In this paper, we analyze the properties of a complex network of predator-prey systems, modeling the ecological dynamics of interacting species living in a fragmented environment. We consider non-identical instances of a Lotka-Volterra model with Holling type II functional response, which undergoes a Hopf bifurcation, and focus on the possible synchronization of distinct local behaviours. We prove an original result for the near-synchronization of non-identical systems, which shows how to and to what extent an extinction dynamic can be driven to a persistence equilibrium. Our theoretical statements are illustrated by appropriate numerical simulations.
Citation: Guillaume Cantin, Cristiana J. Silva. Complex network near-synchronization for non-identical predator-prey systems[J]. AIMS Mathematics, 2022, 7(11): 19975-19997. doi: 10.3934/math.20221093
In this paper, we analyze the properties of a complex network of predator-prey systems, modeling the ecological dynamics of interacting species living in a fragmented environment. We consider non-identical instances of a Lotka-Volterra model with Holling type II functional response, which undergoes a Hopf bifurcation, and focus on the possible synchronization of distinct local behaviours. We prove an original result for the near-synchronization of non-identical systems, which shows how to and to what extent an extinction dynamic can be driven to a persistence equilibrium. Our theoretical statements are illustrated by appropriate numerical simulations.
[1] | A. Arenas, A. Díaz-Guilera, J. Kurths, Y. Moreno, C. Zhou, Synchronization in complex networks, Physics reports, 469 (2008), 93–153. https://doi.org/10.1016/j.physrep.2008.09.002 doi: 10.1016/j.physrep.2008.09.002 |
[2] | M. Barahona, L. M. Pecora, Synchronization in small-world systems, Phys. rev. lett., 89 (2002), 054101. https://doi.org/10.1103/PhysRevLett.89.054101 doi: 10.1103/PhysRevLett.89.054101 |
[3] | D. Barman, J. Roy, S. Alam, Modelling hiding behaviour in a predator-prey system by both integer order and fractional order derivatives, Ecol. Inform., 67 (2022), 101483. https://doi.org/10.1016/j.ecoinf.2021.101483 doi: 10.1016/j.ecoinf.2021.101483 |
[4] | A. D. Bazykin, Nonlinear dynamics of interacting populations, World Scientific, 1998. https://doi.org/10.1142/2284 |
[5] | I. Belykh, M. Hasler, M. Lauret, H. Nijmeijer, Synchronization and graph topology, Int. J. Bifurcat. Chaos, 15 (2005), 3423–3433. https://doi.org/10.1142/S0218127405014143 doi: 10.1142/S0218127405014143 |
[6] | G. Cantin, M. Aziz-Alaoui, Dimension estimate of attractors for complex networks of reaction-diffusion systems applied to an ecological model, Commun. Pur. Appl. Anal., 20 (2021), 623. https://doi.org/10.3934/cpaa.2020283 doi: 10.3934/cpaa.2020283 |
[7] | R. Dirzo, H. S. Young, M. Galetti, G. Ceballos, N. J. Isaac, B. Collen, Defaunation in the Anthropocene, Science, 345 (2014), 401–406. https://doi.org/10.1126/science.1251817 doi: 10.1126/science.1251817 |
[8] | N. M. Haddad, L. A. Brudvig, J. Clobert, K. F. Davies, A. Gonzalez, R. D. Holt, et al., Habitat fragmentation and its lasting impact on earth's ecosystems, Sci. adv., 1 (2015), e1500052. https://doi.org/10.1126/sciadv.1500052 doi: 10.1126/sciadv.1500052 |
[9] | C. S. Holling, The functional response of predators to prey density and its role in mimicry and population regulation, The Memoirs of the Entomological Society of Canada, 97 (1965), 5–60. https://doi.org/10.4039/entm9745fv doi: 10.4039/entm9745fv |
[10] | C. N. Johnson, A. Balmford, B. W. Brook, J. C. Buettel, M. Galetti, L. Guangchun, et al., Biodiversity losses and conservation responses in the Anthropocene, Science, 356 (2017), 270–275. https://doi.org/10.1126/science.aam9317 doi: 10.1126/science.aam9317 |
[11] | Y. A. Kuznetsov, I. A. Kuznetsov, Y. Kuznetsov, Elements of applied bifurcation theory, volume 112. Springer, 1998. |
[12] | R. E. Leakey, R. Lewin, The sixth extinction: patterns of life and the future of humankind, J. Leisure Res., 29 (1997), 476. https://doi.org/10.1080/00222216.1997.11949812 doi: 10.1080/00222216.1997.11949812 |
[13] | B. J. McGill, M. Dornelas, N. J. Gotelli, A. E. Magurran, Fifteen forms of biodiversity trend in the Anthropocene, Trends ecol. evol., 30 (2015), 104–113. https://doi.org/10.1016/j.tree.2014.11.006 doi: 10.1016/j.tree.2014.11.006 |
[14] | A. Miranville, G. Cantin, M. Aziz-Alaoui, Bifurcations and synchronization in networks of unstable reaction–diffusion systems, J. Nonlinear Sci., 31 (2021), 1–34. https://doi.org/10.1007/s00332-021-09701-9 doi: 10.1007/s00332-021-09701-9 |
[15] | R. J. Naiman, H. Decamps, M. Pollock, The role of riparian corridors in maintaining regional biodiversity, Ecol. appl., 3 (1993), 209–212. https://doi.org/10.2307/1941822 doi: 10.2307/1941822 |
[16] | L. Perko, Differential equations and dynamical systems, volume 7, Springer Science & Business Media, 2013. |
[17] | L. A. Real, The kinetics of functional response, The American Naturalist, 111 (1977), 289–300. https://doi.org/10.1086/283161 doi: 10.1086/283161 |
[18] | J. Roy, D. Barman, S. Alam, Role of fear in a predator-prey system with ratio-dependent functional response in deterministic and stochastic environment, Biosystems, 197 (2020), 104176. https://doi.org/10.1016/j.biosystems.2020.104176 doi: 10.1016/j.biosystems.2020.104176 |
[19] | G. T. Skalski, J. F. Gilliam, Functional responses with predator interference: viable alternatives to the holling type ii model, Ecology, 82 (2001), 3083–3092. https://doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 doi: 10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2 |
[20] | H. L. Smith, H. R. Thieme, Dynamical systems and population persistence, volume 118, American Mathematical Soc., 2011. |
[21] | L. R. Tambosi, A. C. Martensen, M. C. Ribeiro, J. P. Metzger, A framework to optimize biodiversity restoration efforts based on habitat amount and landscape connectivity, Restor. ecol., 22 (2014), 169–177. https://doi.org/10.1111/rec.12049 doi: 10.1111/rec.12049 |
[22] | A. Yagi, Abstract parabolic evolution equations and their applications, Springer Science & Business Media, 2009. https://doi.org/10.1007/978-3-642-04631-5_4 |
[23] | R. Yang, C. Nie, D. Jin, Spatiotemporal dynamics induced by nonlocal competition in a diffusive predator-prey system with habitat complexity, Nonlinear Dynam., (2022), 1–22. https://doi.org/10.21203/rs.3.rs-1141642/v1 |
[24] | R. Yang, F. Wang, D. Jin, Spatially inhomogeneous bifurcating periodic solutions induced by nonlocal competition in a predator–prey system with additional food, Math. Method. Appl. Sci., (2022). https://doi.org/10.1002/mma.8349 |