casson nanofluid flow. AIMS Mathematics, 2025, 10(1): 598-633. doi: 10.3934/math.2025027
    [10] Famei Zheng . Periodic wave solutions of a non-Newtonian filtration equation with an indefinite singularity. AIMS Mathematics, 2021, 6(2): 1209-1222. doi: 10.3934/math.2021074
  • The goal of this paper is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction. We assume that the fluid coefficients of the thin layer vary with respect to the thin layer parameter ε. We give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results.



    Non-Newtonian fluids are defined as fluids with an extra-tension tensor that cannot be expressed as a linear, isotropic function of the components of the strain rate tensor.One of the goals of asymptotic analysis is to obtain and describe a two-dimensional problem from a three-dimensional problem, passing to the limit on the thickness of the domain assumed to be already thin. In this context, several previous studies have been conducted to deal with this problem.

    The first study we mention is what the authors have done in [4], where they mainly examine the existence and behavior of weak solutions for a lubrication problem with Tresca law. In another study, the authors in [1] gave the nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary. Suárez-Grau in [25] studied the asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary. The convergence stability of the solutions for the non-Newtonian fluid motion with large perturbation in R2 has been given in [9]. In [20], the authors presented an extension of the results related to the solutions of weakly compressible fluids with pressure-dependent viscosity. In contrast, the existence and uniqueness of stationary solutions of non-Newtonian viscous incompressible fluids were obtained in [11]. Other contexts and problems be found in the monographs such as in [21,27], and in the literature quoted within.

    The Herschel-Bulkley fluid is a generalized model of a non-Newtonian fluid. The name is related to Winslow Herschel and Ronald Bulkley [15], and it was first mentioned, in 1926, where the relationship between the stress tensor σε and the symmetric deformation velocity d(uε) is given by:

    σεij=πεδij+μ|d(uε)|r2d(uε)+δεd(uε)|d(uε)|

    where, d(uε)=12(uε+(uε)T), uε is the velocity field, μ>0 is the viscosity constant, πε is the pressure, δε0 is the yield stress, 1<r2 is the power law exponent of the material and δij is the Kronecker symbol.

    In this paper, we will adopt the constitutive law by considering that a Herschel-Bulkley incompressible fluid whose viscosity will follow the power law with a liquid-solid friction condition of Coulomb in three-dimensional domain Qε R3.

    The Herschel-Bulkley fluid has been studied intensively by mathematicians, physicists, and engineers as intensively as the Navier-Stokes. For example, we mention the studies carried out in the fields of metal fluxes, plastic solids and some polymers. The literature concerning this topic is extensive; see e.g. [24,26] and many others references. More recently, the authors in [17], have studied the two-dimensional slow flow of non-Newtonian fluids of the Herschel-Bulkley type an inclined plane. In the context of the Bingham fluid, r=2, the authors in [8,22] proved the asymptotic convergence of this fluid in the isothermal and non-isothermal case with non linear friction law. In the case δε=0, with the particular conditions of Tresca, this problem has been studied by [5,6] respectively in both non-isothermal and isothermal study cases. Benseridi et al. in [3] studied theasymptotic analysis of a contact between two general Bingham fluids, however Saadallah et al. in [23] studied the analog of the problem presented in this work but in thevery particular case where the velocity on the surface Γb is null with the friction of the Tresca type. We can also mention others studies where authors gave the numerical solutions of the Herschel-Bulkley fluid but in other particular cases (see [14,16,18,19]).

    In this study, the objective is to make an extension of our previous works [8,22,23] and to improve the result obtained in [5,6].

    The novelty of our study can be summarized in following two major points. First, we take into account a generalized model of a non-Newtonian fluid (1<r2 and δε0). Second, we choose the Coulomb friction with the velocity of the lower surface Γb different to zero, since all previously mentioned works were restricted only to the particular friction of Tresca.

    From our side, this choice will cause different difficulties in other parts of the study, especially with regard to Lemma 5.1, Theorems 4.2–4.4 and the uniqueness theorem.

    Accordingly, this work makes the following new contributions by finding solutions to these problems:

    The first contribution consists of finding the solution for the first difficulty coming from the fact that the integral on Γb has no clear meaning. In our study, we will replace the normal stress by some regularization as in [10]. The second contribution consists of dealing with the problem of choosing the test functions. In fact, we cannot choose the test functions as it was done in [5,6], their work does not contain the yield stress δε.

    This remaining of our paper is organized as follows: Section 2 will summarize the description of the problem and the basic equations. Moreover, we introduce some notations and preliminaries that will be used in other sections. Section 3 will be reserved to the proof of the related weak formulation. We will also discussing the problem in transpose form. The corresponding main convergence results will be stated in Theorems (4.j), j=1 to 5 of Section 4. The mathematical proofs will be presented in Section 5.

    We start by introducing some notations used in the paper. Motivated by lubrication problems, we consider:

    Qε={y=(y,y3)R3:y=(y1,y2)Γb and 0<y3/ε<h(y)}

    the domain of the flow, where Γb is a non-empty bounded domain of R2 with a Lipschitz continuous boundary, h(.) is a Lipschitz continuous function defined on Γb such that 0<hh(y)h, for all (y,0) in Γb and ε is a small parameter that will tend to zero.

    We decompose the boundary of Qε as Γε=¯Γεu¯Γεl¯Γb with

    ¯Γb={(y,y3)ˉQε:y3=0},¯Γεu={(y,y3)ˉQε:(y,0)Γb y3/ε=h(y)},¯Γεl={(y,y3)ˉQε:yΓb0<y3<εh(y)},

    where Γb is the bottom of the domain, Γεu is the upper surface and Γεl the lateral part of Γε. Let uε(y):QεR3 be the velocity and πε(y):QεR the pressure of the fluid. We denote by η=(η1,η2,η3) the unit outward normal to the boundary Γε, and we define the normal and tangential velocities of uε on Γε as:

    uεη=uε.η  uετ=uεuε.η.

    Similarly, for a regular tensor field σε, we denote by σεη and σετ the normal and tangential components of σε given by

    σεη=3i=1(σεij.ηj).ηi  σετ=(3i=1σεij.ηj(σεη).ηi)1i3.

    Let S be denotes the set of all symmetric 3×3 matrices and for η,ζS, we define the scalar product and the corresponding norm by

    (η:ζ)=3i,j=1ηijζij and |η|=(η:η)12.

    The boundary-value problem describing the stationary flow for generalized non-Newtonian and incompressible fluid is described by:

    ProblemPε. Find the pressure πε:QεR and a velocity field uε:QεR3  such that

    div(σε)=fεin Qε (2.1)
    σεij=˜σεijπεδij,˜σε=δεd(uε)|d(uε)|+μ|d(uε)|r2d(uε) if d(uε)0,|˜σε|δε if d(uε)=0,}in Qε (2.2)
    div(uε)=0in Qε (2.3)
    uε=0on Γεu, (2.4)
    uε=g with g3=0on Γεl (2.5)
    uε.η=0on Γb (2.6)
    |σετ|<kε|σεη|uετ=s                    |σετ|=kε|σεη|β0:uετ=sβσετ}on Γb (2.7)

    where, fε=(fεi)1i3 is the body forces, s is the velocity of the bottom boundary Γb. Furthermore, the Eq (2.1) represents the law of conservation of momentum. Relation (2.2) gives the law of behavior of the Herschel-Bulkley fluid. The formula (2.3) represents the incompressibility equation. Equations (2.4) and (2.5) represent the velocity on Γεu and Γεl respectively. On the other hand, Eq (2.6) justified the no-flux through on Γb. However, assuming that the friction is sufficiently large, the tangential velocity is unknown and satisfies the Coulomb boundary condition (2.7) on the part Γb, with kε is the friction coefficient. This law introduced by [2] is one of the most spread laws in mathematics and it is more realistic than the law of Tresca.

    Suppose that the function g=(gi)1i3 is in (W11/r,r(Γε))3, the space of traces of functions from (W1,r(Qε))3 on Γε which will define in the next section. Due to Γεg.ndσ=0 that there exists a function Gε ([10]):

    Gε(W1,r(Qε))3 with div(Gε)=0 in QεGε=g on Γε.

    Also, we suppose that g3=0 on Γε and g=s on Γb.

    Before starting this study, we need to introduce the functional framework and the functional spaces that we use in the rest of this work: Let Lr(Qε) represents the Lebesgue space for the norm .Lr(Qε) and W1,r(Qε) are the standard Sobolev spaces given by

    (W1,r(Qε))3={v(Lr(Qε))3:viyjLr(Qε) for i,j=1,2,3}

    for 1<r<, and W1,r0(Qε) is the closure of D(Qε) in W1,r(Qε). We denoted by W1,q(Qε) the dual space of W1,r0(Qε), where r1+q1=1.

    Moreover, we need the following functional spaces

    Eε={v(W1,r(Qε))3:v=Gε on Γεl, v=0 on Γεuv.η=0 on Γb}Eεdiv={vEε:div(v)=0}Eq0(Qε)={vLq(Qε):Qεv dydy3=0}.

    Assume that the problem (Pε) admits a solution denoted by (uε,πε), with sufficient regularity. Multiplying (2.1) by (vuε)Eε and then using Green's formula, along with the boundary conditions (2.4)–(2.7), we obtain:

    ProblemPεK. We are looking for the velocity uεEεdiv and πεEq0(Qε), which verify:

             F(uε,vuε)(πε,divv)+˜j(uε,v)˜j(uε,uε)(fε,vuε), vEε (3.1)

    where

    F(uε,v)=μQε|d(uε)|r2d(uε)d(v)dydy3, (3.2)
    (πε,divv)=Qεπεdivvdydy3, (3.3)
    ˜j(uε,v)=Γbkε|σεη||vs| dy+2δεQε|d(v)|dydy3, (3.4)
    (fε,v)=3i=1Qεfεivi dydy3. (3.5)

    The integral ˜j(uε,v) has no meaning for uεEε. Indeed, σεη is defined by duality as an element of W12,r(Γb) and |σεη| is not well defined on Γb. So following [10], we replace σεη by some regularization R(σεη), where R is a regularization operator from W12,r(Γb) into Lr(Γb) can be obtained by convolution with a positive regular function and defined by

    τW12,r(Γb), R(τ)L2(Γb), R(τ)(x)=τ,ϕ(xt)W12,r(Γb),W12,r00(Γb) xΓb, (3.6)

    ϕ is a given positive function of class C with compact support in Γb and W12,r(Γb) is the dual space to W12,r00(Γb)={v|Γb:vW1,r(Qε),v=0 on ΓεuΓεl}.

    After the regularization, we get the new problem:

    ProblemPε,rK. Find (uε,πε)Eεdiv ×Eq0(Qε), provided it verifies the problem:

             F(uε,vuε)(πε,divv)+j(uε,v)j(uε,uε)(fε,vuε), vEε (3.7)

    where

    j(uε,v)=Γbkε|R(σεη)||vs| dy+2δεQε|d(v)|dydy3.

    Remark 3.1. If vEεdiv the inequality (3.7) becomes

             F(uε,vuε)+j(uε,v)j(uε,uε)(fε,vuε)vEε. (3.8)

    Theorem 3.1. For fεLq(Qε)3 and kε>0 in L(Γb); then the problem Pε,rK admits a unique pair (uε,πε)Eεdiv×Eq0(Qε) verifying (3.7). Moreover, for a small value of the friction threshold kε, this solution becomes unique.

    Proof. To show the existence and uniqueness result of (3.7), we define the following intermediate problem:

    F(uε,vuε)+ΓbY(|vs||uεs|) dy+δEεdiv(v)δEεdiv(uε)(fε,vuε), vW1,rdiv(Qε)3 (3.9)

    where, Y defined from Lr(Γb) into Lr(Γb) as: YkεR(σεη) and

    W1,rdiv(Qε)3={vW1,r(Qε)3:div(v)=0},δEεdiv={0 for vEεdiv+ otherwise .

    By the analog of the techniques used in [16], it is easy to see that F(uε,vuε) is bounded coercive hemicontinuous and strictly monotone.

    Y+δEεdiv is a proper, convex and continuous function on Lr(Γb), then by Tichovo's fixed point theorem (as in [7]), we ensure the existence of a unique uε Eεdiv verifying the variational inequality (3.9). The existence of the pressure πεEq0(Qε) such that (uε,πε) satisfy (3.7) is found in [12].

    In this subsection, we use the dilatation in the variable y3 given by y3=zε, then our problem will be defined on a domain Q does not depend on ε given by:

    Q={(y,z)R3:(y,0)Γb,0<z<h(y)}

    and its boundary Γ=¯Γu¯Γl¯Γb.

    After this change of scale following the third component, it is normal to give the new functions and the new data defined on the new fixed domain Q:

    ˆuεi(y,z)=uεi(y,y3),i=1,2, ˆuε3(y,z)=ε1uε3(y,y3) and  ˆπε(y,z)=εrπε(y,y3). (3.10)
    ˆf(y,z)=εrfε(y,y3), ˆδ=εr1δε, ˆk=εr1kε, (3.11)
    ˆg(y,z)=g(y,y3),^Gi(y,z)=Gεi(y,y3)i=1,2^G3(y,y3)=ε1Gε3(y,y3) also div(ˆG)=0 and ˆG=ˆg on Γ (3.12)

    with all the new notations given in (3.11) and (3.12) do not depend on ε.

    Also, we denote by:

    E={ˆv(W1,r(Q))3:ˆv=ˆGon Γl,ˆv=0onΓu;ˆv.n=0 on Γb}Ediv={ˆvE(Q):divˆv=0}Ξ(E)={ˆv(W1,r(Q))2:ˆvi=ˆGi on Γl,ˆvi=0onΓui=1,2}˜Ξ(E)={ˆvΞ(E):ˆvsatisfy (3.13)}

    where the condition (3.13) is given by

     Q(ˆv1ωy1+ˆv2ωy2)dydz=0, for all ˆv(Lr(Q))2 and ωC0(Q). (3.13)

    Finally, the Banach space Θz and its linear subspace ˜Θz are denoted by:

    Θz={ˆv(Lr(Q))2;ˆvizLr(Q)i=1,2:ˆv=0 on Γu},
    ˜Θz={ˆvΘz:ˆvsatisfy the condition (3.13)},

    with the norm of Θz is given as follows:

    ˆvrΘz=2i=1(ˆvirLr(Q)+ˆvizrLr(Q)).

    By introducing all these new notations into the variational inequality (3.7), and then multiplying all the terms deduced by εr1 after this scaling, then the problem Pε,rK takes the following form:

    Problem PK. Find (ˆuε,ˆπε)Ediv ×Eq0(Q), such that

     ˆF(ˆuε,ˆvˆuε)(ˆπε,div(ˆvˆuε))+ˆj(ˆuε,ˆv)ˆj(ˆuε,ˆuε)(ˆf,ˆvˆuε), ˆvE (3.14)

    where

    ˆF(ˆuε,ˆvˆuε)=2i,j=1Q[ε2μ|˜d(ˆuε)|r2(12(ˆuεiyj+ˆuεjyi))](ˆviˆuεi)yjdydz+2i=1Qμ|˜d(ˆuε)|r2(12(ˆuεiz+ε2ˆuε3yi))(ˆviˆuεi)zdydz+Q(μ|˜d(ˆuε)|r2ε2ˆuε3z)(ˆv3ˆuε3)zdydz+2j=1Qε2μ|˜d(ˆuε)|r2(12(ε2ˆuε3yj+ˆuεjz))(ˆv3ˆuε3)yjdydz
    (ˆπε,div(ˆvˆuε))=Qˆπεdiv(ˆvˆuε)dydz,ˆj(ˆuε,ˆv)=Γbˆk|R(ˆσεη)||ˆvs|dy+2ˆδQ|˜d(ˆv)|dydz,(ˆf,ˆvˆuε)=2i=1Qˆfi(ˆviˆuεi)dydz+Qεˆf3(ˆv3ˆuε3)dydz,
    |˜d(ˆuε)|=(142i,j=1ε2(ˆuεiyj+ˆuεjyi)2+122i=1(ˆuεiz+ε2ˆuε3yi)2+ε2(ˆuε3z)2)1/2.

    We introduce some results found in [4] which we will need to use in the rest of this work.

    vεLr(Qε)Cd(vε)Lr(Qε), (3.15)
    vεLr(Qε)εhvεzLr(Qε), (3.16)
    αβαrr+βqq, (α,β)R2. (3.17)

    The convergence results of (ˆuε,ˆπε) towards (u,π) as well as the limit problem independently of the parameter ε will be given in the next of this subsection.

    Theorem 4.1. Assume that the assumptions of Theorem 3.1 hold, there exist πEq0(Q) and u=(u1,u2)˜Θz satisfy the following convergences:

    ˆuεiui in  ˜Θz,  1i2, (4.1)
    εˆuεiyj0, in Lr(Q),  1i,j2, (4.2)
    εˆuε3z0,  in Lr(Q), (4.3)
    ε2ˆuε3yi0, in Lr(Q),  1i2, (4.4)
    εˆuε30,  in Lr(Q), (4.5)
    ˆπεπ,in Eq0(Q), with  π depend only of y. (4.6)

    Theorem 4.2. With the same assumptions as Theorem 4.1, the pair (u,π) satisfies:

    ˆuεiui,  strongly  in ˜Θz , i=1,2, 1<r2, (4.7)
    μ2i=1Q12(122i=1(uiz)2)r22(ui)z(ˆviui)zdydzQπ(y) (ˆv1y1+ˆv2y2)dydz+ˆδ22Q(|ˆvz||uz|)dydz+Γbˆk|R(π)|(|ˆvs||us|)dy 2i=1Qˆfi(ˆviui)dydz,ˆvΞ(E). (4.8)

    Theorem 4.3. Suppose that the assumptions of the previous theorem hold, and if |uz|0, the solution (u,π) satisfies

    πW1,q(Γb) (4.9)
    z[12μ(122i=1(uiz)2)r22uz+ˆδ22u/z|u/z|]=ˆfπ, in Lq(Q)2. (4.10)

    Theorem 4.4. Suppose that the assumptions of Theorem 4.2 hold, then τ, s satisfy the inequality:

    2i=1Γbˆk|R(ˆση(π))|ϕi(sisi)dyΓbˆμτϕ|ss|dy0, ϕLr(Γb)2 (4.11)

    and the limit form of Coulomb law:

    μ|τ|<ˆk|R(ˆση(π))|s=sμ|τ|=ˆk|R(ˆση(π))|β0:s=s+βτ} a.e. in Γb. (4.12)

    Also, the solution (u,π) satisfies the weak generalized form:

    Γb[h312π+˜H+μh0y0B(y,ξξ)u(y,ξ)ξdξdy+ˆδh0y0u/z|u/z|(y,ξ)dξdy].v(y)dy+Γb[hμ2h0B(y,ξξ)u(y,ξ)ξdξˆδh2h0u/z|u/z|(y,ξ)dξ]v(y)dy,vW1,r(Γb), (4.13)

    where

    τ=B(y,0)uz(y,0), s=uz(y,0), B(y,ξ)=12(122i=1(uz(y,ξ))2)r22˜H(y,h)=h0H(y,y)dyh2H(y,h), H(y,y)=y0ξ0ˆf(y,t)dtdξ.

    Theorem 4.5. For ˆfLq(Q)3 and ˆk>0 in L(Γb); there exists ¯k>0 sufficiently small such that for ˆkL(Γb)¯k, the solution (u,π) of the limiting problem (4.8) is unique in ˜Θz×(Eq0(Γb)W1,q(Γb))2.

    Proof of Theorem 4.1. Before starting the proof of this theorem, we need the following estimates which can be considered as the key that allows us to make a passage to the limit when ε tends to zero.

    Lemma 5.1. Assume that fεLq(Qε)3 and let (uε,πε)Eεdiv×Eq0(Qε) be a solution of Pε,rK, where the friction coefficient kε>0 in L(Γb). Then there exists a constant C independent of ε such that

    2i,j=1εˆuεiyjrLr(Q)+εˆuε3zrLr(Q)+2i=1(ˆuεizrLr(Q)+ε2ˆuε3yirLr(Q))C (5.1)
    ˆπεyiW1,q(Q)C,  for i=1,2, (5.2)
    ˆπεzW1,q  (Q)εC. (5.3)

    Proof of Lemma 5.1. Choosing v= Gε in (3.8) and using the fact that Gε=s on Γb, we find

    F(uε,uε)F(uε,Gε)+(fε,uε)(fε,Gε). (5.4)

    By applying Korn's inequality, we ensure the existence of a constant CK>0 that does not depend on ε with:

    F(uε,uε)2μCKuεrLr(Q). (5.5)

    Now we apply Hölder's inequality and then Young's, the increase of the first term of (5.4) is given by

    F(uε,Gε)μCK2Qεμ|d(uε)|q(r1)dydy3+2(r1)  μr(qCK)r/qQε|d(Gε)|rdydy3. (5.6)

    By (3.15), the inequality (5.6) becomes

    F(uε,v)uεrLr(Qε)+2(r1)  μr(qCK)r/qGεrLr(Qε). (5.7)

    We apply (3.16) and (3.17), we obtain the analogue of (5.7)

    |(fε,uε)|μCK2uεrLr(Qε)+(εh)qq(12μrCK)q/rfεqLq(Qε) (5.8)
    |(fε,Gε)|μCK2GεrLr(Qε)+(εh)qq(μ2rCK)q/rfεqLq(Qε). (5.9)

    Now, from (5.4)(5.9), we obtain

    μCKuεrLr(Q)(2(r1)μr(qCK)r/q+μCK2)GεrLr(Qε)+2(εh)qq(μ2rCK)q/rfεqLq(Qε). (5.10)

    We multiply (5.10) by εr1 then using the fact that

    εqfεqLq(Qε)=ε1rˆfqLq(Q)

    and

    uεix3rLr(Qε)=ε1rˆuεizrLr(Q),

    for i=1,2, we deduce (5.1) with

    C=1μCK[(2(r1)μr(qCK)r/q+μCK2)ˆGrLr(Q)+2(εh)qq(μ2rCK)q/rˆfqLq(Q)].

    For get the estimate (5.2), we choose in (3.14), ˆv=ˆuε+ϕ, with ϕW1,r0(Q)3, we find

    F(ˆuε,ϕ)(ˆπε,divϕ)+ˆδQ|˜d(ˆuε+ϕ)|dydzˆδQ|˜d(ˆuε)|dydz(ˆfε,ϕ),

    then

    (ˆπε,divϕ)a(ˆuε,ϕ)+2ˆδQ|˜d(ˆuε+ϕ)|dydz2ˆδQ|˜d(ˆuε)|dydz(ˆfε,ϕ),

    as

    |˜d(ˆuε+ϕ)|2|˜d(ˆuε)|+2|˜d(ϕ)|,

    we obtain

    (ˆπε,divϕ)a(ˆuε,ϕ)+2ˆδQ|˜d(ϕ)|dydz+(22)ˆδQ|˜d(ˆuε)|dydzQˆfϕdydz.

    As

    ˜d(ϕ)Lr(Q)ϕW1,r(Q)3 ,ε]0,1[.

    By Hölder's inequality, we get

    (ˆπε,divϕ)μd(ˆuε)rqLr(Q)ϕW1,r(Q)3+2ˆδ|Q|1qϕW1,r(Q)3+(22)ˆδ|Q|1qˆuεW1,r(Q)3+ˆfLq(Q)3ϕW1,r(Q)3. (5.11)

    We apply the results of (5.1), we have:

    QˆπεyiϕdydzμCϕW1,r(Q)  3+2ˆδ|Q|1qϕW1,r(Q)  3+(22)ˆδ|Q|1qC+ˆfLq(Q)  3ϕW1,r(Q)  3. (5.12)

    The same, we choose in (3.14): ˆv=ˆuεϕ,ϕW1,r0(Q)3, we obtain

    Qˆπεyiϕdydzμd(ˆuε)rqLr(Q)  ϕW1,r(Q)  3+2ˆδ|Q|1qϕW1,r(Q)  3+(22)ˆδ|Q|1qC+ˆfLq(Q)  3ϕW1,r(Q)  3. (5.13)

    From (5.12) and (5.13), we deduce

    |Qˆπεxiϕdydz|μd(ˆuε)rqLr(Q)  ϕW1,r(Q)  3+2ˆδ|Q|1qϕW1,r(Q)  3+(22)ˆδ|Q|1qC+ˆfLq(Q)  3ϕW1,r(Q)  3. (5.14)

    Choosing ϕ=(ϕ1,0,0) then ϕ=(0,ϕ2,0), in (5.14), we find

    |Qˆπεxiϕdydz|(μC+2ˆδ|Q|1q+ˆfiLq(Q))ϕW1,r(Q)  3+(22)ˆδ|Q|1qC.

    Then (5.2) follows for i=1,2.

    For get (5.3), we take in the inequality (5.14), ϕ=(0,0,ϕ3), we find

    1ε|Qˆpεzϕdydz|(C+2ˆδ|Q|1q+ˆf3Lq(Q))ϕW1,r(Q)  3+(21)ˆδ|Q|1qC.

    Which completes the proof of Lemma 5.1.

    Now, the convergence (4.1)(4.6) of Theorem 4.1 are a direct result of inequalities (5.1)(5.3). Indeed, by (5.1), C>0 not related to ε, and verifying

    ˆuεizLr(Q)C, for i=1,2. (5.15)

    It is clear that (4.1) deduces directly from (5.15) and the using of the Poincaré's inequality in the fixed domain Q. Also (4.2)(4.4) follows from (5.1). The obtaining of (4.5) is done as in [6]. Finally, it is easy (4.6) follows from (5.2) and (5.3).

    In order to proceed to the proof of strong convergence (4.7) of Theorem 4.2, it suffices to demonstrate the strong convergence of the integral term defined on Γb.

    Lemma 5.2. Let R is a regularization operator from W12,r(Γb) into Lr(Γb), then the choice of R ensures the existence of a subsequence of R(ˆσεη(ˆuε,ˆπε)) strongly converges to R(π) in Lr(Γb).

    Proof of Lemma 5.2. From the equilibrium Eq (2.1), we have

    div(σε)=fεin Qε

    with fε(Lq(Q))3. By the results of Theorem 4.1, we deduce that (ˆuε,ˆπε) are bounded in ˜Θz ×Eq0(Q), then ˆσε is bounded in

    Hdiv={v(Lr(Q))3:div(v)Lq(Q)}

    which shows that there exists a subsequence converging weakly towards σ. Now, we show that ˆση(ˆuε,ˆπε) converges weakly to (π) in W12,r(Γb).

    Indeed, as σεη=σεijηiηj, 1i,j3, we have

    ˆση(ˆuε,ˆπε)=2i=1(ε2μ|˜d(ˆuε)|r2ˆuεiyi+εˆδ(|˜d(ˆuε)|)1ˆuεixiπε)+(ε2μ|˜d(ˆuε)|r2ˆuε3z+εˆδ(|˜d(ˆuε)|)1ˆuε3zπε).

    Since ˆσε is bounded in Hdiv(Q), then there exists a subsequence converging weakly towards σ in Hdiv(Q). Using the fact that the trace operator is continuous from Hdiv(Q) into W12,r(Γb), we therefore obtain the weakly convergence of ˆση(ˆuε,ˆπε) to ˆση(u,π) in W12,r(Γb). We apply now the results of Theorem 4.1 in the formula of ˆση(ˆuε,ˆπε), we obtain the desired result.

    For the rest of proof, using the same techniques as in [2,13], we get the result.

    Proof of Theorem 4.2. For uε the solution on (3.8), we obtain for vEεdiv

    F(uε,uεv)F(v,uεv)j(uε,v)+j(uε,uε)(fε,vuε)+F(v,uεv).

    Using the inequality as ([24])

    (|a|r2a|b|r2b,ab)(r1)(|a|+|b|)r2|ab|2, for  a,bRn and  r]1,2[ (5.16)

    and by using the Korn's inequality, we find

    (r1)μCK3i,j=1Qε(|uεiyj|r2+|viyj|r2)(|yj(uεivi)|2)dydy3j(uε,v)+j(uε,uε)(fε,uεv)+F(v,uεv).

    We multiply the last formula by εr1, as well as the convergence of Theorem 4.1, we get in the fixed domain Q

    (r1)μCK2i=1z(ˆuεiˆvi)rLr(Q)dydzˆj(ˆuε,ˆv)+ˆj(ˆuε,ˆuε)2i=1Qˆfi(ˆuεiˆvi)dydz+a(ˆv,ˆuεˆv).

    We pose, ¯uε=(ˆuε1,ˆuε2), u=(u1,u2), ¯v=(ˆv1,ˆv2), so ¯v˜Ξ(E) and

    limε0sup[(r1)μCKz(¯uεˆvi)rLr(Q)dydzˆj(¯uε,¯v)+ˆj(¯uε,¯uε)]μQ(122i=1(ˆviz)2)r22¯vzz(¯vu)dydz+2i=1Qˆfi(uiˆvi)dydz.

    Consequently,

    (r1)μCKz(¯uε¯v)rLr(Q)dydzˆj(¯uε,¯v)+ˆj(¯uε,¯uε)μQ(122i=1(ˆviz)2)r22¯vzz(¯vu)dydz+2i=1Qˆfi(uiˆvi)dydz+ð,

    for ε<ε(ð), where ð>0 is arbitrary.

    Therefore, ¯v˜Ξ(E):¯vu in ˜Θz, which gives

    (r1)μCKz(¯uεu)rLr(Q)dydz+ˆj(¯uε,¯uε)ˆj(¯uε,u)ðε<ε(ð).

    Now, since liminfˆj(¯uε)ˆj(u), we deduce: ¯uεu in ˜Θz. Furthermore, ˆj(¯uε,¯uε)ˆj(¯uε,u) for ε0, which gives the convergence (4.7).

    If r=2, we follow the same techniques but (5.16) we will be replaced by

    (|a|r2a|b|r2b,ab)(1/2)r1|ab|r, for  a,bRn. (5.17)

    For the proof of the inequality (4.8), we introduce in (3.14) the condition of incompressibility of the fluid (div(ˆuε) =0 in Q), then by the application of Minty's Lemma, we deduce:

    F(ˆv,ˆvˆuε)2i=1(ˆπε,ˆviyi)(ˆπε,ˆv3z)+ˆj(ˆuε,ˆv)ˆj(ˆuε,ˆuε)2i=1Qˆfi(ˆviˆuεi)dydz+Qεˆf3(ˆv3ˆuε3)dydzˆvE.

    We apply the convergence of Theorem 4.1, Lemma 5.2 and the fact ˆj is convex and lower semi-continuous, we obtain

    μ2i=1Q12(122i=1(ˆviz)2)r22ˆviz(ˆviui)zdydzQπ(ˆv1y1+ˆv2y2)dydz+ˆδ22Q(|ˆvz||uz|)dydz+Γbˆk|R(π)|(|ˆvs||us|)dy 2i=1Qˆfi(ˆviui)dydz.

    From [5,Lemma 5.1], π independent of z, then applying Minty's lemma for the second time, we deduce (4.8).

    Proof of Theorem 4.3. Choosing ˆv in (4.8) (as in [3]) by: ˆvi=ui+ϕi, i=1,2, with ϕiW1,r0(Q), we find

    μ2i=1Q12(12(u1z+u2z)2)r22uizϕizdydzQπ(ϕ1y1+ϕ2y2)dydz= 2i=1Qˆfiϕidydz.

    By using Green's formula, and choosing in the first step ϕ1 =0 and ϕ2 W1,r0(Q) then reversing this choice in the second step, we find (4.9).

    Now, for the prove of (4.10), we cannot choose the test function as in [5,6], since their works do not contain the term ˆδ22Qˆv/z dydz. For this, we use the following techniques. Firstly, we choose ˆv in (4.8) by v=u+λϕ then v=uλϕ, ϕW1,r0(Q)2, we obtain

    μ2i=1Q12(12(u1z+u2z)2)r22uiz(λϕi)zdydz2i=1Qπ(y)(λϕi)yidydz (5.18)
    +ˆδ22Q(|(u+λϕ)z||uz|)dydz 2i=1Qˆfi(λϕi)dydz,    ϕW1,r0(Q)2. μ2i=1Q12(122i=1(uiz)2)r22uizϕizdydz2i=1Qπ(y)(λϕi)yidydz (5.19)
    ˆδ22Q(|(uλϕ)z||uz|)dydz 2i=1Qˆfi(λϕi)dydz,    ϕW1,r0(Q)2.

    Secondly, dividing (5.18)and (5.19) by λ and the passage to the limit when λ tends to zero, we find

    μ2i=1Q12(122i=1(uiz)2)r22uizϕizdydz2i=1Qπ(y)ϕiyidydz+ˆδ222i=1Q(|uz|)1uzϕizdydz 2i=1Qˆfiϕidydz, ϕW1,r0(Q)2 (5.20)
    μ2i=1Q12(122i=1(uiz)2)r22uizϕizdydz2i=1Qπ(y)ϕiyidydz+ˆδ222i=1Q(|uz|)1uzϕizdydz 2i=1Qˆfiϕidydz,ϕW1,r0(Q)2. (5.21)

    So the last two formulas, we give:

    μ2i=1Q12(122i=1(uiz)2)r22uizϕizdydz2i=1Qπ(y)ϕiyidydz+ˆδ222i=1Q(|uz|)1uzϕizdydz= 2i=1Qˆfiϕidydz, ϕW1,r0(Q)2. (5.22)

    By the Green's formula, we get (4.10).

    Proof of Theorem 4.4. We take in (4.8), ˆvi=ui+λϕi for i=1,2, where ϕiW1,rΓuΓl(Q) and

    W1,rΓuΓl(Q)={ϕW1,r(Q):ϕi=0 on ΓuΓl},

    then

    μ2i=1Q12(122i=1(uiz)2)r22uiz(λϕi)zdydz2i=1Qπ(y)(λϕi)yidydz+ˆδ222i=1Q(|(λϕ+u)z||uz|)dydz+Γbˆk|R(π)|(|λϕ+ss||ss|)dy 2i=1Qˆfi(ˆviui)dydz.

    Dividing the last inequality by λ and the passage to the limit when λ tends to zero, we find

    μ2i=1Q12(122i=1(uiz)2)r22uizϕizdydz2i=1Qπ(y)ϕiyidydz+ˆδ222i=1Q(|uz|)1uzϕizdydz+2i=1Γbˆk|R(p)|ϕi(sisi)|ss|dy 2i=1Qˆfi(ˆviui)dydz. (5.23)

    Finally, using the Green formula in (5.23) and from (4.10), we find

    2i=1Γbˆk|R(ˆση(π))|ϕi(sisi)dyΓbˆμτϕ|ss|dy0, ϕ(W1,rΓuΓl(Q))2.

    This last formula holds for any ϕD(Γb)2, but given the density of D(Γb) in Lr(Γb), we find the desired result (4.11). For the proof of (4.12), we follow the same techniques as in [4].

    To establish (4.13), we integrate twice (4.10) from 0 to z, we get

    z0μB(y,ξ)uξ(y;ξ)dξˆδ22z0u/z|u/z|dξ+μτ(y)z+ˆδ22s(y)|s(y)| z=z0ξ0ˆf(y,t)dtdξz22π(y). (5.24)

    Substituting z by h in (4.24), we get

    h0μB(y,ξ)uξ(y;ξ)dξˆδ22h0u/z|u/z|dξ+μτ(y)h+ˆδ22s(y)|s(y)| h=h0ξ0ˆf(y,t)dtdξh22π(y). (5.25)

    We integrate (5.24) from 0 to z, it comes:

    h0y0μB(y,ξ)uz(y;ξ)dξdyˆδ22h0y0u/z|u/z|dξdy+μτ(y)h22+ˆδ24s(y)|s(y)|h2=h0y0ξ0ˆf(y,t)dtdξdyh36π(y). (5.26)

    From (5.25), we deduce

    [μτ(y)+ˆδ24s(y)|s(y)|]h22=μh2h0B(y,ξ)uξ(y;ξ)dξ+ˆδh24h0u/z|u/z|dξ+h2h0y0ˆf(y,ξ)dξdyh34π(y). (5.27)

    By (5.26) and (5.27), we deduce (4.13).

    Proof of Theorem 4.5. Suppose that the boundary value problem (4.8) admits two solutions which we denote by (u,1,π,1) and (u,2,π,2). Taking ˆv=u,2 and ˆv=u,1 respectively, as test function in (4.8) then by summing two inequalities, we get

    μ2i=1Q(12)r2(2i=1(u,1iz)2)r22u,1izz(u,1iu,2i)dydzμ2i=1Q(12)r2(2i=1(u,2iz)2)r22u,2izz(u,1iu,2i)dydzΓbˆk|R(π,1)R(π,2)||u,1iu,2i|dy0. (5.28)

    We apply (5.16) and (5.17), we obtain

    μz(u,1u,2)r(Lr(Q))2ˆkL(Γb)Γb|R(π,1)R(π,2)||u,1u,2|dy. (5.29)

    By the inequality (3.16), then we apply the Hölder inequality on the second term of (5.29), we have

    z(u,1u,2)r(Lr(Q))2hˆkL(Γb)C0(Γb|R(π,1)R(π,2)|qdy)1/qz(u,1u,2)(Lr(Q))2

    whence

    z(u,1u,2)r1(Lr(Q))2hˆkL(Γb)C0μR(π,1)R(π,2)Lq(Γb). (5.30)

    Using the fact that R is a linear continuous operator W12,r(Γb) into Lr(Γb), there exists a constant C1 depending on R, such that

    R(π,1)R(π,2)Lq(Γb)C1π,1π,2Lq(Γb). (5.31)

    Combining (5.30) and (5.31) we deduce that if ˆkL(Γb)¯k for sufficiently small ¯k, then we have

    z(u,1u,2)(Lr(Q))2=0.

    Using Poincaré's inequality, we get

    u,1u,2˜Θz=0.

    The uniqueness of the π in the Eq0(Γb) follows from (4.13), in fact we take first in the Reynolds equation (4.13) the pressure value π=π,1 then π=π,2 respectively, at the end by subtracting the equations obtained, it becomes:

    Γbh312(π,1π,2)vdy=0.

    Choosing v=π,1π,2, and by Poincaré's inequality, we find

    π,1=π,2, almost everywhere in Γb.

    This ends the proof of the Theorem 4.5.

    The aim of this study is to examine the strong convergence of the velocity of a non-Newtonian incompressible fluid whose viscosity follows the power law with Coulomb friction, where we give in a first step the description of the problem and basic equations. Then, we present the functional framework. The following paragraph is reserved for the main convergence results. Finally, we give the detail of the proofs of these results. In the future work we will extend and develop our work to new space.

    Researchers would like to thank the Deanship of Scientific Research, Qassim University for funding publication of this project.

    The authors declares that they have no conflicts of interest.



    [1] M. Anguiano, F. J. Suárez-Grau, Nonlinear Reynolds equations for non-Newtonian thin-film fluid flows over a rough boundary, IMA J. Appl. Math., 84 (2019), 63–95. https://doi.org/10.1093/imamat/hxy052 doi: 10.1093/imamat/hxy052
    [2] G. Bayada, K. Lhalouani, Asymptotic and numerical analysis for unilateral contact problem with Coulomb's friction between an elastic body and a thin elastic soft layer, Asymptotic Anal., 25 (2001), 329–362.
    [3] H. Benseridi, Y. Letoufa, M. Dilmi, On the asymptotic behavior of an interface problem in a thin domain, Proc. Natl. Acad. Sci., India, Sect. A Phys. Sci., 90 (2020), 547–556. https://doi.org/10.1007/s40010-019-00598-4 doi: 10.1007/s40010-019-00598-4
    [4] M. Boukrouche, G. Łukaszewicz, Asymptotic analysis of solutions of a thin film lubrication problem with Coulomb fluid-solid interface law, Int. J. Eng. Sci., 41 (2003), 521–537. https://doi.org/10.1016/S0020-7225(02)00282-3 doi: 10.1016/S0020-7225(02)00282-3
    [5] M. Boukrouche, R. E. Mir, On a non-isothermal, non-Newtonian lubrication problem with Tresca law: existence and the behavior of weak solutions, Nonlinear Anal., 9 (2008), 674–692. https://doi.org/10.1016/j.nonrwa.2006.12.012 doi: 10.1016/j.nonrwa.2006.12.012
    [6] M. Boukrouche, R. E. Mir, Asymptotic analysis of non-Newtonian fluid in a thin domain with Tresca law, Nonlinear Anal., 59 (2004), 85–105. https://doi.org/10.1016/j.na.2004.07.003 doi: 10.1016/j.na.2004.07.003
    [7] L. Consiglieri, Stationary solutions for a Bingham flow with nonlocal friction, Chapman and Hall/CRC, 1 Ed., 1992.
    [8] M. Dilmi, H. Benseridi, A. Saadallah, Asymptotic analysis of a Bingham fluid in a thin domain with Fourier and Tresca boundary conditions, Adv. Appl. Math. Mech., 6 (2014), 797–810. https://doi.org/10.1017/S2070073300001466 doi: 10.1017/S2070073300001466
    [9] B. Q. Dong, Z. M. Chen, Asymptotic stability of non-Newtonian flows with large perturbation in R2, Appl. Math. Comput., 173 (2006), 243–250. https://doi.org/10.1016/j.amc.2005.04.002 doi: 10.1016/j.amc.2005.04.002
    [10] G. Duvaut, J. L. Lions, Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
    [11] G. Duvaut, Equilibre d'un solide élastique avec contact unilatéral et frottement de Coulomb, C. R. Math. Acad. Sci. Paris, 290 (1980), 263–265.
    [12] I. Ekeland, R. Temam, Analyse convexe et problèmes variationnels, Dunod, Gauthier-Villars, Paris, 1974.
    [13] V. Girault, P. A. Raviart, Finite element approximation of the Navier-Stokes equations, Springer-Verlag, 1979. https://doi.org/10.1007/BFb0063447
    [14] B. Guo, G. Lin, Existence and uniqueness of stationary solutions of non-Newtonian viscous incompressible fluids, Commun. Nonlinear Sci. Numer. Simul., 4 (1999), 63–68. https://doi.org/10.1016/S1007-5704(99)90060-6 doi: 10.1016/S1007-5704(99)90060-6
    [15] W. H. Herschel, R. Bulkley, Konsistenzmessungen von Gummi-Benzollösungen, Kolloid-Z., 39 (1926), 291–300. https://doi.org/10.1007/BF01432034 doi: 10.1007/BF01432034
    [16] A. Massmeyer, E. Di Giuseppe, A. Davaille, T. Rolf, P. J. Tackley, Numerical simulation of thermal plumes in a Herschel-Bulkley fluid, J. Non-Newtonian Fluid Mech., 195 (2013), 32–45. https://doi.org/10.1016/j.jnnfm.2012.12.004 doi: 10.1016/j.jnnfm.2012.12.004
    [17] G. P. Matson, A. J. Hogg, Two-dimensional dam break flows of Herschel-Bulkley fluids: the approach to the arrested state, J. Non-Newtonian Fluid Mech., 142 (2007), 79–94. https://doi.org/10.1016/j.jnnfm.2006.05.003 doi: 10.1016/j.jnnfm.2006.05.003
    [18] C. Nouar, M. Lebouché, R. Devienne, C. Riou, Numerical analysis of the thermal convection for Herschel-Bulkley fluids, Int. J. Heat Fluid Flow, 16 (1995), 223–232. https://doi.org/10.1016/0142-727X(95)00010-N doi: 10.1016/0142-727X(95)00010-N
    [19] C. Nouar, C. Desaubry, H. Zenaidi, Numerical and experimental investigation of thermal convection for a thermodependent Herschel-Bulkley fluid in an annular duct with rotating inner cylinder, Eur. J. Mech.-B/Fluids, 17 (1998), 875–900. https://doi.org/10.1016/S0997-7546(99)80018-1 doi: 10.1016/S0997-7546(99)80018-1
    [20] S. Poyiadji, K. D. Housiadas, K. Kaouri, G. C. Georgiou, Asymptotic solutions of weakly compressible Newtonian Poiseuille flows with pressure-dependent viscosity, Eur. J. Mech.-B/Fluids, 49 (2015), 217–225. https://doi.org/10.1016/j.euromechflu.2014.09.002 doi: 10.1016/j.euromechflu.2014.09.002
    [21] Y. Qin, X. Liu, X. G. Yang, Global existence and exponential stability of solutions to the one-dimensional full non-Newtonian fluids, Nonlinear Anal., 13 (2012), 607–633. https://doi.org/10.1016/j.nonrwa.2011.07.053 doi: 10.1016/j.nonrwa.2011.07.053
    [22] A. Saadallah, H. Benseridi, M. Dilmi, Study of the non-isothermal coupled problem with mixed boundary conditions in a thin domain with friction law, J. Sib. Federal Univ.-Math. Phys., 11 (2018), 738–752.
    [23] A. Saadallah, H. Benseridi, M. Dilmi, Asymptotic convergence of a generalized non-Newtonian fluid with Tresca boundary conditions, Acta Math. Sci., 40 (2020), 700–712. https://doi.org/10.1007/s10473-020-0308-1 doi: 10.1007/s10473-020-0308-1
    [24] K. C. Sahu, P. Valluri, P. D. M. Spelt, O. K. Matar, Linear instability of pressure-driven channel flow of a Newtonian and a Herschel-Bulkley fluid, Phys. Fluids, 19 (2007), 122101. https://doi.org/10.1063/1.2814385 doi: 10.1063/1.2814385
    [25] F. J. Suárez-Grau, Asymptotic behavior of a non-Newtonian flow in a thin domain with Navier law on a rough boundary, Nonlinear Anal., 117 (2015), 99–123. https://doi.org/10.1016/j.na.2015.01.013 doi: 10.1016/j.na.2015.01.013
    [26] H. S. Tang, D. M. Kalyon, Estimation of the parameters of Herschel–Bulkley fluid under wall slip using a combination of capillary and squeeze flow viscometers, Rheol. Acta, 43 (2004), 80–88. https://doi.org/10.1007/s00397-003-0322-y doi: 10.1007/s00397-003-0322-y
    [27] C. Zhao, Y. Li, A note on the asymptotic smoothing effect of solutions to a non-Newtonian system in 2-D unbounded domains, Nonlinear Anal., 60 (2005), 475–483. https://doi.org/10.1016/j.na.2004.09.014 doi: 10.1016/j.na.2004.09.014
  • This article has been cited by:

    1. Abla Boulaouad, Youcef Djenaihi, Salah Boulaaras, Hamid Benseridi, Mourad Dilmi, Study of a boundary value problem governed by the general elasticity system with a new boundary conditions in a thin domain, 2024, 1072-947X, 10.1515/gmj-2024-2044
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1330) PDF downloads(78) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog