The main aim of this paper is to investigate various types of Hyers-Ulam stability of linear differential equations of $ n^{th} $ order with constant coefficients using the Mahgoub transform method. We also show the Hyers-Ulam constants of these differential equations and give some main results.
Citation: S. Deepa, S. Bowmiya, A. Ganesh, Vediyappan Govindan, Choonkil Park, Jung Rye Lee. Mahgoub transform and Hyers-Ulam stability of $ n^{th} $ order linear differential equations[J]. AIMS Mathematics, 2022, 7(4): 4992-5014. doi: 10.3934/math.2022278
The main aim of this paper is to investigate various types of Hyers-Ulam stability of linear differential equations of $ n^{th} $ order with constant coefficients using the Mahgoub transform method. We also show the Hyers-Ulam constants of these differential equations and give some main results.
[1] | S. Aggarwal, Comparative study of Mohand and Mahgoub transforms, J. Adv. Res. Appl. Math. Stat., 4 (2019), 1–7. |
[2] | S. Aggarwal, R. Chauhan, N. Sharma, A new application of Mahgoub transform for solving linear Volterra integral equations, Asian Resonance, 7 (2018), 46–48. |
[3] | Q. H. Alqifiary, S. Jung, Laplace transform and generalized Hyers-Ulam stability of linear differential equations, Electron. J. Diff. Equ., 2014 (2014), 80. |
[4] | C. Alsina, R. Ger, On some inequalities and stability results related to the exponential function, J. Inequal. Appl., 2 (1998), 373–380. |
[5] | T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064 |
[6] | L. Backes, D. Dragičević, Shadowing for infinite dimensional dynamics and exponential trichotomies, P. Roy. Soc. Edinb. A, 151 (2021), 863–884. https://doi.org/10.1017/prm.2020.42 doi: 10.1017/prm.2020.42 |
[7] | L. Backes, D. Dragičević, L. Singh, Shadowing for nonautonomous and nonlinear dynamics with impulses, Monatsh. Math., in press. https://doi.org/10.1007/s00605-021-01629-2 |
[8] | D. Dragičević, Hyers-Ulam stability for nonautonomous semilinear dynamics on bounded intervals, Mediterr. J. Math., 18 (2021), 71. https://doi.org/10.1007/s00009-021-01729-1 doi: 10.1007/s00009-021-01729-1 |
[9] | D. Dragičević, Hyers-Ulam stability for a class of perturbed Hill's equations, Results Math., 76 (2021), 129. https://doi.org/10.1007/s00025-021-01442-1 doi: 10.1007/s00025-021-01442-1 |
[10] | D. H. Hyers, On the stability of the linear functional equation, PNAS, 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222 |
[11] | S. Jung, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 17 (2004), 1135–1140. https://doi.org/10.1016/j.aml.2003.11.004 doi: 10.1016/j.aml.2003.11.004 |
[12] | S. Jung, Hyers-Ulam stability of linear differential equations of first order. III, J. Math. Anal. Appl., 311 (2005), 139–146. https://doi.org/10.1016/j.jmaa.2005.02.025 doi: 10.1016/j.jmaa.2005.02.025 |
[13] | S. Jung, Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients, J. Math. Anal. Appl., 320 (2006), 549–561. https://doi.org/10.1016/j.jmaa.2005.07.032 doi: 10.1016/j.jmaa.2005.07.032 |
[14] | M. M. A. Mahgoub, The new integral transform "Mahgoub transform", Adv. Theoret. Appl. Math., 11 (2016), 391–398. |
[15] | T. Miura, On the Hyers-Ulam stability of a differentiable map, Sci. Math. Japon., 55 (2002), 17–24. |
[16] | M. Obloza, Hyers stability of the linear differential equation, Rocznik Nauk.-Dydakt. Prace Mat., 13 (1993), 259–270. |
[17] | M. Obloza, Connections between Hyers and Lyapunov stability of the ordinary differential equations, Rocznik Nauk.-Dydakt. Prace Mat., 14 (1997), 141–146. |
[18] | J. M. Rassias, On approximation of approximately linear mappings by linear mappings, J. Funct. Anal., 46 (1982), 126–130. https://doi.org/10.1016/0022-1236(82)90048-9 doi: 10.1016/0022-1236(82)90048-9 |
[19] | Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. https://doi.org/10.1090/S0002-9939-1978-0507327-1 doi: 10.1090/S0002-9939-1978-0507327-1 |
[20] | H. Rezaei, S. Jung, Th. M. Rassias, Laplace transform and Hyers-Ulam stability of linear differential equations, J. Math. Anal. Appl., 403 (2013), 244–251. https://doi.org/10.1016/j.jmaa.2013.02.034 doi: 10.1016/j.jmaa.2013.02.034 |
[21] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[22] | S. E. Takahasi, T. Miura, S. Miyajima, On the Hyers-Ulam stability of the Banach space-valued differential equation $ y' = \lambda y $, Bull. Korean Math. Soc., 39 (2002), 309–315. https://doi.org/10.4134/BKMS.2002.39.2.309 doi: 10.4134/BKMS.2002.39.2.309 |
[23] | M. Sarfraz, Y. Li, Minimum functional equation and some Pexider-type functional equation, AIMS Mathematics, 6 (2021), 11305–11317. https://doi.org/10.3934/math.2021656 doi: 10.3934/math.2021656 |
[24] | P. S. Kumar, A. Viswanathan, Application of Mahgoub transform to mechanics, electrical circuit problems, Int. J. Sci. Res., 7 (2018), 195–197. |
[25] | S. M. Ulam, Problems in modern mathematics, New York: John Wiley & Sons Inc., 1964. |
[26] | H. Vaezi, Hyers-Ulam stability of weighted composition operators on disc algebra, Int. J. Math. Comput., 10 (2011), 150–154. |
[27] | G. Wang, M. Zhou, L. Sun, Hyers-Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024–1028. https://doi.org/10.1016/j.aml.2007.10.020 doi: 10.1016/j.aml.2007.10.020 |
[28] | Z. Wang, Approximate mixed type quadratic-cubic functional equation, AIMS Mathematics, 6 (2021), 3546–3561. https://doi.org/10.3934/math.2021211 doi: 10.3934/math.2021211 |