The objective of this article is to investigate a coupled implicit Caputo fractional $ p $-Laplacian system, depending on boundary conditions of integral type, by the substitution method. The Avery-Peterson fixed point theorem is utilized for finding at least three solutions of the proposed coupled system. Furthermore, different types of Ulam stability, i.e., Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability, are achieved. Finally, an example is provided to authenticate the theoretical result.
Citation: Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada. A coupled system of $ p $-Laplacian implicit fractional differential equations depending on boundary conditions of integral type[J]. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
The objective of this article is to investigate a coupled implicit Caputo fractional $ p $-Laplacian system, depending on boundary conditions of integral type, by the substitution method. The Avery-Peterson fixed point theorem is utilized for finding at least three solutions of the proposed coupled system. Furthermore, different types of Ulam stability, i.e., Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability, are achieved. Finally, an example is provided to authenticate the theoretical result.
[1] | R. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. http://dx.doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010 |
[2] | M. Ahmad, A. Zada, J. Alzabut, Stability analysis of a nonlinear coupled implicit switched singular fractional differential equations with $p$-Laplacian, Adv. Differ. Equ., 2019 (2019), 436. http://dx.doi.org/10.1186/s13662-019-2367-y doi: 10.1186/s13662-019-2367-y |
[3] | M. Ahmad, A. Zada, J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type, Demonstr. Math., 52 (2019), 283–295. http://dx.doi.org/10.1515/dema-2019-0024 doi: 10.1515/dema-2019-0024 |
[4] | Asma, J. Gomez-Aguilar, G. Rahman, M. Javed, Stability analysis for fractional order implicit $\psi$-Hilfer differential equations, Math. Method. Appl. Sci., 45 (2022), 2701–2712. http://dx.doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948 |
[5] | R. Dhayal, J. Gomez-Aguilar, J. Torres-Jimenez, Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses, Int. J. Syst. Sci., 53 (2022), 3481–3495. http://dx.doi.org/10.1080/00207721.2022.2090638 doi: 10.1080/00207721.2022.2090638 |
[6] | A. Gonzalez-Calderon, L. Vivas-Cruz, M. Taneco-Hernandez, J. Gomez-Aguilar, Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations, Math. Comput. Simulat., 206 (2023), 375–390. http://dx.doi.org/10.1016/j.matcom.2022.11.022 doi: 10.1016/j.matcom.2022.11.022 |
[7] | L. Guo, U. Riaz, A. Zada, M. Alam, On implicit coupled Hadamard fractional differential equations with generalized Hadamard fractional integro-differential boundary conditions, Fractal Fract., 7 (2023), 13. http://dx.doi.org/10.3390/fractalfract7010013 doi: 10.3390/fractalfract7010013 |
[8] | M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method, Mathematics, 7 (2019), 1055. http://dx.doi.org/10.3390/math7111055 doi: 10.3390/math7111055 |
[9] | H. Khan, T. Abdeljawad, J. Gomez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. http://dx.doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541 |
[10] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equation, Amsterdam: Elsevier, 2006. |
[11] | X. Liu, M. Jia, W. Ge, Multiple solutions of a $p$-Laplacian model involving fractional derivatives, Adv. Differ. Equ., 2013 (2013), 126. http://dx.doi.org/10.1186/1687-1847-2013-126 doi: 10.1186/1687-1847-2013-126 |
[12] | H. Lu, Z. Han, S. Sun, J. Liu, Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with $p$-Laplacian, Adv. Differ. Equ., 2013 (2013), 30. http://dx.doi.org/10.1186/1687-1847-2013-30 doi: 10.1186/1687-1847-2013-30 |
[13] | O. Martinez-Fuentes, F. Melendez-Vazquez, G. Fernandez-Anaya, J. Gomez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. http://dx.doi.org/10.3390/math9172084 doi: 10.3390/math9172084 |
[14] | M. Matar, A. Lubbad, J. Alzabut, On $p$-Laplacian boundary value problems involving Caputo-Katugampula fractional derivatives, Math. Method. Appl. Sci., in press. http://dx.doi.org/10.1002/mma.6534 |
[15] | M. Obloza, Hyers stability of the linear differential equation, Rocznik NaukDydakt, Prace Mat., 13 (1993), 259–270. |
[16] | K. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. http://dx.doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012 |
[17] | A. Pratap, R. Raja, J. Cao, J. Alzabut, C. Huang, Finite-time synchronization criterion of graph theory perspective fractional order coupled discontinuous neural networks, Adv. Differ. Equ., 2020 (2020), 97. http://dx.doi.org/10.1186/s13662-020-02551-x doi: 10.1186/s13662-020-02551-x |
[18] | U. Riaz, A. Zada, Analysis of $(\alpha, \beta)$-order coupled implicit Caputo fractional differential equations using topological degree method, Int. J. Nonlin. Sci. Num., 22 (2021), 897–915. http://dx.doi.org/10.1515/ijnsns-2020-0082 doi: 10.1515/ijnsns-2020-0082 |
[19] | U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives, Adv. Differ. Equ., 2019 (2019), 226. http://dx.doi.org/10.1186/s13662-019-2163-8 doi: 10.1186/s13662-019-2163-8 |
[20] | U. Riaz, A. Zada, Z. Ali, I. Popa, S. Rezapour, S. Etemad, On a Riemann-Liouville type implicit coupled system via generalized boundary conditions, Mathematics, 9 (2021), 1205. http://dx.doi.org/10.3390/math9111205 doi: 10.3390/math9111205 |
[21] | F. Rihan, Numerical modeling of fractional order biological systems, Abstr. Appl. Anal., 2013 (2013), 816803. http://dx.doi.org/10.1155/2013/816803 doi: 10.1155/2013/816803 |
[22] | J. Sabatier, O. Agrawal, J. Machado, Advances in fractional calculus, Dordrecht: Springer, 2007. http://dx.doi.org/10.1007/978-1-4020-6042-7 |
[23] | A. Seemab, M. Rehman, J. Alzabut, A. Hamdi, On the existence of positive solutions for generalized fractional boundary value problems, Bound. Value Probl., 2019 (2019), 186. http://dx.doi.org/10.1186/s13661-019-01300-8 doi: 10.1186/s13661-019-01300-8 |
[24] | V. Tarasov, Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media, Berlin: Springer, 2010. http://dx.doi.org/10.1007/978-3-642-14003-7 |
[25] | S. Ulam, A collection of the mathematical problems, New York: Interscience Publishers, 1960. |
[26] | B. Vintagre, I. Podlybni, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 3 (2000), 231–248. |
[27] | H. Waheed, A. Zada, R. Rizwan, I. Popa, Hyers-Ulam stability for a coupled system of fractional differential equation with p-Laplacian operator having integral boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 92. http://dx.doi.org/10.1007/s12346-022-00624-8 doi: 10.1007/s12346-022-00624-8 |
[28] | H. Yepez-Martinez, J. Gomez-Aguilar, M. Inc, New modified Atangana-Baleanu fractional derivative applied to solve nonlinear fractional differential equations, Phys. Scr., 98 (2023), 035202. http://dx.doi.org/10.1088/1402-4896/acb591 doi: 10.1088/1402-4896/acb591 |
[29] | A. Zada, J. Alzabut, H. Waheed, I. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. http://dx.doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1 |
[30] | A. Zada, F. Khan, U. Riaz, T. Li, Hyers-Ulam stability of linear summation equations, Punjab Univ. J. Math., 49 (2017), 19–24. |
[31] | A. Zada, U. Riaz, F. Khan, Hyers-Ulam stability of impulsive integral equations, Boll. Unione Mat. Ital., 12 (2019), 453–467. http://dx.doi.org/10.1007/s40574-018-0180-2 doi: 10.1007/s40574-018-0180-2 |
[32] | A. Zada, H. Waheed, J. Alzabut, X. Wang, Existence and stability of impulsive coupled system of fractional integrodifferential equations, Demonstr. Math., 52 (2019), 296–335. http://dx.doi.org/10.1515/dema-2019-0035 doi: 10.1515/dema-2019-0035 |
[33] | L. Zhang, W. Zahag, X. Liu, M. Jia, Positive solutions of fractional $p$-Laplacian equations with integral boundary value and two parameters, J. Inequal. Appl., 2020 (2020), 2. http://dx.doi.org/10.1186/s13660-019-2273-6 doi: 10.1186/s13660-019-2273-6 |