The mathematical formulation of fluid flow problems often results in coupled nonlinear partial differential equations (PDEs); hence, their solutions remain a challenging task for researchers. The present study offers a solution for the flow differential equations describing a bio-inspired flow field of non-Newtonian fluid with gyrotactic microorganisms. A methanol-based nanofluid with ferrous ferric oxide, copper, and silver nanoparticles was considered in a stretching permeable cylinder. The chemical reaction, activation energy, viscous dissipation, and convective boundary conditions were considered. The Casson fluid, a non-Newtonian fluid model, was used as flowing over a cylinder. The fundamental PDEs were established using boundary layer theory in a cylindrical coordinate system for concentration, mass, momentum, and microorganisms' field. These PDEs were then transformed into nonlinear ODEs by applying transforming variables. ODEs were then numerically solved in MATLAB software using the built-in solver bvp4c algorithm. We established an artificial neural network (ANN) model, incorporating Tan-Sig and Purelin transfer functions, to enhance the accuracy of predicting skin friction coefficient (SFC) values along the surface. The networks were trained using the Levenberg–Marquardt method. Quantitative results show that the ferrous ferric oxide nanofluid is superior in increasing Nusselt number, Sherwood number, velocity, and microorganism density number; silver nanofluid is superior in increasing skin friction coefficient, temperature, and concentration. Interestingly, heat transfer rate decreases with the magnetic and curvature parameters and Eckert number, whereas the skin friction coefficient increases with the magnetic parameter and Darcy–Forchheimer number. The present results are validated with the previous existing studies.
Citation: Khalil Ur Rehman, Nosheen Fatima, Wasfi Shatanawi, Nabeela Kousar. Mathematical solutions for coupled nonlinear equations based on bioconvection in MHD Casson nanofluid flow[J]. AIMS Mathematics, 2025, 10(1): 598-633. doi: 10.3934/math.2025027
The mathematical formulation of fluid flow problems often results in coupled nonlinear partial differential equations (PDEs); hence, their solutions remain a challenging task for researchers. The present study offers a solution for the flow differential equations describing a bio-inspired flow field of non-Newtonian fluid with gyrotactic microorganisms. A methanol-based nanofluid with ferrous ferric oxide, copper, and silver nanoparticles was considered in a stretching permeable cylinder. The chemical reaction, activation energy, viscous dissipation, and convective boundary conditions were considered. The Casson fluid, a non-Newtonian fluid model, was used as flowing over a cylinder. The fundamental PDEs were established using boundary layer theory in a cylindrical coordinate system for concentration, mass, momentum, and microorganisms' field. These PDEs were then transformed into nonlinear ODEs by applying transforming variables. ODEs were then numerically solved in MATLAB software using the built-in solver bvp4c algorithm. We established an artificial neural network (ANN) model, incorporating Tan-Sig and Purelin transfer functions, to enhance the accuracy of predicting skin friction coefficient (SFC) values along the surface. The networks were trained using the Levenberg–Marquardt method. Quantitative results show that the ferrous ferric oxide nanofluid is superior in increasing Nusselt number, Sherwood number, velocity, and microorganism density number; silver nanofluid is superior in increasing skin friction coefficient, temperature, and concentration. Interestingly, heat transfer rate decreases with the magnetic and curvature parameters and Eckert number, whereas the skin friction coefficient increases with the magnetic parameter and Darcy–Forchheimer number. The present results are validated with the previous existing studies.
[1] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, Argonne National Lab. (ANL), Argonne, IL (United States), 1995. |
[2] | P. Valipour, F. S. Aski, M. Mirparizi, Influence of magnetic field on CNT-Polyethylene nanofluid flow over a permeable cylinder, J. Mol. Liq., 225 (2017), 592−597. https://doi.org/10.1016/j.molliq.2016.11.111 doi: 10.1016/j.molliq.2016.11.111 |
[3] | A. Mishra, M. Kumar, Velocity and thermal slip effects on MHD nanofluid flow past a stretching cylinder with viscous dissipation and Joule heating, SN Appl. Sci., 2 (2020), 1350. https://doi.org/10.1007/s42452-020-3156-7 doi: 10.1007/s42452-020-3156-7 |
[4] | M. Ramzan, N. Shaheen, J. D. Chung, S. Kadry, Y. M. Chu, F. Howari, Impact of Newtonian heating and Fourier and Fick's laws on a magnetohydrodynamic dusty Casson nanofluid flow with variable heat source/sink over a stretching cylinder, Sci. Rep., 11 (2021), 1−19. https://doi.org/10.1038/s41598-021-81747-x doi: 10.1038/s41598-021-81747-x |
[5] | A. S. Rashed, T. A. Mahmoud, A. M. Wazwaz, Axisymmetric forced flow of nonhomogeneous nanofluid over heated permeable cylinders, Wave. Random Complex, 2022, 1−29. https://doi.org/10.1080/17455030.2022.2053611 doi: 10.1080/17455030.2022.2053611 |
[6] | S. Gouran, S. Mohsenian, S. E. Ghasemi, Theoretical analysis on MHD nanofluid flow between two concentric cylinders using efficient computational techniques, Alex. Eng. J., 61 (2022), 3237−3248. https://doi.org/10.1016/j.aej.2021.08.047 doi: 10.1016/j.aej.2021.08.047 |
[7] | F. Hussain, A. Hussain, S. Nadeem, Unsteady shear-thinning behaviour of nanofluid flow over exponential stretching/shrinking cylinder, J. Mol. Liq., 345 (2022), 117894. https://doi.org/10.1016/j.molliq.2021.117894 doi: 10.1016/j.molliq.2021.117894 |
[8] | P. Kumar, H. Poonia, L. Ali, S. Areekara, A. Mathew, Effects of different nanoparticles Cu, TiO2, and Ag on fluid flow and heat transfer over cylindrical surface subject to non-fourier heat flux model, Numer. Heat Tr. B-Fund., 85 (2024), 1−19. https://doi.org/10.1080/10407790.2023.2235077 doi: 10.1080/10407790.2023.2235077 |
[9] | K. L. Hsiao, Micropolar nanofluid flow with MHD and viscous dissipation effects towards a stretching sheet with multimedia feature, Int. J. Heat Mass Tr., 112 (2017), 983−990. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.042 doi: 10.1016/j.ijheatmasstransfer.2017.05.042 |
[10] | F. Shahzad, W. Jamshed, K. S. Nisar, M. M. Khashan, A. H. Abdel-Aty, Computational analysis of Ohmic and viscous dissipation effects on MHD heat transfer flow of Cu-PVA Jeffrey nanofluid through a stretchable surface, Case Stud. Therm. Eng., 26 (2021), 101148. https://doi.org/10.1016/j.csite.2021.101148 doi: 10.1016/j.csite.2021.101148 |
[11] | S. M. Zokri, N. S. Arifin, M. K. A. Mohamed, A. R. M. Kasim, N. F. Mohammad, M. Z. Salleh, Mathematical model of mixed convection boundary layer flow over a horizontal circular cylinder filled in a Jeffrey fluid with viscous dissipation effect, Sains Malays., 47 (2018), 1607−1615. https://doi.org/10.17576/jsm-2018-4707-32 doi: 10.17576/jsm-2018-4707-32 |
[12] | H. U. Rasheed, Z. Khan, E. R. El-Zahar, N. A. Shah, S. Islam, T. Abbas, Homotopic solutions of an unsteady magnetohydrodynamic flow of Casson nanofluid flow by a vertical cylinder with Brownian and viscous dissipation effects, Wave. Random Complex, 2022, 1−14. https://doi.org/10.1080/17455030.2022.2105979 doi: 10.1080/17455030.2022.2105979 |
[13] | S. Nandi, B. Kumbhakar, Entropy generation in MHD nanofluid flow induced by a slendering stretching sheet with activation energy, viscous dissipation and Joule heating impacts, Indian J. Phys., 96 (2022), 2873−2892. https://doi.org/10.1007/s12648-021-02206-x doi: 10.1007/s12648-021-02206-x |
[14] | G. R. Ganesh, W. Sridhar, K. Al-Farhany, S. E. Ahmed, Electrically MHD Casson nanofluid flow and entropy exploration under the influence of the viscous dissipation, radiation, and higher-order chemical reaction, Phys. Scripta, 97 (2022), 065208. https://doi.org/10.1088/1402-4896/ac6e51 doi: 10.1088/1402-4896/ac6e51 |
[15] | S. K. Saini, R. Agrawal, P. Kaswan, Activation energy and convective heat transfer effects on the radiative Williamson nanofluid flow over a radially stretching surface containing Joule heating and viscous dissipation, Numer. Heat Tr. A-Appl., 85 (2024), 1−24. https://doi.org/10.1080/10407782.2023.2226815 doi: 10.1080/10407782.2023.2226815 |
[16] | R. Bestman, Natural convection boundary layer with suction and mass transfer in a porous medium, Int. J. Energ. Res., 14 (1990), 389−396. https://doi.org/10.1002/er.4440140403 doi: 10.1002/er.4440140403 |
[17] | M. Azam, T. Xu, F. Mabood, M. Khan, Non-linear radiative bioconvection flow of cross nano-material with gyrotatic microorganisms and activation energy, Int. Commun. Heat Mass, 127 (2021), 105530. https://doi.org/10.1016/j.icheatmasstransfer.2021.105530 doi: 10.1016/j.icheatmasstransfer.2021.105530 |
[18] | S. A. A. Shah, N. A. Ahammad, B. Ali, K. Guedri, A. U. Awan, F. Gamaoun, et al., Significance of bio-convection, MHD, thermal radiation and activation energy across Prandtl nanofluid flow: A case of stretching cylinder, Int. Commun. Heat Mass, 137 (2022), 106299. https://doi.org/10.1016/j.icheatmasstransfer.2022.106299 doi: 10.1016/j.icheatmasstransfer.2022.106299 |
[19] | A. Ali, S. Sarkar, S. Das, R. N. Jana, A report on entropy generation and Arrhenius kinetics in magneto-bioconvective flow of Cross nanofluid over a cylinder with wall slip, Int. J. Ambient Energy, 2022, 1−16. https://doi.org/10.1080/01430750.2022.2031292 doi: 10.1080/01430750.2022.2031292 |
[20] | E. Sangeetha, D. Poulomi, Gyrotactic microorganisms suspended in MHD nanofluid with activation energy and binary chemical reaction over a non-Darcian porous medium, Wave. Random Complex, 2022, 1−17. https://doi.org/10.1080/17455030.2022.2112114 doi: 10.1080/17455030.2022.2112114 |
[21] | Y. S. Kumar, S. Hussain, K. Raghunath, F. Ali, K. Guedri, S. M. Eldin, et al., Numerical analysis of magnetohydrodynamics Casson nanofluid flow with activation energy, Hall current and thermal radiation, Sci. Rep., 13 (2023), 4021. https://doi.org/10.1038/s41598-023-28379-5 doi: 10.1038/s41598-023-28379-5 |
[22] | N. Fatima, N. Kousar, K. U. Rehman, W. Shatanawi, Computational analysis of heat and mass transfer in magnetized Darcy-Forchheimer hybrid nanofluid flow with porous medium and slip effects, CMES-Comput. Model. Eng., 137 (2023). https://doi.org/10.32604/cmes.2023.026994 doi: 10.32604/cmes.2023.026994 |
[23] | M. S. Plesset, H. Winet, Bioconvection patterns in swimming microorganism cultures as an example of Rayleigh-Taylor instability, Nature, 248 (1974), 441−443. https://doi.org/10.1038/248441a0 doi: 10.1038/248441a0 |
[24] | Z. Abdelmalek, S. U. Khan, H. Waqas, A. Riaz, I. A. Khan, I. Tlili, A mathematical model for bioconvection flow of Williamson nanofluid over a stretching cylinder featuring variable thermal conductivity, activation energy and second-order slip, J. Therm. Anal. Calorim., 144 (2021), 205−217. https://doi.org/10.1007/s10973-020-09450-z doi: 10.1007/s10973-020-09450-z |
[25] | M. Imran, U. Farooq, H. Waqas, A. E. Anqi, M. R. Safaei, Numerical performance of thermal conductivity in Bioconvection flow of cross nanofluid containing swimming microorganisms over a cylinder with melting phenomenon, Case Stud. Therm. Eng., 26 (2021), 101181. https://doi.org/10.1016/j.csite.2021.101181 doi: 10.1016/j.csite.2021.101181 |
[26] | H. A. Nabwey, S. I. Alshber, A. M. Rashad, A. E. N. Mahdy, Influence of bioconvection and chemical reaction on magneto—Carreau nanofluid flow through an inclined cylinder, Mathematics, 10 (2022), 504. https://doi.org/10.3390/math10030504 doi: 10.3390/math10030504 |
[27] | T. Muhammad, H. Waqas, U. Manzoor, U. Farooq, Z. F. Rizvi, On doubly stratified bioconvective transport of Jeffrey nanofluid with gyrotactic motile microorganisms, Alex. Eng. J., 61 (2022), 1571−1583. https://doi.org/10.1016/j.aej.2021.06.059 doi: 10.1016/j.aej.2021.06.059 |
[28] | E. M. A. Elbashbeshy, H. G. Asker, B. Nagy, The effects of heat generation absorption on boundary layer flow of a nanofluid containing gyrotactic microorganisms over an inclined stretching cylinder, Ain Shams Eng. J., 13 (2022), 101690. https://doi.org/10.1016/j.asej.2022.101690 doi: 10.1016/j.asej.2022.101690 |
[29] | M. S. Alqarni, H. Waqas, U. Manzoor, T. Muhammad, Marangoni transport of Jeffrey nanofluid due to circular horizontal cylinder with motile microorganisms, Wave. Random Complex, 2022, 1−20. https://doi.org/10.1080/17455030.2022.2067368 doi: 10.1080/17455030.2022.2067368 |
[30] | N. Casson, Flow equation for pigment-oil suspensions of the printing ink-type, Rheol. Disperse Syst., 1959, 84−104. |
[31] | A. Zeeshan, O. U. Mehmood, F. Mabood, F. Alzahrani, Numerical analysis of hydromagnetic transport of Casson nanofluid over permeable linearly stretched cylinder with Arrhenius activation energy, Int. Commun. Heat Mass, 130 (2022), 105736. https://doi.org/10.1016/j.icheatmasstransfer.2021.105736 doi: 10.1016/j.icheatmasstransfer.2021.105736 |
[32] | G. Kumar, S. M. K. Rizvi, Casson fluid flow past on vertical cylinder in the presence of chemical reaction and magnetic field, Appl. Appl. Math., 16 (2021), 28. |
[33] | S. Nandi, B. Kumbhakar, S. Sarkar, MHD stagnation point flow of Fe3O4/Cu/Ag-CH3OH nanofluid along a convectively heated stretching sheet with partial slip and activation energy: Numerical and statistical approach, Int. Commun. Heat Mass, 130 (2022), 105791. https://doi.org/10.1016/j.icheatmasstransfer.2021.105791 doi: 10.1016/j.icheatmasstransfer.2021.105791 |
[34] | S. M. Hussain, Dynamics of ethylene glycol-based graphene and molybdenum disulfide hybrid nanofluid over a stretchable surface with slip conditions, Sci. Rep., 12 (2022), 1751. https://doi.org/10.1038/s41598-022-05703-z doi: 10.1038/s41598-022-05703-z |
[35] | S. M. Hussain, R. Sharma, M. K. Mishra, G. S. Seth, Radiative magneto-nanofluid over an accelerated moving ramped temperature plate with Hall effects, J. Nanofluids, 6 (2017), 840−851. https://doi.org/10.1166/jon.2017.1381 doi: 10.1166/jon.2017.1381 |
[36] | Y. Nawaz, M. S. Arif, K. Abodayeh, A. H. Soori, A two-stage multi-step numerical scheme for mixed convective Williamson nanofluid flow over flat and oscillatory sheets, Int. J. Mod. Phys. B, 38 (2024), 2450298. https://doi.org/10.1142/S0217979224502989 doi: 10.1142/S0217979224502989 |
[37] | S. Ullah, I. Ullah, A. Ali, K. Shah, T. Abdeljawad, Investigation of cross-diffusion effect on radiative Jeffery-Hamel flow in convergent/divergent stretchable channel with Lorentz force and Joule heating, Alex. Eng. J., 86 (2024), 289−297. https://doi.org/10.1016/j.aej.2023.11.054 doi: 10.1016/j.aej.2023.11.054 |
[38] | S. Shaheen, H. Huang, F. A. M. Al-Yarimi, M. B. Arain, Theoretical analysis of Ellis fluid flow in two layers due to metachronal propulsion subject to heat and mass transfer: Application in biological function, Case Stud. Therm. Eng., 59 (2024), 104446. https://doi.org/10.1016/j.csite.2024.104446 doi: 10.1016/j.csite.2024.104446 |
[39] | M. B. Arain, S. Shaheen, F. A. M. Al-Yarimi, N. Ijaz, J. Hu, Sensitivity analysis for acoustic-driven gas bubble dynamics in tangent hyperbolic fluid, J. Mol. Liq., 395 (2024), 123894. https://doi.org/10.1016/j.molliq.2023.123894 doi: 10.1016/j.molliq.2023.123894 |
[40] | S. M. Isa, R. Mahat, N. M. Katbar, B. S. Goud, I. Ullah, W. Jamshed, Thermal radiative and Hall current effects on magneto-natural convective flow of dusty fluid: Numerical Runge–Kutta–Fehlberg technique, Numer. Heat Tr. B-Fund., 2024, 1−23. https://doi.org/10.1080/10407790.2024.2318452 doi: 10.1080/10407790.2024.2318452 |
[41] | W. A. Khan, I. Pop, Boundary-layer flow of a nanofluid past a stretching sheet, Int. J. Heat Mass Tran., 53 (2010), 2477−2483. https://doi.org/10.1016/j.ijheatmasstransfer.2010.01.032 doi: 10.1016/j.ijheatmasstransfer.2010.01.032 |
[42] | K. Ali, S. Ahmad, K. S. Nisar, A. A. Faridi, M. Ashraf, Simulation analysis of MHD hybrid CuAl2O3/H2O nanofluid flow with heat generation through a porous media, Int. J. Energy Res., 45 (2021), 19165−19179. https://doi.org/10.1002/er.7016 doi: 10.1002/er.7016 |
[43] | S. Ahmad, S. Akhter, M. I. Shahid, K. Ali, M. Akhtar, M. Ashraf, Novel thermal aspects of hybrid nanofluid flow comprising of manganese zinc ferrite MnZnFe2O4, nickel zinc ferrite NiZnFe2O4 and motile microorganisms, Ain Shams Eng. J., 13 (2022), 101668. https://doi.org/10.1016/j.asej.2021.101668 doi: 10.1016/j.asej.2021.101668 |
[44] | Z. Said, P. Sharma, R. M. Elavarasan, A. K. Tiwari, M. K. Rathod, Exploring the specific heat capacity of water-based hybrid nanofluids for solar energy applications: A comparative evaluation of modern ensemble machine learning techniques, J. Energy Storage, 54 (2022), 105230. https://doi.org/10.1016/j.est.2022.105230 doi: 10.1016/j.est.2022.105230 |
[45] | K. U. Rehman, W. Shatanawi, Non-newtonian mixed convection magnetized flow with heat generation and viscous dissipation effects: A prediction application of artificial intelligence, Processes, 11 (2023), 986. https://doi.org/10.3390/pr11040986 doi: 10.3390/pr11040986 |
[46] | A. S. Baazeem, M. S. Arif, K. Abodayeh, An efficient and accurate approach to electrical boundary layer nanofluid flow simulation: A use of artificial intelligence, Processes, 11 (2023), 2736. https://doi.org/10.3390/pr11092736 doi: 10.3390/pr11092736 |