This paper addresses a mixed and free convective Casson nanofluid flowing on an oscillating inclined poured plate with sinusoidal heat transfers and slip boundaries. As base fluid water is supposed and the suspension of nanofluid is formulated with the combination of individual copper (Cu), titanium dioxide (TiO2) and aluminum oxide (Al2O3) as nanoparticles, the dimensionless governing equations are generalized based on Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators for developing a fractional form. Then, for the semi-analytical solution of the momentum and thermal profiles, the Laplace transformation is utilized. To discuss the influences of various pertinent parameters on governing equations, graphical tablecomparison of the Nusselt number and skin friction is also inspected at different times and numerical schemes. As a result, it has been concluded that both the momentum and energy profiles represent the more significant results for the AB-fractional model as related to the CF-fractional model solution. Furthermore, water-based titanium dioxide (TiO2) has a more progressive impact on the momentum as well as the thermal fields as compared to copper (Cu) and aluminum oxide (Al2O3) nanoparticles. The Casson fluid parameter represents the dual behavior for the momentum profile, initially momentum field decreases due to the Casson parameter but it then reverses its impact and the fluid flow moves more progressively.
Citation: Ali Raza, Umair Khan, Aurang Zaib, Wajaree Weera, Ahmed M. Galal. A comparative study for fractional simulations of Casson nanofluid flow with sinusoidal and slipping boundary conditions via a fractional approach[J]. AIMS Mathematics, 2022, 7(11): 19954-19974. doi: 10.3934/math.20221092
[1] | Ziying Qi, Lianzhong Li . Lie symmetry analysis, conservation laws and diverse solutions of a new extended (2+1)-dimensional Ito equation. AIMS Mathematics, 2023, 8(12): 29797-29816. doi: 10.3934/math.20231524 |
[2] | Yuqiang Feng, Jicheng Yu . Lie symmetry analysis of fractional ordinary differential equation with neutral delay. AIMS Mathematics, 2021, 6(4): 3592-3605. doi: 10.3934/math.2021214 |
[3] | Amjad Hussain, Muhammad Khubaib Zia, Kottakkaran Sooppy Nisar, Velusamy Vijayakumar, Ilyas Khan . Lie analysis, conserved vectors, nonlinear self-adjoint classification and exact solutions of generalized (N+1)-dimensional nonlinear Boussinesq equation. AIMS Mathematics, 2022, 7(7): 13139-13168. doi: 10.3934/math.2022725 |
[4] | Alessandra Jannelli, Maria Paola Speciale . On the numerical solutions of coupled nonlinear time-fractional reaction-diffusion equations. AIMS Mathematics, 2021, 6(8): 9109-9125. doi: 10.3934/math.2021529 |
[5] | Miguel Vivas-Cortez, Yasir Masood, Absar Ul Haq, Imran Abbas Baloch, Abdul Hamid Kara, F. D. Zaman . Symmetry analysis and conservation laws of time fractional Airy type and other KdV type equations. AIMS Mathematics, 2023, 8(12): 29569-29576. doi: 10.3934/math.20231514 |
[6] | A. Tomar, H. Kumar, M. Ali, H. Gandhi, D. Singh, G. Pathak . Application of symmetry analysis and conservation laws to a fractional-order nonlinear conduction-diffusion model. AIMS Mathematics, 2024, 9(7): 17154-17170. doi: 10.3934/math.2024833 |
[7] | Tamara M. Garrido, Rafael de la Rosa, Elena Recio, Almudena P. Márquez . Conservation laws and symmetry analysis of a generalized Drinfeld-Sokolov system. AIMS Mathematics, 2023, 8(12): 28628-28645. doi: 10.3934/math.20231465 |
[8] | Huizhang Yang, Wei Liu, Yunmei Zhao . Lie symmetry reductions and exact solutions to a generalized two-component Hunter-Saxton system. AIMS Mathematics, 2021, 6(2): 1087-1100. doi: 10.3934/math.2021065 |
[9] | Youness Chatibi, El Hassan El Kinani, Abdelaziz Ouhadan . Lie symmetry analysis of conformable differential equations. AIMS Mathematics, 2019, 4(4): 1133-1144. doi: 10.3934/math.2019.4.1133 |
[10] | Mingliang Zheng . Study on the symmetries and conserved quantities of flexible mechanical multibody dynamics. AIMS Mathematics, 2023, 8(11): 27969-27982. doi: 10.3934/math.20231430 |
This paper addresses a mixed and free convective Casson nanofluid flowing on an oscillating inclined poured plate with sinusoidal heat transfers and slip boundaries. As base fluid water is supposed and the suspension of nanofluid is formulated with the combination of individual copper (Cu), titanium dioxide (TiO2) and aluminum oxide (Al2O3) as nanoparticles, the dimensionless governing equations are generalized based on Atangana-Baleanu (AB) and Caputo-Fabrizio (CF) fractional operators for developing a fractional form. Then, for the semi-analytical solution of the momentum and thermal profiles, the Laplace transformation is utilized. To discuss the influences of various pertinent parameters on governing equations, graphical tablecomparison of the Nusselt number and skin friction is also inspected at different times and numerical schemes. As a result, it has been concluded that both the momentum and energy profiles represent the more significant results for the AB-fractional model as related to the CF-fractional model solution. Furthermore, water-based titanium dioxide (TiO2) has a more progressive impact on the momentum as well as the thermal fields as compared to copper (Cu) and aluminum oxide (Al2O3) nanoparticles. The Casson fluid parameter represents the dual behavior for the momentum profile, initially momentum field decreases due to the Casson parameter but it then reverses its impact and the fluid flow moves more progressively.
Fractional differential equation theory comes with fractional calculus and is an abstract form of many engineering and physical problems. It has been widely used in system control, system identification, grey system theory, fractal and porous media dispersion, electrolytic chemistry, semiconductor physics, condensed matter physics, viscoelastic systems, biological mathematics, statistics, diffusion and transport theory, chaos and turbulence and non-newtonian fluid mechanics. Fractional differential equation theory has attracted the attention of the mathematics and natural science circles at home and abroad, and has made a series of research results. It has become one of the international hot research directions and has very important theoretical significance and application value.
As an important research area of fractional differential equation, boundary value problems have attracted a great deal of attention in the last ten years, especially in terms of the existence of positive solutions, and have achieved a lot of results (see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]). When the nonlinear term changes sign, the research on the existence of positive solutions progresses slowly, and relevant research results are not many (see [21,22,23,24,25,26,27,28,29,30,31,32,33]).
In [21], using a fixed point theorem in a cone, Agarwal et al. obtained the existence of positive solutions for the Sturm-Liouville boundary value problem
{(p(t)u′(t))′+λf(t,u(t))=0,t∈(0,1),α1u(0)−β1p(0)u′(0)=0,α2u(1)+β2p(0)u′(1)=0, |
where λ>0 is a parameter, p(t)∈C((0,1),[0,∞)), αi,βi≥0 for i=1,2 and α1α2+α1β2+α2β1>0; f∈C((0,1)×[0,∞),R) and f≥−M, for M>0,∀t∈[0,1],u≥0 (M is a constant).
In [22], Weigao Ge and Jingli Ren studied the Sturm-Liouville boundary value problem
{(p(t)u′(t))′+λa(t)f(t,u(t))=0,t∈(0,1),α1u(0)−β1p(0)u′(0)=0,α2u(1)+β2p(0)u′(1)=0, |
where a(t)≥0 and λ>0 is a parameter. They removed the restriction f≥−M, using Krasnosel'skii theorem, obtained some new existence theorems for the Sturm-Liouville boundary value problem.
In [23], Weigao Ge and Chunyan Xue studied the same Sturm-Liouville boundary value problem again. Without the restriction that f is bounded below, by the excision principle and area addition principle of degree, they obtained three theorems and extended the Krasnosel'skii's compression-expansion theorem in cones.
In [25], Yongqing Wang et al. considered the nonlinear fractional differential equation boundary value problem with changing sign nonlinearity
{Dα0+u(t)+λf(t,u(t))=0,t∈(0,1),u(0)=u′(0)=u(1)=0, |
where 2<α≤3, λ>0 is a parameter, Dα0+ is the standard Riemann-Liouville fractional derivative. f is allowed to change sign and may be singular at t=0,1 and −r(t)≤f≤z(t)g(x) for some given nonnegative functions r,z,g. By using Guo-Krasnosel'skii fixed point theorem, the authors obtained the existence of positive solutions.
In [28], J. Henderson and R. Luca studied the existence of positive solutions for a nonlinear Riemann-Liouville fractional differential equation with a sign-changing nonlinearity
{Dα0+u(t)+λf(t,u(t))=0,t∈(0,1),u(0)=u′(0)⋯=u(n−2)(0)=0,Dp0+u(t)|t=1=m∑i=1aiDq0+u(t)|t=ξi, |
where λ is a positive parameter, α∈(n−1,n],n∈N,n≥3,ξi∈R for all i=1,...m,(m∈N),0<ξ1<ξ2<⋯<ξm<1,p,q∈R,p∈[1,n−2],q∈[0,p], Dα0+ is the standard Riemann-Liouville fractional derivative. With the restriction that f may be singular at t=0,1 and −r(t)≤f≤z(t)g(t,x) for some given nonnegative functions r,z,g, applying Guo-Krasnosel'skii fixed point theorem, the existences of positive solutions are obtained.
In [31], Liu and Zhang studied the existence of positive solutions to the boundary value problem for a high order fractional differential equation with delay and singularities including changing sign nonlinearity
{Dα0+x(t)+f(t,x(t−τ))=0, t∈(0,1)∖{τ},x(t)=η(t), t∈[−τ,0],x′(0)=x′′(0)=⋯=x(n−2)(0)=0, n≥3,x(n−2)(1)=0, |
where n−1<α≤n,n=[α]+1,Dα0+ is the standard Riemann-Liouville fractional derivative. The restriction on the nonlinearity f is as follows: there exists a nonnegative function ρ∈C(0,1)∩L(0,1), ρ(t)≢0, such that f(t,x)≥−ρ(t) and φ2(t)h2(x)≤f(t,v(t)x)+ρ(t)≤φ1(t)(g(x)+h1(x)), for ∀ (t,x)∈(0,1)×R+, where φ1, φ2∈L(0,1) are positive, h1, h2∈C(R+0,R+) are nondecreasing, g∈C(R+0,R+) is nonincreasing, R+0=[0,+∞), and
v(t)={1, t∈(0,τ],(t−τ)α−2n+1,t∈(τ,1). |
By Guo-krasnosel'skii fixed point theorem and Leray-Schauder's nonlinear alternative theorem, some existence results of positive solutions are obtained, respectively.
In [33], Tudorache and Luca considered the nonlinear ordinary fractional differential equation with sequential derivatives
{Dβ0+(q(t)Dγ0+u(t))=λf(t,u(t)),t∈(0,1),u(j)(0)=0,j=0,1⋯,n−2,Dγ0+u(0)=0,q(1)Dγ0+u(1)=∫10q(t)Dγ0+u(t)dη0(t),Dα00+u(1)=p∑i=1∫10Dαi0+u(t)dηi(t), |
where β∈(1,2],γ∈(n−1,n],n∈N,n≥3,p∈N,αi∈R,i=0,1⋯p,0≤α1<α2<⋯<αp≤α0<γ−1,α0≥1,λ>0,q:[0,1]→(0,∞) is a continuous function, f∈C((0,1)×[0,∞),R) may be singular at t=0 and/or t=1, and there exist the functions ξ,ϕ∈C((0,1),[0,∞)), φ∈C((0,1)×[0,∞),[0,∞)) such that −ξ(t)≤f(t,x)≤ϕ(t)φ(t,x),∀t∈(0,1),x∈(0,∞) with 0<∫10ξ(s)ds<∞,0<∫10ϕ(s)ds<∞. By the Guo-Krasnosel'skii fixed point theorem, the existence of positive solutions are obtained.
As can be seen from the above research results, fixed point theorems are still common tools to solve the existence of positive solutions to boundary value problems with sign changing nonlinearity, especially the Guo-Krasnosel'skii fixed point theorem. In addition, for boundary value problems of ordinary differential equations, Weigao Ge et al. removed the restriction that the nonlinear item bounded below. However, for fractional boundary value problems, from the existing literature, there are still many restrictions on nonlinear terms.
Our purpose of this paper is to establish the existence of positive solutions of boundary value problems (BVPs for short) of the nonlinear fractional differential equation as follows
{Dα0+u(t)+λf(t,u(t))=0,t∈(0,1),u(0)=u′(0)⋯=u(n−2)(0)=u(n−2)(1)=0,n≥3, | (1.1) |
where n−1<α<n, λ>0, f:[0,1]×[0,+∞)→R is a known continuous nonlinear function and allowed to change sign, and Dα0+ is the standard Riemann-Liouville fractional derivative.
In this paper, by the Guo-Krasnosel'skii fixed point theorem, the sufficient conditions for the existence of positive solutions for BVPs (1.1) are obtained under a more relaxed condition compared with the existing literature, as follows. Throughout this paper, we suppose that the following conditions are satisfied.
H0: There exists a known function ω∈C(0,1)∩L(0,1) with ω(t)>0, t∈(0,1) and ∫10(1−s)α−2ω(s)ds<+∞, such that f(t,u)>−ω(t), for t∈(0,1), u∈R.
This paper is organized as follows. In Section 2, we introduce some definitions and lemmas to prove our major results. In Section 3, some sufficient conditions for the existence of at least one and two positive solutions for BVPs (1.1) are investigated. As applications, some examples are presented to illustrate our major results in Section 4.
In this section, we give out some important definitions, basic lemmas and the fixed point theorem that will be used to prove the major results.
Definition 2.1. (see[1]) Let φ(x)∈L1(a,b). The integrals
(Iαa+φ)(x)def=1Γ(α)∫xa(x−t)α−1φ(t)dt,x>a, |
(Iαb−φ)(x)def=1Γ(α)∫bx(t−x)α−1φ(t)dt,x<a, |
where α>0, are called the Riemann-Liouville fractional integrals of the order α. They are sometimes called left-sided and right-sided fractional integrals respectively.
Definition 2.2. (see[1]) For functions f(x) given in the interval [a,b], each of the expressions
(Dαa+f)(x)=1Γ(n−α)(ddx)n∫xa(x−t)n−α−1f(t)dt,n=[α]+1, |
(Dαb−f)(x)=(−1)nΓ(n−α)(ddx)n∫bx(t−x)n−α−1f(t)dt,n=[α]+1 |
is called Riemann-Liouville derivative of order α, α>0, left-handed and right-handed respectively.
Definition 2.3. (see [2]) Let E be a real Banach space. A nonempty, closed, and convex set P⊂E is called a cone if the following two conditions are satisfied:
(1) if x∈P and μ≥0, then μx∈P;
(2) if x∈P and −x∈P, then x=0.
Every cone P⊂E induces the ordering in E given by x1≤x2 if and only if x2−x1∈P.
Lemma 2.1. (see [3]) Let α>0, assume that u,Dα0+u∈C(0,1)∩L1(0,1), then,
Iα0+Dα0+u(t)=u(t)+C1tα−1+C2tα−2+⋯+Cntα−n |
holds for some Ci∈R,i=1,2,…,n, where n=[α]+1.
Lemma 2.2. Let y∈C[0,1] and n−1<α<n. Then, the following BVPs
{Dα0+u(t)+y(t)=0,0<t<1,u(0)=u′(0)⋯=u(n−2)(0)=u(n−2)(1)=0,n≥3 | (2.1) |
has a unique solution
u(t)=∫10G(t,s)y(s)ds, |
where
G(t,s)=1Γ(α){tα−1(1−s)α−n+1−(t−s)α−1,0≤s≤t≤1,tα−1(1−s)α−n+1,0≤t≤s≤1. | (2.2) |
Proof. From Definitions 2.1 and 2.2, Lemma 2.1, we know
u(t)=−Iα0+y(t)+C1tα−1+C2tα−2+⋯+Cntα−n=−1Γ(α)∫t0(t−s)α−1y(s)ds+C1tα−1+C2tα−2+⋯+Cntα−n, |
where Ci∈R,i=1,2⋯n.
From u(0)=u′(0)⋯=u(n−2)(0)=0, we get Ci=0,i=2,3⋯n, such that
u(n−2)(t)=−1Γ(α−n+2)∫t0(t−s)α−n+1y(s)ds+C1Γ(α)Γ(α−n+2)tα−n+2,u(n−2)(1)=−1Γ(α−n+2)∫10(1−s)α−n+1y(s)ds+C1Γ(α)Γ(α−n+2). |
From u(n−2)(1)=0, we get C1=1Γ(α)∫10(1−s)α−n+1y(s)ds, so that
u(t)=−1Γ(α)∫t0(t−s)α−1y(s)ds+tα−1Γ(α)∫10(1−s)α−n+1y(s)ds=1Γ(α)∫t0[tα−1(1−s)α−n+1−(t−s)α−1]y(s)ds+1Γ(α)∫1ttα−1(1−s)α−n+1y(s)ds=∫10G(t,s)y(s)ds. |
The proof is completed.
Lemma 2.3. Let n−1<α<n. The function G(t,s) defined by (2.2) is continuous on [0,1]×[0,1] and satisfies 0≤G(t,s)≤G(1,s) and G(t,s)≥tα−1G(1,s) for t,s∈[0,1].
Proof. From the definition (2.2), it's easy to know G(t,s) is continuous on [0,1]×[0,1]. Next, we prove that G(t,s) satisfies 0≤G(t,s)≤G(1,s).
For 0≤s≤t≤1,
∂G(t,s)∂t=1Γ(α)(α−1)(t−s)α−2[tα−2(1−s)α−n+1tα−2(1−st)α−2−1]≥1Γ(α)(α−1)(t−s)α−2[(1−s)3−n−1]≥0(n≥3). |
For 0≤t≤s≤1, obviously, ∂G(t,s)∂t≥0. Such that, G(t,s) is an increasing function of t and satisfies 0≤G(t,s)≤G(1,s).
At last, we prove that G(t,s) satisfies G(t,s)≥tα−1G(1,s).
For 0≤s≤t≤1,
G(t,s)−tα−1G(1,s)=1Γ(α)[tα−1(1−s)α−n+1−(t−s)α−1]−tα−1Γ(α)[(1−s)α−n+1−(1−s)α−1]=1Γ(α)[(t−ts)α−1−(t−s)α−1]≥0. |
For 0≤t≤s≤1,
G(t,s)G(1,s)=tα−1(1−s)α−n+1(1−s)α−n+1−(1−s)α−1≥tα−1(1−s)α−n+1(1−s)α−n+1=tα−1. |
The proof is completed.
At the end of this section, we present the Guo-Krasnosel'skii fixed point theorem that will be used in the proof of our main results.
Lemma 2.4. (see [34]) Let X be a Banach space, and let P⊂X be a cone in X. Assume Ω1,Ω2 are open subsets of X with 0∈Ω1⊂¯Ω1⊂Ω2. Let F:P→P be a comletely continuous operator such that either
1) ‖Fx‖≤‖x‖,x∈P∩∂Ω1,‖Fx‖≥‖x‖,x∈P∩∂Ω2; or
2) ‖Fx‖≥‖x‖,x∈P∩∂Ω1,‖Fx‖≤‖x‖,x∈P∩∂Ω2;
holds. Then, F has a fixed point in P∩(¯Ω2∖Ω1).
By a positive solution of BVPs (1.1), we mean a function u:[0,1]→[0,+∞) such that u(t) satisfies (1.1) and u(t)>0 for t∈(0,1).
Let Banach space E=C[0,1] be endowed with ‖x‖=max. Let I = [0, 1] , define the cone P\subset E by
P = \{x\in E : x(t)\geq t^{\alpha-1} \Vert x \Vert, t \in I \}. |
Lemma 3.1. Let \lambda > 0 , \omega \in C(0, 1) \cap L(0, 1) with \omega(t) > 0 on (0, 1) , and n-1 < \alpha < n . Then, the following boundary value problem of fractional differential equation
\begin{equation} \left \{ \begin{array}{l@{\quad}l} D_{{0^+}}^{\alpha}v(t)+\lambda \omega(t) = 0, 0 < t < 1, \\ v(0) = v'(0) \cdots = {v^{(n - 2)}}(0) = v^{(n - 2)}(1) = 0, n \geq 3 \end{array} \right. \end{equation} | (3.1) |
has a unique solution
\begin{equation} v(t) = \lambda\int_{0}^{1}G(t, s)\omega(s)ds \end{equation} | (3.2) |
and
\begin{equation} 0\leq v(t) \leq \lambda t^{\alpha-1} M, \end{equation} | (3.3) |
where
M = \frac{1}{\Gamma(\alpha)}\int_0^1 (1-s)^{\alpha -n+1} \omega(s) \, ds. |
Proof. From Lemma 2.2, let y(t) = \lambda \omega(t) , we have (3.2) immediately. In view of Lemma 2.3, we obtain
\begin{eqnarray} 0 \leq v(t) & = & \lambda\int_{0}^{1}G(t, s) \omega(s)ds \\ & = & \lambda\frac{t^{\alpha -1}}{\Gamma(\alpha)} \int_0^1 (1-s)^{\alpha -n+1} \omega(s) \, ds -\lambda\frac{1}{\Gamma(\alpha)} \int_0^t (t-s)^{\alpha -1} \omega(s) \, ds \\ &\leq& \lambda\frac{t^{\alpha -1}}{\Gamma(\alpha)}\int_0^1 (1-s)^{\alpha -n+1} \omega(s) \, ds\\ & = &\lambda t^{\alpha -1}M. \end{eqnarray} | (3.4) |
From (3.4), (3.3) holds.
The proof is completed.
Lemma 3.2. Suppose that v = v(t) is the solution of BVPs (3.1) and define the function g(t, u(t)) by
\begin{equation} g(t, u(t)) = f(t, u(t))+ \omega(t). \end{equation} | (3.5) |
Then, u(t) is the solution of BVPs (1.1), if and only if x(t) = u(t)+v(t) is the solution of the following BVPs
\begin{equation} \left \{ \begin{array}{l@{\quad}l} D_{{0^+}}^{\alpha}x(t)+\lambda g(t, x(t)-v(t)) = 0 \\ x(0) = x'(0) \cdots = {x^{(n - 2)}}(0) = x^{(n - 2)}(1) = 0, \; n \geq 3. \end{array} \right. \end{equation} | (3.6) |
And when x(t) > v(t) , u(t) is a positive solution of BVPs(1.1).
Proof. In view of Lemma 2.2, if u(t) and v(t) are the solutions of BVPs (1.1) and BVPs (3.1), respectively, we have
\begin{eqnarray*} \nonumber D_{{0^+}}^{\alpha}\big(u(t)+v(t)\big) & = & D_{{0^+}}^{\alpha}u(t)+D_{{0^+}}^{\alpha}v(t) \\ & = & -\lambda f(t, u(t))-\lambda \omega(t) \\ & = & -\lambda[f(t, u(t))+\omega(t)] \\ & = & -\lambda g(t, u(t)), \end{eqnarray*} |
such that
D_{{0^+}}^{\alpha}\big(u(t)+v(t)\big) +\lambda g(t, u(t)) = 0. |
Let x(t) = u(t)+v(t) , we have u(t) = x(t)-v(t) and
D_{{0^+}}^{\alpha}x(t) +\lambda g(t, x(t)-v(t)) = 0. |
It is easily to obtain x(0) = x'(0) = x'(1) = 0 from the boundary conditions of BVPs (1.1) and BVPs (3.1).
Hence, x(t) is the solution of BVPs (3.6).
On the other hand, if v(t) and x(t) are the solution of BVPs (3.1) and BVPs (3.6), respectively. Similarly, u(t) = x(t)-v(t) is the solution of BVPs (1.1). Obviously, when x(t) > v(t) , u(t) > 0 is a positive solution of BVPs (1.1).
The proof is completed.
Lemma 3.3. Let T:P\rightarrow E be the operator defined by
\begin{equation} Tx(t): = \lambda\int_{0}^{1}G(t, s)g(s, x(s)-v(s))ds. \end{equation} | (3.7) |
Then, T:P\rightarrow P is comletely continuous.
Proof. In view of the definition of the function g(t, u(t)) , we know that g(t, x(t)-v(t)) > 0 is continuous from the continuity of x(t) and v(t) .
By Lemma 2.3, we obtain
\begin{eqnarray*} \nonumber \Vert Tx \Vert = \max\limits_{t\in[0, 1]}\vert\lambda\int_{0}^{1}G(t, s)g(s, x(s)-v(s))ds\vert = \lambda\int_{0}^{1}G(1, s)g(s, x(s)-v(s))ds. \end{eqnarray*} |
So that, for t \in [0, 1] ,
\begin{eqnarray*} \nonumber Tx(t) = \lambda \int_{0}^{1}G(t, s)g(s, x(s)-v(s))ds \geq t^{\alpha-1}\lambda\int_{0}^{1}G(1, s)g(s, x(s)-v(s))ds = t^{\alpha-1}\Vert Tx \Vert . \end{eqnarray*} |
Thus, T(P)\subset P .
As the continuity and nonnegativeness of G(t, s) and H {_0} implies T is a continuous operator.
Let \Omega \subset P be bounded, there exists a positive constant r > 0 , such that \vert x\vert\leq r , for all x\in\Omega . Set M_{0} = \max\limits_{0\leq x \leq r, t\in I}\mid f(t, x(t)-v(t))\mid , then,
\left| {g(t, x(t) - v(t))} \right| \le \left| {f(t, x(t) - v(t))} \right| + \left| {\omega (t)} \right| \le {M_0} + \omega (t). |
So, for x\in \Omega and t\in [0, 1] , we have
\begin{eqnarray*} \nonumber \left| {Tx(t)} \right| & = & \left| {\lambda \int_0^1 G (t, s)g(s, x(s) - v(s))ds} \right|\\ &\le& \lambda \left( {{M_0}\int_0^1 G (1, s)ds{\rm{ + }}\int_0^1 G (1, s)\omega (s)ds} \right)\\ &\le& \lambda \left( {{M_0}\int_0^1 G (1, s)ds{\rm{ + }}\frac{1}{{\Gamma (\alpha )}}\int_0^1 {\omega (s)ds} } \right). \end{eqnarray*} |
Hence, T is uniformly bounded.
On the other hand, since G(t, s)\in C([0, 1]\times [0, 1]) , for \varepsilon > 0 , exists \delta > 0 , for t_{1}, t_{2} \in [0, 1] with \mid t_{1}-t_{2}\mid \le \delta , implies \left| {G({t_1}, s) - G({t_2}, s)} \right| < \frac{\varepsilon }{{\lambda \left({{M_0} + \int_0^1 {\omega (s)ds} } \right)}} , for s\in [0, 1].
Then, for all x\in \Omega :
\begin{array}{l} \left| {Tx({t_1}) - Tx({t_2})} \right|\\ = \left| {\lambda \int_0^1 G ({t_1}, s)g(s, x(s) - v(s))ds - \lambda \int_0^1 G ({t_2}, s)g(s, x(s) - v(s))ds} \right|\\ = \left| {\lambda \int_0^1 ( G({t_1}, s) - G({t_2}, s))g(s, x(s) - v(s))ds} \right|\\ \le \lambda \int_0^1 {\left| {G({t_1}, s) - G({t_2}, s)} \right|\left| {g(s, x(s) - v(s))} \right|} ds\\ \le \lambda \int_0^1 {\left| {G({t_1}, s) - G({t_2}, s)} \right|} \left( {{M_0} + \omega (s)} \right)ds\\ < \lambda \int_0^1 {\frac{\varepsilon }{{\lambda \left( {{M_0} + \int_0^1 {\omega (s)ds} } \right)}}\left( {{M_0} + \omega (s)} \right)ds} \\ \le \lambda \frac{\varepsilon }{{\lambda \left( {{M_0} + \int_0^1 {\omega (s)ds} } \right)}}\int_0^1 {\left( {{M_0} + \omega (s)} \right)ds} = \varepsilon . \end{array} |
Hence, T (\Omega) is equicontinuous. By Arzelà-Ascoli theorem, we have T:P \rightarrow P is completely continuous.
The proof is completed.
A function x(t) is said to be a solution of BVPs (3.6) if x(t) satisfies BVPs (3.6). In addition, if x(t) > 0 , for t\in(0, 1) , x(t) is said to be a positive solution of BVPs (3.6). Obviously, if x(t)\in P , and x(t)\neq 0 is a solution of BVPs (3.6), by x(t)\geq t^{\alpha-1}\vert x \vert , then x(t) is a positive solution of BVPs (3.6). By Lemma 3.2, if x(t) > v(t) , u(t) = x(t)-v(t) is a positive solution of BVPs (1.1).
Next, we give some sufficient conditions for the existence of positive solutions.
Theorem 3.1. For a given 0 < \eta < 1 , let I_{\eta} = [\eta, 1] . If
H _{1} : \lim\limits_{x\rightarrow +\infty} \inf\limits_{t\in I_{\eta}}\frac{f(t, x)}{x} = +\infty
holds, there exists \lambda^{*} > 0 , for any 0 < \lambda < \lambda^{*} , the BVPs (1.1) has at least one positive solution.
Proof. By Lemma 3.2, if BVPs (3.6) has a positive solution x(t) and x(t) > v(t) , BVPs (1.1) has a positive solution u(t) = x(t)-v(t) . We will apply Lemma 2.4 to prove the theorem.
In view of the definition of g(t, u(t)) , we have g(t, u(t))\geq 0 , so that BVPs (3.6) has a positive solution, if and only if the operator T has a fixed point in P .
Define
g_{1}(r_{1}) = \sup \limits_{t\in I, 0\leq x \leq r_{1}} g(t, x), |
where r_{1} > 0 .
By the definition of g_{1}(r_{1}) and H _{1} , we have
\lim\limits_{r_{1}\rightarrow +\infty} \frac{r_{1}}{g_{1}(r_{1})} = 0. |
Then, there exists R_{1} > 0 , such that
\frac{R_{1}}{g_{1}(R_{1})} = \max\limits_{r_{1} > 0}{\frac{r_{1}}{g_{1}(r_{1})}}. |
Let L = g_{1}(R_{1}) , \lambda^{*} = \min \{\frac{R_{1}}{M}, \frac{(\alpha-1)\Gamma(\alpha+1)R_{1}}{L}\} , where \int_{0}^{1}G(1, s)ds = \frac{1}{(\alpha-1)\Gamma(\alpha+1)} .
In order to apply Lemma 2.4, we separate the proof into the following two steps.
Step 1:
For every 0 < \lambda < \lambda^{*} , t\in I let \Omega_{1} = \{x\in E:\Vert x \Vert < R_{1}\} . Suppose x\in P\cap\partial\Omega_{1} , we obtain
\begin{eqnarray*} R_{1}&\geq& x(t)-v(t)\geq t^{\alpha-1}\Vert x \Vert-\lambda t^{\alpha-1}M \\ & > & t^{\alpha-1}R_{1}-\frac{R_{1}}{M}t^{\alpha-1}M \\ & > & 0. \end{eqnarray*} |
So that
g(t, x(t)-v(t))\leq g_{1}(R_{1}) = L |
and
\begin{eqnarray*} \nonumber Tx(t) & = & \lambda \int_{0}^{1}G(t, s)g(s, x(x)-v(s))ds \\ &\le& \lambda \int_0^1 {G(1, s)g(s, x(s) - v(s))ds} \\ &\le& \lambda^{*} \int_0^1 {G(1, s){g_1}({R_1})ds} = \lambda^{*} L \int_0^1 {G(1, s)ds} \\ & < & \frac{(\alpha-1)\Gamma(\alpha+1)R_{1}}{L} \frac{L}{(\alpha-1)\Gamma(\alpha+1)} \\ & = & {R_1}. \end{eqnarray*} |
Therefore,
\Vert Tx \Vert < \Vert x \Vert, x \in P \cap \partial \Omega_{1}. |
Step 2:
From H_{1} , we know that
\lim\limits_{x \rightarrow +\infty}\inf \limits_{t \in I_{\eta}} \frac{g(t, x)}{x} = \lim\limits_{x \rightarrow +\infty}\inf \limits_{t \in I_{\eta}} \frac{f(t, x)+\omega(t)}{x} = +\infty. |
Then, there exists R_{2} > (1+\eta^{1-\alpha})R_{1} > R_{1} , such that for all t \in I_{\eta} , when x > \frac{R_{2}}{1+\eta^{1-\alpha}} ,
g(t, x) > \delta x, |
where \delta > \frac{1+\eta^{1-\alpha}}{\lambda N} > 0 , N = \int_{\eta}^{1}G(1, s)ds .
Let \Omega_{2} = \{x \in E: \Vert x \Vert < R_{2} \} , for all x \in P \cap \partial \Omega_{2} , t \in I_{\eta} we have
\begin{eqnarray*} \nonumber x(t)-v(t) &\geq & t^{\alpha-1}R_{2}-\lambda t^{\alpha-1} M \\ & > & t^{\alpha-1}R_{2}-\lambda^{*} t^{\alpha-1} M \\ &\geq & t^{\alpha-1}R_{2}-t^{\alpha-1} R_{1} \\ &\geq& \eta^{\alpha-1}(R_{2}-R_{1}) \\ & = & \frac{R_{2}}{1+\eta^{1-\alpha}} > 0. \end{eqnarray*} |
So that
g(t, x(t)-v(t)) > \delta (x(t)-v(t)) > \delta \frac{R_{2}}{1+\eta^{1-\alpha}} |
and
\begin{eqnarray*} \nonumber \Vert Tx \Vert & = & \max \limits_{t \in I} \lambda \int_{0}^{1}G(t, s)g(s, x(s)-v(s))ds\\ & = & \lambda \int_{0}^{1}G(1, s)g(s, x(s)-v(s))ds \\ & > & \lambda \int_{\eta}^{1}G(1, s)g(s, x(s)-v(s))ds \\ & > & \lambda \delta \frac{R_{2}}{1+\eta^{1-\alpha}} \int_{\eta}^{1}G(1, s)ds \\ & = & \lambda \delta \frac{R_{2}}{1+\eta^{1-\alpha}} N \\ & > & \lambda \frac{1+\eta^{1-\alpha}}{\lambda N} \frac{R_{2}}{1+\eta^{1-\alpha}} N \\ & = & R_{2}. \end{eqnarray*} |
Thus, \Vert Tx \Vert > \Vert x \Vert , for x \in P\cap \partial \Omega_{2} .
Therefore, by the Lemma 2.4, the BVPs (3.6) has at least one positive solution x \in P \cap (\overline{\Omega_{2}}\setminus \Omega_{1}) , and R_{1} \leq \Vert x \Vert \leq R_{2} . From x(t)-v(t) > 0 , we know that BVPs (1.1) has at least one positive solution u(t) = x(t)-v(t) .
The proof is completed.
Theorem 3.2. Suppose
H _{2} : \lim\limits_{x \rightarrow +\infty} \inf\limits_{t \in I_{\eta}} f(t, x) = +\infty;
H _{3} : \lim\limits_{x \rightarrow +\infty} \sup\limits_{t \in I} \frac{f(t, x)}{x} = 0;
hold, there exists \lambda^{*} > 0 , for all \lambda > \lambda^{*} , the BVPs (1.1) has at least one positive solution.
Proof. Let \sigma = 2\frac{M}{N} . From H_{2} , we have
\lim \limits_{x \rightarrow +\infty} \inf \limits_{t \in I_{\eta}} g(t, x) = \lim \limits_{x \rightarrow +\infty} \inf \limits_{t \in I_{\eta}} (f(t, x)+\omega(t)) = +\infty, |
such that for the above \sigma , there exists X > 0 , when x > X , for all t \in I_{\eta} , we obtain
g(t, x) > \sigma. |
Let \lambda^{*} = \max\{\frac{N}{\eta^{\alpha-1}M}, \frac{X}{M}\} , R_{1} = 2\lambda M \eta^{1-\alpha} , where \lambda > \lambda^{*} . Let \Omega_{1} = \{x \in E: \Vert x \Vert < R_{1} \} , if x \in P \cap \partial \Omega_{1} , t \in I_{\eta} , we have
\begin{eqnarray*} \nonumber x(t)-v(t) &\geq& t^{\alpha-1}R_{1}- \lambda t^{\alpha-1} M \\ & = & \eta^{\alpha-1}R_{1}- \lambda M \\ & = & \eta^{\alpha-1}\cdot 2 \lambda M \eta^{1-\alpha} - \lambda M = \lambda M \\ & > & \lambda^{*} M \geq X, \end{eqnarray*} |
such that
g(t, x(t)-v(t)) > \sigma |
and
\begin{eqnarray*} \nonumber \Vert Tx \Vert & = & \max\limits_{t \in I} \lambda \int_{0}^{1}G(t, s)g(s, x(s)-v(s))ds \\ & = & \lambda \int_{0}^{1}G(1, s)g(s, x(s)-v(s))ds \\ & > & \lambda \int_{\eta}^{1}G(1, s)g(s, x(s)-v(s))ds \\ & = & \lambda N \sigma = 2 \lambda \frac{M}{N} N = 2 \lambda M > R_{1}\\ & = & \Vert x \Vert. \end{eqnarray*} |
Hence, \Vert Tx \Vert > \Vert x \Vert , x \in P \cap \partial \Omega_{1} .
On the other hand, from H_{3} , we know that there exists \varepsilon_{0} = \frac{{(\alpha - 1)\Gamma (\alpha + 1)}}{{2\lambda }} > 0 , R_{0} > R_{1} , for t\in[0, 1] , x > R_{0} , f(t, x) < {\varepsilon _0}x holds.
Because of f \in C([0, 1] \times [0, + \infty), \mathbb{R}) , let \overline M = \mathop {\max }\limits_{(t, x) \in I \times [0, {R_0}]} \left\{ {f(t, x)} \right\} , then, for t \in[0, 1] , x\in[0, +\infty) , f(t, x) \le \overline M + {\varepsilon _0}x holds.
Let {R_2} > \max \left\{ {{R_0}, \lambda M, \frac{{2\lambda \left({\overline M + \int_0^1 {\omega (s)ds} } \right)}}{{\Gamma (\alpha)}}} \right\} , {\Omega _2} = \{ x \in E:\left\| x \right\| < {R_2}\} , for x \in P \cap \partial {\Omega _2} and t\in[0, 1] , we have
x(t) - v(t) \ge {t^{\alpha - 1}}{R_2} - \lambda {t^{\alpha - 1}}M{\rm{ = }}{t^{\alpha - 1}}({R_2} - \lambda M) \ge 0. |
So that,
\begin{array}{l} g(t, x(t) - v(t)){\rm{ = }}f(t, x(t) - v(t)) + \omega (t)\\ \le \overline M + {\varepsilon _0}\left( {x(t) - v(t)} \right) + \omega (t)\\ \le \overline M + {\varepsilon _0}x(t) + \omega (t). \end{array} |
Therefore,
\begin{array}{l} \left\| {Tx} \right\| = \mathop {\max }\limits_{t \in I} \lambda \int_0^1 G (t, s)g(s, x(s) - v(s))ds = \lambda \int_0^1 G (1, s)g(s, x(s) - v(s))ds\\ \le \lambda \int_0^1 G (1, s)\left( {\overline M + {\varepsilon _0}x(s) + \omega (s)} \right)ds\\ \le \lambda {\varepsilon _0}{R_2}\int_0^1 G (1, s)ds + \lambda \int_0^1 G (1, s)\left( {\overline M + \omega (s)} \right)ds\\ \le \lambda {\varepsilon _0}{R_2}\frac{1}{{(\alpha - 1)\Gamma (\alpha + 1)}} + \frac{\lambda }{{\Gamma (\alpha )}}\left( {\overline M + \int_0^1 {\omega (s)ds} } \right)\\ < \frac{{\lambda {R_2}}}{{(\alpha - 1)\Gamma (\alpha + 1)}}\frac{{(\alpha - 1)\Gamma (\alpha + 1)}}{{2\lambda }} + \frac{{{R_2}}}{2}\\ = {R_2}\\ = \left\| x \right\|. \end{array} |
So, we get
\Vert Tx \Vert < \Vert x \Vert, x\in P \cap \partial \Omega_{2}. |
Hence, from Lemma 2.4, we know that the operator T has at least one fixed point x , which satisfies x \in P \cap (\overline{\Omega_{2}}\setminus \Omega_{1}) and R_{1} \leq \Vert x \Vert \leq R_{2} . From x(t)-v(t) > 0 , we know that BVPs (1.1) has at least one positive solution u(t) = x(t)-v(t) .
The proof is completed.
In this section, we provide two examples to demonstrate the applications of the theoretical results in the previous sections.
Example 4.1. Consider the following BVPs
\begin{equation} \left \{ \begin{array}{l@{\quad}l} D_{{0^+}}^{\frac{5}{2}}u + \lambda (u^{2}-e^{\sin t}-3t-2e) = 0, \\ u(0) = u'(0) = u'(1) = 0. \end{array} \right. \end{equation} | (4.1) |
where \alpha = \frac{5}{2} , f(t, u) = u^{2}-e^{\sin t}-2e , \omega(t) = \frac{e^{\sin 10^{-1}}}{\sqrt{10}}t^{\frac{-1}{2}}+12e .
Let \eta = 10^{-1} , then,
g(t, u) = u^{2}-e^{\sin t}+\frac{e^{\sin 10^{-1}}}{\sqrt{10}}t^{\frac{-1}{2}}+10e, |
g_{1}(r) = \sup\limits_{t \in I_{\eta}, 0\leq u \leq r}g(t, u) = r^{2}+10e, |
and
\lim\limits_{r \rightarrow +\infty} \frac{r}{g_{1}(r)} = \lim\limits_{r \rightarrow +\infty} \frac{r}{r^{2}+10e} = 0, |
R_{1} = \sqrt{10e} , L = g_{1}(R_{1}) = 20e , M = 16.7716 , N = 0.26667 , \frac{R_{1}}{M} = 0.310866 , \frac{(\alpha-1)\Gamma(\alpha+1)R_{1}}{L} = 0.478069 , \lambda^{*} = 0.310866 , R_{2} = 170.086 , N = 0.196967 .
We can check that the condition of Theorem 3.1 is satisfied. Therefore, there exists at least one positive solution.
Example 4.2. Consider the following BVPs
\begin{equation} \left \{ \begin{array}{l@{\quad}l} D_{{0^+}}^{\frac{7}{3}}u + \lambda (e^{-t}u^{\frac{2}{3} }-t-10) = 0, \\ u(0) = u'(0) = u'(1) = 0. \end{array} \right . \end{equation} | (4.2) |
where \alpha = \frac{7}{3} , f(t, u) = e^{-t}u^{\frac{2}{3} }-t-10 , \omega(t) = t^{\frac{-2}{3}}+10 .
Let \eta = 0.3 , such that
g(t, u) = e^{-t}u^{\frac{2}{3} }+t^{\frac{-2}{3}}-t, |
and M = 8.52480 , N = 0.219913 , \sigma = \frac{2M}{N} = 77.5290 , \frac{N}{\eta^{\alpha-1}M} = 0.128451 , R_{1} = 2\lambda M \eta^{-\frac{4}{3}} = 84.8957\lambda > 10.9049 .
We can check that the conditions of Theorem 3.2 are satisfied. Therefore, there exists at least one positive solution.
In this paper, the constraint on the nonlinear term is weakened to f(t, u) > -\omega(t) (where \omega(t) > 0 ). Under similar conditions, by constructing an auxiliary boundary value problem and using the principle of linear superposition, the difficulty caused by sign-change of nonlinear terms is overcome. Under the condition of singularity of nonlinear terms, the existence conclusions of positive solutions are obtained based on the Guo-Krasnosel'skii fixed point theorem.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This research was supported by National Natural Science Foundation of China (Grant No. 12371308). The authors would like to thank the anonymous reviewers and the editor for their constructive suggestions on improving the presentation of the paper.
The authors declares that they have no competing interest.
[1] |
A. Saeedi, M. Akbari, D. Toghraie, An experimental study on rheological behavior of a nanofluid containing oxide nanoparticle and proposing a new correlation, Physica E, 99 (2018), 285-293. http://dx.doi.org/10.1016/j.physe.2018.02.018 doi: 10.1016/j.physe.2018.02.018
![]() |
[2] |
D. Toghraie, N. Sina, M. Mozafarifard, A. Alizadeh, F. Soltani, M. Fazilati, Prediction of dynamic viscosity of a new non-Newtonian hybrid nanofluid using experimental and artificial neural network (ANN) methods, Heat. Transf. Res., 51 (2020), 1351-1362. http://dx.doi.org/10.1615/HeatTransRes.2020034645 doi: 10.1615/HeatTransRes.2020034645
![]() |
[3] |
Y. Zheng, H. Yang, M. Fazilati, D. Toghraie, H. Rahimi, M. Afrand, Experimental investigation of heat and moisture transfer performance of CaCl2/H2O-SiO2 nanofluid in a gas-liquid micro porous hollow fiber membrane contactor, Int. Commun. Heat Mass, 113 (2020), 104533. http://dx.doi.org/10.1016/j.icheatmasstransfer.2020.104533 doi: 10.1016/j.icheatmasstransfer.2020.104533
![]() |
[4] | D. Yılmaz Aydın, M. Gürü, Nanofluids: preparation, stability, properties, and thermal performance in terms of thermo-hydraulic, thermodynamics and thermo-economic analysis, J. Therm. Anal. Calorim., 147 (2022), 7631-7664. http://dx.doi.org/10.1007/s10973-021-11092-8 |
[5] |
M. Sanches, A. Moita, A. Ribeiro, A. Moreira, Heat transfer in nanofluid spray cooling of a solid heated surface for cooling systems in civil and military applications, ICLASS, 1 (2021), 275. http://dx.doi.org/10.2218/iclass.2021.6000 doi: 10.2218/iclass.2021.6000
![]() |
[6] |
N. Saleem, S. Munawar, Significance of synthetic cilia and Arrhenius energy on double diffusive stream of radiated hybrid nanofluid in microfluidic pump under ohmic heating: An entropic analysis, Coatings, 11 (2021), 1292. http://dx.doi.org/10.3390/coatings11111292 doi: 10.3390/coatings11111292
![]() |
[7] | S. Salman, A. Talib, S. Saadon, M. Hameed Sultan, Hybrid nanofluid flow and heat transfer over backward and forward steps: a review, Powder Technology, 363 (2020), 448-472. http://dx.doi.org/10.1016/j.powtec.2019.12.038 |
[8] | A. Dalkılıç, Ӧ. Acikgöz, B. Kücükyildirim, A. Eker, B. Lüleci, C. Jumpholkul, et al., Experimental investigation on the viscosity characteristics of water based SiO2-graphite hybrid nanofluids, Int. Commun. Heat Mass, 97 (2018), 30-38. http://dx.doi.org/10.1016/j.icheatmasstransfer.2018.07.007 |
[9] | N. Wahid, N. Ariffin, N. Khashi'ie, R. Yahaya, I. Pop, N. Bachok, et al., Three-dimensional radiative flow of hybrid nanofluid past a shrinking plate with suction, Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 85 (2021), 54-70. http://dx.doi.org/10.37934/arfmts.85.1.5470 |
[10] |
N. Faizal, N. Ariffin, Y. Rahim, M. Hafidzuddin, N. Wahi, MHD and slip effect in micropolar hybrid nanofluid and heat transfer over a stretching sheet with thermal radiation and non-uniform heat source/sink, CFD Letters, 12 (2020), 121-130. http://dx.doi.org/10.37934/cfdl.12.11.121130 doi: 10.37934/cfdl.12.11.121130
![]() |
[11] |
R. Dash, K. Mehta, G. Jayaraman, Casson fluid flow in a pipe filled with a homogeneous porous medium, Int. J. Eng. Sci., 34 (1996), 1145-1156. http://dx.doi.org/10.1016/0020-7225(96)00012-2 doi: 10.1016/0020-7225(96)00012-2
![]() |
[12] | N. Casson, A flow equation for pigment-oil suspensions of the printing ink type, In: Rheology of disperse systems, Oxford: Pergamon Press, 1959, 84-104. |
[13] | G. Vinogradov, A. Malkin, Rheology of polymers, Berlin: Springer, 1980. |
[14] |
A. Ali, Z. Bukhari, M. Umar, M. Ismail, Z. Abbas, Cu and Cu-SWCNT nanoparticles' suspension in pulsatile Casson fluid flow via Darcy-Forchheimerporous channel with compliant walls: aprospective model for blood flow in stenosed arteries, Int. J. Mol. Sci., 22 (2021), 6494. http://dx.doi.org/10.3390/ijms22126494 doi: 10.3390/ijms22126494
![]() |
[15] | M. Shahrim, A. Mohamad, L. Jiann, M. Zakaria, S. Shafie, Z. Ismail, et al., Exact solution of fractional convective Casson fluid through an accelerated plate, CFD Letters, 13 (2021), 15-25. http://dx.doi.org/10.37934/cfdl.13.6.1525 |
[16] |
M. Mustafa, T. Hayat, I. Pop, A. Aziz, Unsteady boundary layer flow of a Casson fluid impulsively started moving flat plate, Heat Transf.-Asian Re., 40 (2011), 563-576. http://dx.doi.org/10.1002/htj.20358 doi: 10.1002/htj.20358
![]() |
[17] |
S. Mukhopadhyay, P. De, K. Bhattacharyya, G. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Eng. J., 4 (2013), 933-938. http://dx.doi.org/10.1016/j.asej.2013.04.004 doi: 10.1016/j.asej.2013.04.004
![]() |
[18] |
A. Khalid, I. Khan, A. Khan, S. Shafie, Unsteady MHD free convection flow of Casson fluid past over an oscillating vertical plate embedded in a porous medium, Eng. Sci. Technol., 18 (2015), 309-317. http://dx.doi.org/10.1016/j.jestch.2014.12.006 doi: 10.1016/j.jestch.2014.12.006
![]() |
[19] |
I. Animasaun, E. Adebile, A. Fagbade, Casson fluid flow with variable thermo-physical property along exponentially stretching sheet with suction and exponentially decaying internal heat generation using the homotopy analysis method, Journal of the Nigerian Mathematical Society, 35 (2016), 1-17. http://dx.doi.org/10.1016/j.jnnms.2015.02.001 doi: 10.1016/j.jnnms.2015.02.001
![]() |
[20] | A. Rashad, A. Chamkha, S. El‐Kabeir, Effect of chemical reaction on heat and mass transfer by mixed convection flow about a sphere in a saturated porous media, Int. J. Numer. Method. H., 21 (2011), 418-433. http://dx.doi.org/10.1108/09615531111123092 |
[21] |
O. Makinde, N. Sandeep, T. Ajayi, I. Animasaun, Numerical exploration of heat transfer and Lorentz force effects on the flow of MHD Casson fluid over an upper horizontal surface of a thermally stratified melting surface of a paraboloid of revolution, Int. J. Nonlin. Sci. Num., 19 (2018), 93-106. http://dx.doi.org/10.1515/ijnsns-2016-0087 doi: 10.1515/ijnsns-2016-0087
![]() |
[22] |
N. Khashi'ie, N. Md Arifin, I. Pop, R. Nazar, Melting heat transfer in hybrid nanofluid flow along a moving surface, J. Therm. Anal. Calori., 147 (2022), 567-578. http://dx.doi.org/10.1007/s10973-020-10238-4 doi: 10.1007/s10973-020-10238-4
![]() |
[23] | N. Khashi'ie, I. Waini, N. Zainal, K. Hamzah, A. Mohd Kasim, Hybrid nanofluid flow past a shrinking cylinder with prescribed surface heat flux, Symmetry, 12 (2020), 1493. http://dx.doi.org/10.3390/sym12091493 |
[24] | N. Khashi'ie, M. Hafidzuddin, N. Arifin, N. Wahi, Stagnation point flow of hybrid nanofluid over a permeable vertical stretching/shrinking cylinder with thermal stratification effect, CFD Letters, 12 (2020), 80-94. |
[25] |
M. Ahmad, M. Asjad, A. Akgül, D. Baleanu, Analytical solutions for free convection flow of Casson nanofluid over an infinite vertical plate, AIMS Mathematics, 6 (2021), 2344-2358. http://dx.doi.org/10.3934/math.2021142 doi: 10.3934/math.2021142
![]() |
[26] |
T. Thumma, A. Wakif, I. Animasaun, Generalized differential quadrature analysis of unsteady three‐dimensional MHD radiating dissipative Casson fluid conveying tiny particles, Heat Transf., 49 (2020), 2595-2626. http://dx.doi.org/10.1002/htj.21736 doi: 10.1002/htj.21736
![]() |
[27] |
F. Alwawi, H. Alkasasbeh, A. Rashad, R. Idris, Heat transfer analysis of ethylene glycol-based Casson nanofluid around a horizontal circular cylinder with MHD effect, P. I. Mech. Eng. C-J. Mec., 234 (2020), 2569-2580. http://dx.doi.org/10.1177/0954406220908624 doi: 10.1177/0954406220908624
![]() |
[28] |
F. Alwawi, H. Alkasasbeh, A. Rashad, R. Idris, Natural convection flow of Sodium Alginate based Casson nanofluid about a solid sphere in the presence of a magnetic field with constant surface heat flux, J. Phys.: Conf. Ser., 1366 (2019), 012005. http://dx.doi.org/10.1088/1742-6596/1366/1/012005 doi: 10.1088/1742-6596/1366/1/012005
![]() |
[29] |
Q. Ali, S. Riaz, A. Awan, K. Abro, A mathematical model for thermography on viscous fluid based on damped thermal flux, Z. Naturforsch. A, 76 (2021), 285-294. http://dx.doi.org/10.1515/zna-2020-0322 doi: 10.1515/zna-2020-0322
![]() |
[30] | A. Raza, S. Khan, M. Khan, E. El-Zahar, Heat transfer analysis for oscillating flow of magnetized fluid by using the modified Prabhakar-like fractional derivatives, submitted for publication. http://dx.doi.org/10.21203/rs.3.rs-1086428/v1 |
[31] | A. Raza, S. Khan, S. Farid, M. Khan, M. Khan, A. Haq, et al., Transport properties of mixed convective nano-material flow considering the generalized Fourier law and a vertical surface: concept of Caputo-time fractional derivative, P. I. Mech. Eng. C-J. Mec., 236 (2022), 974-984. http://dx.doi.org/10.1177/09576509221075110 |
[32] | S. Riaz, M. Sattar, K. Abro, Q. Ali, Thermo-dynamical investigation of constitutive equation for rate type fluid: a semi-analytical approach, International Journal of Modelling and Simulation, in press. http://dx.doi.org/10.1080/02286203.2022.2056427 |
[33] |
A. Awan, S. Riaz, K. Abro, A. Siddiqa, Q. Ali, The role of relaxation and retardation phenomenon of Oldroyd-B fluid flow through Stehfest's and Tzou's algorithms, Nonlinear Engineering, 11 (2022), 35-46. http://dx.doi.org/10.1515/nleng-2022-0006 doi: 10.1515/nleng-2022-0006
![]() |
[34] | Y. Wang, A. Raza, S. Khan, M. Khan, M. Ayadi, M. El-Shorbagy, et al., Prabhakar fractional simulations for hybrid nanofluid with aluminum oxide, titanium oxide and copper nanoparticles along with blood base fluid, Wave. Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2063983 |
[35] | Z. Jie, M. Khan, K. Al-Khaled, E. El-Zahar, N. Acharya, A. Raza, et al., Thermal transport model for Brinkman type nanofluid containing carbon nanotubes with sinusoidal oscillations conditions: a fractional derivative concept, Wave. Random Complex, in press. http://dx.doi.org/10.1080/17455030.2022.2049926 |
[36] |
S. Suganya, M. Muthtamilselvan, Z. Alhussain, Activation energy and Coriolis force on Cu-TiO2/water hybrid nanofluid flow in an existence of nonlinear radiation, Appl. Nanosci., 11 (2021), 933-949. http://dx.doi.org/10.1007/s13204-020-01647-w doi: 10.1007/s13204-020-01647-w
![]() |
[37] |
S. Abu Bakar, N. Md Arifin, N. Khashi'ie, N. Bachok, Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts, Mathematics, 9 (2021), 878. http://dx.doi.org/10.3390/math9080878 doi: 10.3390/math9080878
![]() |
[38] |
S. Shoeibi, H. Kargarsharifabad, N. Rahbar, G. Ahmadi, M.Safaei, Performance evaluation of a solar still using hybrid nanofluid glass cooling-CFD simulation and environmental analysis, Sustain. Energy Techn., 49 (2022), 101728. http://dx.doi.org/10.1016/j.seta.2021.101728 doi: 10.1016/j.seta.2021.101728
![]() |
[39] |
P. Kanti, K. Sharma, Z. Said, M. Jamei, K.Yashawantha, Experimental investigation on thermal conductivity of fly ash nanofluid and fly ash-Cu hybrid nanofluid: prediction and optimization via ANN and MGGP model, Particul. Sci. Technol., 40 (2022), 182-195. http://dx.doi.org/10.1080/02726351.2021.1929610 doi: 10.1080/02726351.2021.1929610
![]() |
[40] |
M. Nadeem, I. Siddique, J. Awrejcewicz, M. Bilal, Numerical analysis of a second-grade fuzzy hybrid nanofluid flow and heat transfer over a permeable stretching/shrinking sheet, Sci. Rep., 12 (2022), 1631. http://dx.doi.org/10.1038/s41598-022-05393-7 doi: 10.1038/s41598-022-05393-7
![]() |
[41] | L. Karthik, G. Kumar, T. Keswani, A. Bhattacharyya, S. Sarath Chandar, K. Bhaskara Rao, Protease inhibitors from marine actinobacteria as a potential source for antimalarial compound, PloS ONE, 9 (2014), 90972. http://dx.doi.org/10.1371/journal.pone.0090972 |
[42] |
N. Shah, I. Khan, Heat transfer analysis in a second grade fluid over and oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. C, 76 (2016), 362. http://dx.doi.org/10.1140/epjc/s10052-016-4209-3 doi: 10.1140/epjc/s10052-016-4209-3
![]() |
[43] |
S. Mondal, N. Haroun, P. Sibanda, The effects of thermal radiation on an unsteady MHD axisymmetric stagnation-point flow over a shrinking sheet in presence of temperature dependent thermal conductivity with Navier slip, PLoS ONE, 10 (2015), 0138355. http://dx.doi.org/10.1371/journal.pone.0138355 doi: 10.1371/journal.pone.0138355
![]() |
[44] |
S. Aman, I. Khan, Z. Ismail, M. Salleh, Applications of fractional derivatives to nanofluids: exact and numerical solutions, Math. Model. Nat. Phenom., 13 (2018), 2. http://dx.doi.org/10.1051/mmnp/2018013 doi: 10.1051/mmnp/2018013
![]() |
[45] |
P. Sreedevi, P. Sudarsana Reddy, M. Sheremet, A comparative study of Al2O3 and TiO2 nanofluid flow over a wedge with non-linear thermal radiation, Int. J. Numer. Method. H., 30 (2020), 1291-1317. http://dx.doi.org/10.1108/HFF-05-2019-0434 doi: 10.1108/HFF-05-2019-0434
![]() |
[46] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[47] |
M. Riaz, A. Atangana, N. Iftikhar, Heat and mass transfer in Maxwell fluid in view of local and non-local differential operators, J. Therm. Anal. Calorim., 143 (2021), 4313-4329. http://dx.doi.org/10.1007/s10973-020-09383-7 doi: 10.1007/s10973-020-09383-7
![]() |
[48] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73-85. http://dx.doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
![]() |
[49] |
A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948-956. http://dx.doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
![]() |
[50] |
M. Abdullah, A. Butt, N. Raza, E. Haque, Semi-analytical technique for the solution of fractional Maxwell fluid, Can. J. Phys., 95 (2017), 472-478. http://dx.doi.org/10.1139/cjp-2016-0817 doi: 10.1139/cjp-2016-0817
![]() |
[51] |
M. Khan, Z. Hammouch, D. Baleanu, Modeling the dynamics of hepatitis E via the Caputo-Fabrizio derivative, Math. Model. Nat. Phenom., 14 (2019), 311. http://dx.doi.org/10.1051/mmnp/2018074 doi: 10.1051/mmnp/2018074
![]() |
[52] |
V. Rajesh, Chemical reaction and radiation effects on the transient MHD free convection flow of dissipative fluid past an infinite vertical porous plate with ramped wall temperature, Chem. Ind. Chem. Eng. Q., 17 (2011), 189-198. http://dx.doi.org/10.2298/CICEQ100829003R doi: 10.2298/CICEQ100829003R
![]() |
1. | Farzaneh Alizadeh, Kamyar Hosseini, Sekson Sirisubtawee, Evren Hincal, Classical and nonclassical Lie symmetries, bifurcation analysis, and Jacobi elliptic function solutions to a 3D-modified nonlinear wave equation in liquid involving gas bubbles, 2024, 2024, 1687-2770, 10.1186/s13661-024-01921-8 | |
2. | Qiongya Gu, Lizhen Wang, Invariant analysis, invariant subspace method and conservation laws of the (2+1)-dimensional mixed fractional Broer–Kaup–Kupershmidt system, 2024, 91, 05779073, 895, 10.1016/j.cjph.2024.08.001 |