Research article Special Issues

A comparative study for fractional simulations of Casson nanofluid flow with sinusoidal and slipping boundary conditions via a fractional approach

  • Received: 03 July 2022 Revised: 13 August 2022 Accepted: 19 August 2022 Published: 09 September 2022
  • MSC : 26A33, 76A05, 76R10

  • This paper addresses a mixed and free convective Casson nanofluid flowing on an oscillating inclined poured plate with sinusoidal heat transfers and slip boundaries. As base fluid water is supposed and the suspension of nanofluid is formulated with the combination of individual copper $ \left(Cu\right) $, titanium dioxide $ \left(Ti{O}_{2}\right) $ and aluminum oxide $ \left(A{l}_{2}{O}_{3}\right) $ as nanoparticles, the dimensionless governing equations are generalized based on Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators for developing a fractional form. Then, for the semi-analytical solution of the momentum and thermal profiles, the Laplace transformation is utilized. To discuss the influences of various pertinent parameters on governing equations, graphical tablecomparison of the Nusselt number and skin friction is also inspected at different times and numerical schemes. As a result, it has been concluded that both the momentum and energy profiles represent the more significant results for the AB-fractional model as related to the CF-fractional model solution. Furthermore, water-based titanium dioxide $ \left(Ti{O}_{2}\right) $ has a more progressive impact on the momentum as well as the thermal fields as compared to copper $ \left(Cu\right) $ and aluminum oxide $ \left(A{l}_{2}{O}_{3}\right) $ nanoparticles. The Casson fluid parameter represents the dual behavior for the momentum profile, initially momentum field decreases due to the Casson parameter but it then reverses its impact and the fluid flow moves more progressively.

    Citation: Ali Raza, Umair Khan, Aurang Zaib, Wajaree Weera, Ahmed M. Galal. A comparative study for fractional simulations of Casson nanofluid flow with sinusoidal and slipping boundary conditions via a fractional approach[J]. AIMS Mathematics, 2022, 7(11): 19954-19974. doi: 10.3934/math.20221092

    Related Papers:

  • This paper addresses a mixed and free convective Casson nanofluid flowing on an oscillating inclined poured plate with sinusoidal heat transfers and slip boundaries. As base fluid water is supposed and the suspension of nanofluid is formulated with the combination of individual copper $ \left(Cu\right) $, titanium dioxide $ \left(Ti{O}_{2}\right) $ and aluminum oxide $ \left(A{l}_{2}{O}_{3}\right) $ as nanoparticles, the dimensionless governing equations are generalized based on Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators for developing a fractional form. Then, for the semi-analytical solution of the momentum and thermal profiles, the Laplace transformation is utilized. To discuss the influences of various pertinent parameters on governing equations, graphical tablecomparison of the Nusselt number and skin friction is also inspected at different times and numerical schemes. As a result, it has been concluded that both the momentum and energy profiles represent the more significant results for the AB-fractional model as related to the CF-fractional model solution. Furthermore, water-based titanium dioxide $ \left(Ti{O}_{2}\right) $ has a more progressive impact on the momentum as well as the thermal fields as compared to copper $ \left(Cu\right) $ and aluminum oxide $ \left(A{l}_{2}{O}_{3}\right) $ nanoparticles. The Casson fluid parameter represents the dual behavior for the momentum profile, initially momentum field decreases due to the Casson parameter but it then reverses its impact and the fluid flow moves more progressively.



    加载中


    [1] A. Saeedi, M. Akbari, D. Toghraie, An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation, Physica E, 99 (2018), 285-293. http://dx.doi.org/10.1016/j.physe.2018.02.018 doi: 10.1016/j.physe.2018.02.018
    [2] D. Toghraie, N. Sina, M. Mozafarifard, A. Alizadeh, F. Soltani, M. Fazilati, Prediction of dynamic viscosity of a new non-Newtonian hybrid nanofluid using experimental and artificial neural network (ANN) methods, Heat. Transf. Res., 51 (2020), 1351-1362. http://dx.doi.org/10.1615/HeatTransRes.2020034645 doi: 10.1615/HeatTransRes.2020034645
    [3] Y. Zheng, H. Yang, M. Fazilati, D. Toghraie, H. Rahimi, M. Afrand, Experimental investigation of heat and moisture transfer performance of CaCl2/H2O-SiO2 nanofluid in a gas-liquid micro porous hollow fiber membrane contactor, Int. Commun. Heat Mass, 113 (2020), 104533. http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104533 doi: 10.1016/j.icheatmasstransfer.2020.104533
    [4] D. Yılmaz Aydın, M. Gürü, Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis, J. Therm. Anal. Calorim., 147 (2022), 7631-7664. http://dx.doi.org/10.1007/s10973-021-11092-8
    [5] M. Sanches, A. Moita, A. Ribeiro, A. Moreira, Heat transfer in nanofluid spray cooling of a solid heated surface for cooling systems in civil and military applications, ICLASS, 1 (2021), 275. http://dx.doi.org/10.2218/iclass.2021.6000 doi: 10.2218/iclass.2021.6000
    [6] N. Saleem, S. Munawar, Significance of synthetic cilia and Arrhenius energy on double diffusive stream of radiated hybrid nanofluid in microfluidic pump under ohmic heating: An entropic analysis, Coatings, 11 (2021), 1292. http://dx.doi.org/10.3390/coatings11111292 doi: 10.3390/coatings11111292
    [7] S. Salman, A. Talib, S. Saadon, M. Hameed Sultan, Hybrid nanofluid flow and heat transfer over backward and forward steps: a review, Powder Technology, 363 (2020), 448-472. http://dx.doi.org/10.1016/j.powtec.2019.12.038
    [8] A. Dalkılıç, Ӧ. Acikgöz, B. Kücükyildirim, A. Eker, B. Lüleci, C. Jumpholkul, et al., Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids, Int. Commun. Heat Mass, 97 (2018), 30-38. http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.07.007
    [9] N. Wahid, N. Ariffin, N. Khashi'ie, R. Yahaya, I. Pop, N. Bachok, et al., Three-dimensional radiative flow of hybrid nanofluid past a shrinking plate with suction, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85 (2021), 54-70. http://dx.doi.org/10.37934/arfmts.85.1.5470
    [10] N. Faizal, N. Ariffin, Y. Rahim, M. Hafidzuddin, N. Wahi, MHD and slip effect in micropolar hybrid nanofluid and heat transfer over a stretching sheet with thermal radiation and non-uniform heat source/sink, CFD Letters, 12 (2020), 121-130. http://dx.doi.org/10.37934/cfdl.12.11.121130 doi: 10.37934/cfdl.12.11.121130
    [11] R. Dash, K. Mehta, G. Jayaraman, Casson fluid flow in a pipe filled with a homogeneous porous medium, Int. J. Eng. Sci., 34 (1996), 1145-1156. http://dx.doi.org/10.1016/0020-7225(96)00012-2 doi: 10.1016/0020-7225(96)00012-2
    [12] N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, In: Rheology of disperse systems, Oxford: Pergamon Press, 1959, 84-104.
    [13] G. Vinogradov, A. Malkin, Rheology of polymers, Berlin: Springer, 1980.
    [14] A. Ali, Z. Bukhari, M. Umar, M. Ismail, Z. Abbas, Cu and Cu-SWCNT nanoparticles' suspension in pulsatile Casson fluid flow via Darcy-Forchheimerporous channel with compliant walls: aprospective model for blood flow in stenosed arteries, Int. J. Mol. Sci., 22 (2021), 6494. http://dx.doi.org/10.3390/ijms22126494 doi: 10.3390/ijms22126494
    [15] M. Shahrim, A. Mohamad, L. Jiann, M. Zakaria, S. Shafie, Z. Ismail, et al., Exact solution of fractional convective Casson fluid through an accelerated plate, CFD Letters, 13 (2021), 15-25. http://dx.doi.org/10.37934/cfdl.13.6.1525
    [16] M. Mustafa, T. Hayat, I. Pop, A. Aziz, Unsteady boundary layer flow of a Casson fluid impulsively started moving flat plate, Heat Transf.-Asian Re., 40 (2011), 563-576. http://dx.doi.org/10.1002/htj.20358 doi: 10.1002/htj.20358
    [17] S. Mukhopadhyay, P. De, K. Bhattacharyya, G. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Eng. J., 4 (2013), 933-938. http://dx.doi.org/10.1016/j.asej.2013.04.004 doi: 10.1016/j.asej.2013.04.004
    [18] A. Khalid, I. Khan, A. Khan, S. Shafie, Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium, Eng. Sci. Technol., 18 (2015), 309-317. http://dx.doi.org/10.1016/j.jestch.2014.12.006 doi: 10.1016/j.jestch.2014.12.006
    [19] I. Animasaun, E. Adebile, A. Fagbade, Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method, Journal of the Nigerian Mathematical Society, 35 (2016), 1-17. http://dx.doi.org/10.1016/j.jnnms.2015.02.001 doi: 10.1016/j.jnnms.2015.02.001
    [20] A. Rashad, A. Chamkha, S. El‐Kabeir, Effect of chemical reaction on heat and mass transfer by mixed convection flow about a sphere in a saturated porous media, Int. J. Numer. Method. H., 21 (2011), 418-433. http://dx.doi.org/10.1108/09615531111123092
    [21] O. Makinde, N. Sandeep, T. Ajayi, I. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, Int. J. Nonlin. Sci. Num., 19 (2018), 93-106. http://dx.doi.org/10.1515/ijnsns-2016-0087 doi: 10.1515/ijnsns-2016-0087
    [22] N. Khashi'ie, N. Md Arifin, I. Pop, R. Nazar, Melting heat transfer in hybrid nanofluid flow along a moving surface, J. Therm. Anal. Calori., 147 (2022), 567-578. http://dx.doi.org/10.1007/s10973-020-10238-4 doi: 10.1007/s10973-020-10238-4
    [23] N. Khashi'ie, I. Waini, N. Zainal, K. Hamzah, A. Mohd Kasim, Hybrid nanofluid flow past a shrinking cylinder with prescribed surface heat flux, Symmetry, 12 (2020), 1493. http://dx.doi.org/10.3390/sym12091493
    [24] N. Khashi'ie, M. Hafidzuddin, N. Arifin, N. Wahi, Stagnation point flow of hybrid nanofluid over a permeable vertical stretching/shrinking cylinder with thermal stratification effect, CFD Letters, 12 (2020), 80-94.
    [25] M. Ahmad, M. Asjad, A. Akgül, D. Baleanu, Analytical solutions for free convection flow of Casson nanofluid over an infinite vertical plate, AIMS Mathematics, 6 (2021), 2344-2358. http://dx.doi.org/10.3934/math.2021142 doi: 10.3934/math.2021142
    [26] T. Thumma, A. Wakif, I. Animasaun, Generalized differential quadrature analysis of unsteady three‐dimensional MHD radiating dissipative Casson fluid conveying tiny particles, Heat Transf., 49 (2020), 2595-2626. http://dx.doi.org/10.1002/htj.21736 doi: 10.1002/htj.21736
    [27] F. Alwawi, H. Alkasasbeh, A. Rashad, R. Idris, Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect, P. I. Mech. Eng. C-J. Mec., 234 (2020), 2569-2580. http://dx.doi.org/10.1177/0954406220908624 doi: 10.1177/0954406220908624
    [28] F. Alwawi, H. Alkasasbeh, A. Rashad, R. Idris, Natural convection flow of Sodium Alginate based Casson nanofluid about a solid sphere in the presence of a magnetic field with constant surface heat flux, J. Phys.: Conf. Ser., 1366 (2019), 012005. http://dx.doi.org/10.1088/1742-6596/1366/1/012005 doi: 10.1088/1742-6596/1366/1/012005
    [29] Q. Ali, S. Riaz, A. Awan, K. Abro, A mathematical model for thermography on viscous fluid based on damped thermal flux, Z. Naturforsch. A, 76 (2021), 285-294. http://dx.doi.org/10.1515/zna-2020-0322 doi: 10.1515/zna-2020-0322
    [30] A. Raza, S. Khan, M. Khan, E. El-Zahar, Heat transfer analysis for oscillating flow of magnetized fluid by using the modified Prabhakar-like fractional derivatives, submitted for publication. http://dx.doi.org/10.21203/rs.3.rs-1086428/v1
    [31] A. Raza, S. Khan, S. Farid, M. Khan, M. Khan, A. Haq, et al., Transport properties of mixed convective nano-material flow considering the generalized Fourier law and a vertical surface: concept of Caputo-time fractional derivative, P. I. Mech. Eng. C-J. Mec., 236 (2022), 974-984. http://dx.doi.org/10.1177/09576509221075110
    [32] S. Riaz, M. Sattar, K. Abro, Q. Ali, Thermo-dynamical investigation of constitutive equation for rate type fluid: a semi-analytical approach, International Journal of Modelling and Simulation, in press. http://dx.doi.org/10.1080/02286203.2022.2056427
    [33] A. Awan, S. Riaz, K. Abro, A. Siddiqa, Q. Ali, The role of relaxation and retardation phenomenon of Oldroyd-B fluid flow through Stehfest's and Tzou's algorithms, Nonlinear Engineering, 11 (2022), 35-46. http://dx.doi.org/10.1515/nleng-2022-0006 doi: 10.1515/nleng-2022-0006
    [34] Y. Wang, A. Raza, S. Khan, M. Khan, M. Ayadi, M. El-Shorbagy, et al., Prabhakar fractional simulations for hybrid nanofluid with aluminum oxide, titanium oxide and copper nanoparticles along with blood base fluid, Wave. Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2063983
    [35] Z. Jie, M. Khan, K. Al-Khaled, E. El-Zahar, N. Acharya, A. Raza, et al., Thermal transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal oscillations conditions: a fractional derivative concept, Wave. Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2049926
    [36] S. Suganya, M. Muthtamilselvan, Z. Alhussain, Activation energy and Coriolis force on Cu-TiO2/water hybrid nanofluid flow in an existence of nonlinear radiation, Appl. Nanosci., 11 (2021), 933-949. http://dx.doi.org/10.1007/s13204-020-01647-w doi: 10.1007/s13204-020-01647-w
    [37] S. Abu Bakar, N. Md Arifin, N. Khashi'ie, N. Bachok, Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts, Mathematics, 9 (2021), 878. http://dx.doi.org/10.3390/math9080878 doi: 10.3390/math9080878
    [38] S. Shoeibi, H. Kargarsharifabad, N. Rahbar, G. Ahmadi, M.Safaei, Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis, Sustain. Energy Techn., 49 (2022), 101728. http://dx.doi.org/10.1016/j.seta.2021.101728 doi: 10.1016/j.seta.2021.101728
    [39] P. Kanti, K. Sharma, Z. Said, M. Jamei, K.Yashawantha, Experimental investigation on thermal conductivity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: prediction and optimization via ANN and MGGP model, Particul. Sci. Technol., 40 (2022), 182-195. http://dx.doi.org/10.1080/02726351.2021.1929610 doi: 10.1080/02726351.2021.1929610
    [40] M. Nadeem, I. Siddique, J. Awrejcewicz, M. Bilal, Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet, Sci. Rep., 12 (2022), 1631. http://dx.doi.org/10.1038/s41598-022-05393-7 doi: 10.1038/s41598-022-05393-7
    [41] L. Karthik, G. Kumar, T. Keswani, A. Bhattacharyya, S. Sarath Chandar, K. Bhaskara Rao, Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound, PloS ONE, 9 (2014), 90972. http://dx.doi.org/10.1371/journal.pone.0090972
    [42] N. Shah, I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. C, 76 (2016), 362. http://dx.doi.org/10.1140/epjc/s10052-016-4209-3 doi: 10.1140/epjc/s10052-016-4209-3
    [43] S. Mondal, N. Haroun, P. Sibanda, The effects of thermal radiation on an unsteady MHD axisymmetric stagnation-point flow over a shrinking sheet in presence of temperature dependent thermal conductivity with Navier slip, PLoS ONE, 10 (2015), 0138355. http://dx.doi.org/10.1371/journal.pone.0138355 doi: 10.1371/journal.pone.0138355
    [44] S. Aman, I. Khan, Z. Ismail, M. Salleh, Applications of fractional derivatives to nanofluids: exact and numerical solutions, Math. Model. Nat. Phenom., 13 (2018), 2. http://dx.doi.org/10.1051/mmnp/2018013 doi: 10.1051/mmnp/2018013
    [45] P. Sreedevi, P. Sudarsana Reddy, M. Sheremet, A comparative study of Al2O3 and TiO2 nanofluid flow over a wedge with non-linear thermal radiation, Int. J. Numer. Method. H., 30 (2020), 1291-1317. http://dx.doi.org/10.1108/HFF-05-2019-0434 doi: 10.1108/HFF-05-2019-0434
    [46] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [47] M. Riaz, A. Atangana, N. Iftikhar, Heat and mass transfer in Maxwell fluid in view of local and non-local differential operators, J. Therm. Anal. Calorim., 143 (2021), 4313-4329. http://dx.doi.org/10.1007/s10973-020-09383-7 doi: 10.1007/s10973-020-09383-7
    [48] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [49] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956. http://dx.doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
    [50] M. Abdullah, A. Butt, N. Raza, E. Haque, Semi-analytical technique for the solution of fractional Maxwell fluid, Can. J. Phys., 95 (2017), 472-478. http://dx.doi.org/10.1139/cjp-2016-0817 doi: 10.1139/cjp-2016-0817
    [51] M. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model. Nat. Phenom., 14 (2019), 311. http://dx.doi.org/10.1051/mmnp/2018074 doi: 10.1051/mmnp/2018074
    [52] V. Rajesh, Chemical reaction and radiation effects on the transient MHD free convection flow of dissipative fluid past an infinite vertical porous plate with ramped wall temperature, Chem. Ind. Chem. Eng. Q., 17 (2011), 189-198. http://dx.doi.org/10.2298/CICEQ100829003R doi: 10.2298/CICEQ100829003R
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1223) PDF downloads(59) Cited by(5)

Article outline

Figures and Tables

Figures(13)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog