The objective of this article is to investigate a coupled implicit Caputo fractional p-Laplacian system, depending on boundary conditions of integral type, by the substitution method. The Avery-Peterson fixed point theorem is utilized for finding at least three solutions of the proposed coupled system. Furthermore, different types of Ulam stability, i.e., Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability, are achieved. Finally, an example is provided to authenticate the theoretical result.
Citation: Dongming Nie, Usman Riaz, Sumbel Begum, Akbar Zada. A coupled system of p-Laplacian implicit fractional differential equations depending on boundary conditions of integral type[J]. AIMS Mathematics, 2023, 8(7): 16417-16445. doi: 10.3934/math.2023839
[1] | Kirti Kaushik, Anoop Kumar, Aziz Khan, Thabet Abdeljawad . Existence of solutions by fixed point theorem of general delay fractional differential equation with $ p $-Laplacian operator. AIMS Mathematics, 2023, 8(5): 10160-10176. doi: 10.3934/math.2023514 |
[2] | Hasanen A. Hammad, Hassen Aydi, Hüseyin Işık, Manuel De la Sen . Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives. AIMS Mathematics, 2023, 8(3): 6913-6941. doi: 10.3934/math.2023350 |
[3] | Tamer Nabil . Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative. AIMS Mathematics, 2021, 6(5): 5088-5105. doi: 10.3934/math.2021301 |
[4] | Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012 |
[5] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[6] | Saleh S. Redhwan, Maoan Han, Mohammed A. Almalahi, Maryam Ahmed Alyami, Mona Alsulami, Najla Alghamdi . Piecewise implicit coupled system under ABC fractional differential equations with variable order. AIMS Mathematics, 2024, 9(6): 15303-15324. doi: 10.3934/math.2024743 |
[7] | Md. Asaduzzaman, Md. Zulfikar Ali . Existence of positive solution to the boundary value problems for coupled system of nonlinear fractional differential equations. AIMS Mathematics, 2019, 4(3): 880-895. doi: 10.3934/math.2019.3.880 |
[8] | Saeed M. Ali, Mohammed S. Abdo, Bhausaheb Sontakke, Kamal Shah, Thabet Abdeljawad . New results on a coupled system for second-order pantograph equations with $ \mathcal{ABC} $ fractional derivatives. AIMS Mathematics, 2022, 7(10): 19520-19538. doi: 10.3934/math.20221071 |
[9] | H. H. G. Hashem, Hessah O. Alrashidi . Qualitative analysis of nonlinear implicit neutral differential equation of fractional order. AIMS Mathematics, 2021, 6(4): 3703-3719. doi: 10.3934/math.2021220 |
[10] | Dinghong Jiang, Chuanzhi Bai . On coupled Gronwall inequalities involving a $ \psi $-fractional integral operator with its applications. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434 |
The objective of this article is to investigate a coupled implicit Caputo fractional p-Laplacian system, depending on boundary conditions of integral type, by the substitution method. The Avery-Peterson fixed point theorem is utilized for finding at least three solutions of the proposed coupled system. Furthermore, different types of Ulam stability, i.e., Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability, are achieved. Finally, an example is provided to authenticate the theoretical result.
Derivatives of integer orders are the particular form of fractional order derivatives. When the notation dndtn was presented by Leibniz at the end of 17th century for nth order derivative, L'Hospital asked from him can we take n=12? Leibniz replied "this is an apparent Paradox, from which one day useful consequences will be drawn", and this was the origin of fractional derivatives Riemann-Liouville derivative was originated after the great contributions of mathematicians Fourier and Laplace, and due to this notion of fractional derivative the fractional calculus was developed. After that, researchers showed interest in fractional calculus [4,5,6,7,8,9,13,17,18,19,20,28]. Fractional derivatives are universal operators, which cover different physical phenomena and areas of mathematical modeling such as: control theory [26], dynamical process [24], electro-chemistry [16], image and signal processing [22], mathematical biology [21], etc.
The existence of solutions is the basic subject for the investigation of the fractional differential equations. Numerous mathematicians worked on the existence of solutions for different Boundary Value Problems, Using different fixed point theorems (see [23,29,32]). In [2] Ahmad et al. studied the existence of coupled fractional differential equations involving a p-Laplacian operator by applying fixed point theorems. In [11,12], the authors got theoretical results related to fractional differential equations with p-Laplacian operator (p-LO).
It can be easily observed that obtaining the exact solution of non linear models is a tough and challenging task, to overcome the difficulty, a lot of approximation methods were established. Hyers-Ulam Stability (HUS) can predict the gap between exactness and approximations of the solutions. This notion was initiated (in 1940) by Ulam [25] and further extended by Hyers to abstract spaces, after one year. Recent results shows that different models with different boundary conditions are investigated for HUS [3,15,30,31].
Mohammed et al. [14], explored the existence and uniqueness of solution of a model which involves the Caputo-Katugampola fractional derivative:
{cDβ(ϕp[cDα,ρ1ϖ(ϱ)])=A(ϕp[cDα,ρ1ϖ(ϱ)])+f(ϱ,ϖ(ϱ),cDα,ρ1ϖ(ϱ))=0, ϱ∈[ϱ0,T],ϖ(ϱ0)+B1ϖ(T)=C1∫Tϱ0g1(s,ϖ(s),cDγ,ρ1ϖ(s))ds,ϖ′(ϱ0)+B2ϖ′(T)=C2∫Tϱ0g1(s,ϖ(s),cDγ,ρ1ϖ(s))ds,ϕp(cDα,ρ1ϖ(ϱ0))=ϖ0, (ϕp(cDα,ρ1ϖ(ϱ0)))′=ϖ1, |
where cDβ is a Caputo fractional derivative of order β∈(1,2), cDγ,ρ1, γ∈(0,1) and cDα,ρ, α∈(1,2), ρ>0 are Caputo-Katugampola fractional derivative, ϕp, p>1 is a p-LO.
Hira et al. [27], investigated the existence, uniqueness and HU stability of solutions to nonlinear coupled FDEs:
{cDβ10+(Lp(cDα10+ϖ(ϱ)))=A1(ϱ)ϖ(ϱ)+Φ(ϱ,ϖ(ϱ),cDβ10+(Lp(cDα10+ω(ϱ)))),cDβ20+(Lp(cDα20+y(ϱ)))=A2(ϱ)ω(ϱ)+Ψ(ϱ,cDβ20(Lp(cDα20+ϖ(ϱ))),ω(ϱ)), ϱ∈T,cDα10+ϖ(0))=ϖ(0)=ϖ″(0)=0,ϖ′(T)=C1∫T0g1(s,ϖ(s),cDβ10+(Lp(cDα10+ω(s)))),cDα20+ω(0))=ω(0)=ω″(0)=0,ω′(T)=C2∫T0g2(s,cDβ10+(Lp(cDα10+ϖ(s))),ω(s)), | (1.1) |
where 2<αi≤3, 0<β1≤1, ηi, γi>0, ψi∈L[0,T], and cDαi0+ and cDβi0+ are the Caputo derivatives of order αi and βi, i=1,2, respectively. Lp(s)=|s|p−2s is a p-LO, where 1p+1q=1, and Lq denotes inverse of p-Laplacian. Ai:T→R are closed bounded linear operators for any ρ∈T=[0,T], and Φ, Ψ, gk:T×R×R→R, (k=1,2) are continuous functions i=1,2. Ck∈Rn×n, (k=1,2).
In [12], Lu et al. investigated the nonlinear fractional BVP with p-Laplacian operator
{DB0+[ϑpDZ0+X(α)]=ϝ(α,X(α)),0<α<1,X(0)=X′(0)=X′(1)=0,DZ0+X(0)=DZ0+X(1))=0, |
where Z∈(2,3], and B∈(1,2]. DZ, DB represents the standard Riemann-Liouville fractional derivatives.
In [2], Ahmad et al. investigated the system:
{cDZ1[ϑpDBX(α)]+K1(α)ϝ1(α,X(α),cDZ2[ϑp(DBY(α)])=0,α∈]0,1[,cDZ2[ϑpDBY(α)]+K2(α)ϝ2(α,cDZ1[ϑpDBX(α)],Y(α))=0,α∈]0,1[,([ϑpDBX(α)])i=([ϑp(DBY(α)])i=0,i=¯0,m−1,Ik−BX(0)=Ik−BY(0)=0,k=¯2,m,Dδ(X(1))=Dδ(Y(1))=0, |
where cDZ and DB respectively denotes the Caputo and Riemann-Liouville FD of order Z and B, m−1<Z1,Z2,B≤m, m∈{4,5,…}, and 1<δ≤2, K1(⋅), K2(⋅) are linear and bounded operators on R.
Zhang et al. [33], studied the existence of
{cDBϑp(cDZX(α))+ϝ(α,cDBX(α))=0,α∈(0,1),(ϑp(cDZX(0)))i=ϑp(cDZX(1))=0,i=1,2,…,m−1=:¯1,m−1,X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+a,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+b,Xj(0)=0,j=¯2,n−1, |
where Z and B are the orders of Caputo fractional derivatives cDZ and cDB respectively.
Following [33], in this article, we present existence and stability analysis of the model of the form
{cDB1ϑp(cDZ1X(α))−ϝ1(α,cDγ1X(α),cDγ2Y(α))=0,α∈(0,1),cDB2ϑp(cDZ2)Y(α)−ϝ2(α,cDγ1X(α),cDγ2Y(α))=0,α∈(0,1),(ϑp(cDZ1X(0)))i=ϑp(cDZ1X(1))=0,i=¯1,m−1,(ϑp(cDZ2Y(0)))i=ϑp(cDZ2Y(1))=0,i=¯1,m−1,X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+∫10H1(ϖ)dϖ,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+∫10H2(ϖ)dϖ,Y(0)+Y′(0)=∫10S3(ϖ)Y(ϖ)dϖ+∫10H3(ϖ)dϖ,Y(1)+Y′(1)=∫10S4(ϖ)Y(ϖ)dϖ+∫10H4(ϖ)dϖ,Xj(0)=0,Yj(0)=0,j=¯2,n−1, | (1.2) |
where 1<m−1<B1;B2<m; 1<n−1<Z1;Z2<n; Z1−B1;Z2−B2>1, Z1;Z2;B1, and B2 be the orders of Caputo fractional derivatives cDZ1, cDZ2, cDB1 and cDB2 respectively, and 0<γ1,γ2≤1. The p-Laplacian operator is represented by ϑp and is defined as ϑp(ϖ)=|ϖ|p−2ϖ,p>1,ϑ−1p=ϑq,1p+1q = 1. S1,S2,S3,S4∈C([0,1],R+), ϝ1, and ϝ2 are appropriate functions. H1,H2,H3,H4∈C([0,1],R+) are perturbation functions.
(C1) 0<∫10H1(ϖ)dϖ<∫10H2(ϖ)dϖ<2∫10H1(ϖ)dϖ<+∞, 0≤S1(α)≤S2(α)≤2S1(α), 0≤∫10S1(ϖ)dϖ, ∫10S2(ϖ)dϖ<1, 0≤S3(α)≤S4(α)≤2S3(α), 0≤∫10S3(ϖ)dϖ, ∫10S4(ϖ)dϖ<1.
The remaining manuscript is as follows: Section 2 contains basic definitions, auxiliary lemmas and related theorems. In Section 3, we present the existence theory for the problem (1.2) and gives some related properties of Green function. In Section 4, we obtain at least three positive solutions of coupled system (1.2) by using the Avery-Peterson fixed point theorem. Section 5 contains HU type stability results, and Section 6 provide an example to authenticate the theoretical result.
Here, we are presenting an important literature concerning the Caputo fractional derivatives and integral, which gives us help throughout this article, for the details, reader should study [1,10].
Definition 2.1. Let X∈L1([0,T],R+) be a function. Then the Z order fractional integral is defined by
IZX(ϖ)=1Γ(Z)∫α0(α−ϖ)Z−1X(ϖ)dϖ α>0, Z>0, |
on the condition that the integral on right side exists, where Γ is the Euler Gamma function, defined as
Γ(Z)=∫∞0αZ−1e−αdα. |
Definition 2.2. Let X:[0,T]→R be a function. Then the Z> order fractional derivative is defined as
cDZX(α)=1Γ(n−Z)∫α0(α−ϖ)n−Z−1Xn(ϖ)dϖ, |
on the condition that the integral on the right side exists, and [Z] denote the integer part of a real number Z, where n=1+[Z].
Definition 2.3. Let X:[0,T]→R be a function. Then the Z order sequential fractional derivative is defined as:
DZX(α)=DZ1DZ2DZ3…DZmX(α), |
where Z=(Z1,Z2,Z3,…,Zm) is any multi-index, and the operator DZ can either be Riemann-Liouville or Caputo or any other kind of integro-differential operator.
Lemma 2.1. For any Z>0, the Caputo FDE cDZX(α)=0 has a solution of the form
X(α)=e0+e1α+e2α2+⋯+en−1αn−1, |
where ei∈R,i=¯0,n−1, and n=1+[Z].
Lemma 2.2. For any Z>0, we have
IZ(cDZX(α))=X(α)+e0+e1α+e2α2+⋯+en−1αn−1, |
where ei∈R,i=¯0,n−1, and n=1+[Z].
Lemma 2.3. [33] Let ϝ1∈C([0,1],R), and 1<m−1<B1<m. Then
{DB1ω(α)=−ϝ1(α),0<α<1,ω(1)=ωi(0)=0,i=¯1,m−1, | (2.1) |
has a solution (unique)
ω(α)=∫10KB1(α,ϖ)ϝ1(ϖ)dϖ, |
where
KB1(α,ϖ)=1Γ(B1){(1−ϖ)B1−1+(α−ϖ)B1−1,0≤ϖ≤α≤1,(1−ϖ)B1−1,0≤α≤ϖ≤1. | (2.2) |
Let
MS1=∫10S1(ϖ)dϖ,M′S1=∫10ϖS1(ϖ)dϖ,MS2=∫10S2(ϖ)dϖ,M′S2=∫10ϖS2(ϖ)dϖ,MS3=∫10S3(ϖ)dϖ,M′S3=∫10ϖS3(ϖ)dϖ,MS4=∫10S4(ϖ)dϖ,M′S4=∫10ϖS4(ϖ)dϖ,η1(α)=(2−α)δS1+(α−1)δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1), | (2.3) |
η2(α)=(2−α)δS1δS2(M′S1−MS1)+(α−1)δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1), | (2.4) |
ψ1(α)=(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+∫10[η1(α)S1(ϖ)+η2(α)S2(ϖ)]×[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]dϖ, | (2.5) |
ψ2(α)=(2−α)∫10H3(ϖ)dϖ+(α−1)∫10H4(ϖ)dϖ+∫10[η3(α)S3(ϖ)+η4(α)S4(ϖ)]×[(2−ϖ)∫10H3(θ)dθ+(ϖ−1)∫10H4(θ)dθ]dϖ. | (2.6) |
From (C1), we know for α∈(0,1),
2S1(α)>S2(α)>αS2(α)>αS1(α),2S3(α)>S4(α)>αS4(α)>αS3(α), |
and
1>∫10S2(ϖ)dϖ>∫10ϖS2(ϖ)dϖ>∫10ϖS1(ϖ)dϖ>0,1>∫10S2(ϖ)dϖ>∫10S1(ϖ)dϖ>∫10ϖS1(ϖ)dϖ>0,1>∫10S4(ϖ)dϖ>∫10ϖS4(ϖ)dϖ>∫10ϖS3(ϖ)dϖ>0,1>∫10S4(ϖ)dϖ>∫10S3(ϖ)dϖ>∫10ϖS3(ϖ)dϖ>0,∫102S1(ϖ)dϖ>∫10S2(ϖ)dϖ,∫102ϖS1(ϖ)dϖ>∫10ϖS2(ϖ)dϖ,∫10S3(ϖ)dϖ>∫10S4(ϖ)dϖ,∫102ϖS3(ϖ)dϖ>∫10ϖS4(ϖ)dϖ. |
Implies
1>MS2>M′S2>M′S1>0,1>MS2>MS1>M′S1>0,2MS1>MS2,2M′S1>M′S2, | (2.7) |
1>MS4>M′S4>M′S3>0,1>MS4>MS3>M′S3>0,2MS3>MS4,2M′S3>M′S4. | (2.8) |
For our results we need an assumption and the lemma.
(C2) δ−1S1=1−2MS1+M′S1≠0, δ−1S2=1+MS2−M′S2≠0 and δS1δS2(2MS2−M′S2)(M′S1−MS1)≠1.
Lemma 3.1. Let (C2) hold, n−1<Z1≤n and h1:J→R are is an appropriate function. The BVP:
{cDZ1X(α)−h1(α)=0,α∈(0,1),X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+∫10H1(ϖ)dϖ,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+∫10H2(ϖ)dϖ,Xj(0)=0,j=¯2,n−1, | (3.1) |
has solution(unique) of the form
X(α)=∫10GZ1(α,ϖ)h1(ϖ)dϖ+ψ1(α), | (3.2) |
where
GZ1(α,ϖ)=G1(α,ϖ)+G2(α,ϖ), | (3.3) |
G1(α,ϖ)=1Γ(Z1){(Z1−ϖ)(1−α)(1−ϖ)Z1−2+(α−ϖ)Z1−1,0≤ϖ≤α≤1,(Z1−ϖ)(1−α)(1−ϖ)Z1−2,0≤α≤ϖ≤1, | (3.4) |
and
G2(α,ϖ)=η1(α)(∫10S1(θ)G1(ϖ,θ)dθ)+η2(α)(∫10S2(θ)G1(ϖ,θ)dθ). | (3.5) |
Proof. Consider
cDZ1X(α)=h1(α). | (3.6) |
Using Lemma 2.2, we get
X(α)=1Γ(Z1)∫α0(α−ϖ)Z1−1h1(ϖ)dϖ+e0+e1α+⋯+en−1αn−1. | (3.7) |
Using boundary conditions of (3.1), we get
e0=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+2∫10S1(ϖ)X(ϖ)dϖ−∫10S2(ϖ)X(ϖ)dϖ+1Γ(Z1)∫10(1−ϖ)Z1−1h1(ϖ)dϖ+1Γ(Z1−1)∫10(1−ϖ)Z1−2h1(ϖ)dϖ,e1=−∫10H1(ϖ)dϖ+∫10H2(ϖ)dϖ−∫10S1(ϖ)X(ϖ)dϖ+∫10S2(ϖ)X(ϖ)dϖ−1Γ(Z1)∫10(1−ϖ)Z1−1h1(ϖ)dϖ−1Γ(Z1−1)∫10(1−ϖ)Z1−2h1(ϖ)dϖ, |
and e2=e3=⋯=en−1=0. Putting e's in (3.7) and
X(α)=(2−α)∫10S1(ϖ)X(ϖ)dϖ+(α−1)∫10S2(ϖ)X(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+1−αΓ(Z1)∫10(1−ϖ)Z1−1h1(ϖ)dϖ+1−αΓ(Z1−1)∫10(1−ϖ)Z1−2h1(ϖ)dϖ+1Γ(Z1)∫t0(α−ϖ)Z1−1h1(ϖ)dϖ=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)∫10S1(ϖ)X(ϖ)dϖ+(α−1)∫10S2(ϖ)X(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)AS1+(α−1)AS2+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ, | (3.8) |
where G1(α,ϖ) is given in (3.4), AS1=∫10S1(ϖ)X(ϖ)dϖ and AS2=∫10S2(ϖ)X(ϖ)dϖ.
In view of (3.8), we get
S1(α)X(α)=S1(α)∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)AS1S1(α)+(α−1)AS2S1(α)+(2−α)S1(α)∫10H1(ϖ)dϖ+(α−1)S1(α)∫10H2(ϖ)dϖ. | (3.9) |
Integrating (3.9) from 0 to 1, we obtain
AS1=∫10S1(ϖ)X(ϖ)dϖ=∫10S1(ϖ)(∫10G1(ϖ,θ)h(θ)dθ)dϖ+(2AS1−AS2)∫10S1(ϖ)dϖ+(AS2−AS1)∫10ϖS1(ϖ)dϖ+2∫10S1(ϖ)∫10H1(θ)dθdϖ−∫10ϖS1(ϖ)∫10H1(θ)dθdϖ+∫10ϖS1(ϖ)∫10H2(θ)dθdϖ−∫10S1(ϖ)∫10H2(θ)dθdϖ=∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2AS1−AS2)MS1+(AS2−AS1)M′S1+2∫10S1(ϖ)∫10H1(θ)dθdϖ−∫10ϖS1(ϖ)∫10H1(θ)dθdϖ+∫10ϖS1(ϖ)∫10H2(θ)dθdϖ−∫10S1(ϖ)∫10H2(θ)dθdϖ. |
Implies that
AS1=δS1∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS1AS2(M′S1−MS1)+2δS1∫10S1(ϖ)∫10H1(θ)dθdϖ−δS1∫10ϖS1(ϖ)∫10H1(θ)dθdϖ+δS1∫10ϖS1(ϖ)∫10H2(θ)dθdϖ−δS1∫10S1(ϖ)∫10H2(θ)dθdϖ. | (3.10) |
Similarly, we obtain
AS2=∫10S2(ϖ)X(ϖ)dϖ=∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2AS1−AS2)∫10S2(ϖ)dϖ+(AS2−AS1)∫10ϖS2(ϖ)dϖ+2∫10S2(ϖ)∫10H1(θ)dθdϖ−∫10ϖS2(ϖ)∫10H1(θ)dθdϖ+∫10ϖS2(ϖ)∫10H2(θ)dθdϖ−∫10S2(ϖ)∫10H2(θ)dθdϖ=∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2AS1−AS2)MS2+(AS2−AS1)M′S2+2∫10S2(ϖ)∫10H1(θ)dθdϖ−∫10ϖS2(ϖ)∫10H1(θ)dθdϖ+∫10ϖS2(ϖ)∫10H2(θ)dθdϖ−∫10S2(ϖ)∫10H2(θ)dθdϖ. |
Implies that
AS2=δS2∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS2AS1(2MS2−M′S2)+2δS2∫10S2(ϖ)∫10H1(θ)dθdϖ−δS2∫10ϖS2(ϖ)∫10H1(θ)dθdϖ+δS2∫10ϖS2(ϖ)∫10H2(θ)dθdϖ−δS2∫10S2(ϖ)∫10H2(θ)dθdϖ. | (3.11) |
From (3.10) and (3.12), we get
AS1=δS11−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS1δS2(M′S1−MS1)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS11−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+δS1δS2(M′S1−MS1)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ | (3.12) |
and
AS2=δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ. | (3.13) |
Putting (3.12) and (3.13) in (3.8), we get
X(α)=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+(2−α)δS1+(α−1)δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2−α)δS1δS2(M′S1−MS1)+(α−1)δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(ϖ)(∫10G1(ϖ,θ)h1(θ)dθ)dϖ+(2−α)δS1+(α−1)δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+(2−α)δS1δS2(M′S1−MS1)+(α−1)δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ. | (3.14) |
From (2.3) and (2.4), we can write (3.14) as
X(α)=∫10G1(α,ϖ)h1(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+∫10η1(α)(∫10S1(θ)G1(θ,ϖ)dθ)h1(ϖ)dϖ+∫10η2(α)(∫10S2(θ)G1(θ,ϖ)dθ)h1(ϖ)dϖ+∫10η1(α)[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S1(ϖ)dϖ+∫10η2(α)[(2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ]S2(ϖ)dϖ=∫10G1(α,ϖ)h(ϖ)dϖ+(2−α)∫10H1(ϖ)dϖ+(α−1)∫10H2(ϖ)dϖ+∫10[η1(α)(∫10S1(θ)G1(θ,ϖ)dθ)h1(ϖ)+η2(α)(∫10S2(θ)G1(θ,ϖ)dθ)h1(ϖ)+(η1(α)S1(ϖ)+η2(α)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)]dϖ=∫10G1(α,ϖ)h1(ϖ)dϖ+∫10G2(α,ϖ)h1(ϖ)dϖ+ψ1(α)=∫10GZ1(α,ϖ)h1(ϖ)dϖ+ψ1(α). |
Lemma 3.2. The coupled BVP (1.2) is equivalent to the following system of integral equations
{X(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α),Y(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α), | (3.15) |
where G⋅(α,ϖ) and K⋅(α,ϖ) are given by (3.3) and (2.2).
Proof. Using Lemmas 2.3 and 3.1, set ω(α)=ϑp(DZ1X(α)) and h1(α)=ϝ1(α,Dγ1X(α),Dγ2Y(α)), and we have
X(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α). |
Similarly, we can set ω(α)=ϑp(DZ2Y(α)) and h2(α)=ϝ2(α,Dγ1X(α),Dγ2Y(α)), we obtain
Y(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α). |
On the other hand, if (X,Y) satisfy (3.15), we can easily prove that (X,Y) satisfy the pair of boundary value problem (1.2). Hence, the proof is completed.
Lemma 3.3. We use GZ(α,ϖ)=(GZ1(α,ϖ),GZ2(α,ϖ)) and KB(α,ϖ)=(KB1(α,ϖ),KB2(α,ϖ)) as the Green's functions of the proposed system (1.2) having the following properties:
(I) KB(α,ϖ)≥0 is continuous for all α,ϖ∈[0,1];
(II) KB(α,ϖ)≤KB(s,ϖ) for all α,ϖ∈[0,1];
(III) ∫10KB1(α,ϖ)dϖ=1−αB1Γ(B1+1)≤1Γ(B1+1) for all α,ϖ∈[0,1];
∫10KB2(α,ϖ)dϖ=1−αB2Γ(B2+1)≤1Γ(B2+1) for all α,ϖ∈[0,1];
(IV) GZ(α,ϖ)≥0 is continuous for all α,ϖ∈[0,1];
(V) ψ(α)=(ψ1(α),ψ2(α))≥0 for all α∈[0,1];
Proof. The proofs of (I) and (II) can be seen in [33].
(III) For α∈[0,1], we have
∫10KB1(α,ϖ)dϖ=∫y0((1−ϖ)B1−1+(α−ϖ)B1−1)dϖ+∫1y(1−ϖ)B1−1dϖ=1−αB1Γ(B1+1)≤1Γ(B1+1). |
Also,
∫10KB2(α,ϖ)dϖ=∫y0((1−ϖ)B2−1+(α−ϖ)B2−1)dϖ+∫1y(1−ϖ)B2−1dϖ=1−αB2Γ(B2+1)≤1Γ(B2+1). |
(IV) Firstly, from (3.4), one get G1(α,ϖ)≥0, α,ϖ∈[0,1], and from (C1), δ>0 and G1(α,ϖ)≥0, we have
∂G2(α,ϖ)∂t=−δS1+δS1δS2(2MS2−M′S2)1−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S1(θ)G1(θ,ϖ)dθ+−δS1δS2(M′S1−MS1)+δS21−δS1δS2(2MS2−M′S2)(M′S1−MS1)∫10S2(θ)G1(θ,ϖ)dθ=δ∫10δS1δS2[(2MS2−M′S2−δ−1S2)S1(θ)−(M′S1−MS1+δ−1S1)S2(θ)]G1(θ,ϖ)dθ>0. |
Thus G2(α,ϖ) is a increasing on α∈[0,1].
Utilizing (3.5), we get
G2(α,ϖ)≥G2(0,ϖ)=η1(0)(∫10S1(θ)G1(θ,ϖ)dθ)+η2(0)(∫10S2(θ)G1(θ,ϖ)dθ)≥∫10(η1(0)S1(θ)+η2(0)12S1(θ))G1(θ,ϖ)dθ=∫10(η1(0)+η2(0)2)S1(θ)G1(θ,ϖ)dθ≥0. |
So that GZ1(α,ϖ)≥0. Similarly GZ2(α,ϖ)≥0. Hence, GZ(α,ϖ)≥0.
(V) From (C1) and (2.5), we know
ψ′1(α)=−∫10H1(ϖ)dϖ+∫10H2(ϖ)dϖ+η′1(α)∫10S1(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ+η′2(α)∫10S2(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ>0,α∈[0,1]. |
Thus ψ1(α), is increasing on α∈[0,1].
From (2.5), we have
ψ1(α)≥ψ1(0)=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(η1(0)S1(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ>0,α∈[0,1]. |
Similarly ψ1(α)≥0, and hence ψ(α)≥0.
Lemma 3.4. For κ∈(0,12), let
maxα∈[0,1]GZ1(α,ϖ)≤G1(0,ϖ)+G2(1,ϖ),maxα∈[0,1]GZ2(α,ϖ)≤G3(0,ϖ)+G4(1,ϖ),minα∈[0,κ]GZ1(α,ϖ)≥ρZ1(G1(0,ϖ)+G2(1,ϖ)),minα∈[0,κ]GZ2(α,ϖ)≥ρZ2(G3(0,ϖ)+G4(1,ϖ)), |
where ρZ1=2M′S1−M′S21+MS2+M′S1−MS1 and ρZ2=2M′S3−M′S41+MS4+M′S3−MS3.
Proof. First Step. We need to get
minα∈[0,κ]G1(α,ϖ)≥(1−κ)G1(0,ϖ)>12maxα∈[0,1]G1(α,ϖ). | (3.16) |
For ϖ<α, where ϖ∈[0,1) and α∈[0,κ], we have
Γ(Z1)∂G1(α,ϖ)∂α=−(Z1−ϖ)(1−ϖ)Z1−2+(Z1−1)(α−ϖ)Z1−2<0, |
which implies that G1(α,ϖ) is decreasing function monotonically with respect to α∈[ϖ,κ], so that
G1(α,ϖ)≤G1(s,ϖ)=(Z1−ϖ)(1−ϖ)Z1−1<(Z1−ϖ)(1−ϖ)Z1−2=G1(0,ϖ) |
and
G1(α,ϖ)G1(0,ϖ)=(Z1−ϖ)(1−α)(1−ϖ)Z1−2+(α−ϖ)Z1−1(Z1−ϖ)(1−ϖ)Z1−2=1−α+(α−ϖ)Z1−1(Z1−ϖ)(1−ϖ)Z1−2≥1−α≥1−κ>12. |
Now if ϖ≥α and α∈[0,κ],
Γ(Z1)∂G1(α,ϖ)∂α=−(Z1−ϖ)(1−ϖ)Z1−2<0, |
which implies that G1(α,ϖ) is a monotone decreasing function with respect to α∈[0,ϖ] and α∈[0,κ], so that
G1(α,ϖ)≤G1(0,ϖ)=(Z1−ϖ)(1−ϖ)Z1−2 |
and
G1(α,ϖ)G1(0,ϖ)=(Z1−ϖ)(1−α)(1−ϖ)Z1−2(Z1−ϖ)(1−ϖ)Z1−2=1−α≥1−κ>12. |
Thus, (3.16) is satisfied.
Similarly, we get
minα∈[0,κ]G3(α,ϖ)≥(1−κ)G3(0,ϖ)>12maxα∈[0,1]G3(α,ϖ). | (3.17) |
Step 2. We prove
minα∈[0,κ]G2(α,ϖ)≥ρZ1G2(1,ϖ)=ρZ1maxα∈[0,1]G2(α,ϖ). | (3.18) |
From Lemma 3.3, we know that G2(α,ϖ) is increasing for α∈[0,1], in such a way that
minα∈[0,κ]G2(α,ϖ)=G2(0,ϖ),maxα∈[0,1]G2(α,ϖ)=G2(1,ϖ). |
By (C1) and (2.7), we have
G2(0,ϖ)G2(0,ϖ)=∫10(η1(0)S1(θ)+η2(0)S2(θ))G1(θ,ϖ)dθ∫10(η1(1)S1(θ)+η2(1)S2(θ))G1(θ,ϖ)dθ≥∫10(12η1(0)S2(θ)+η2(0)S2(θ))G1(θ,ϖ)dθ∫10(12η1(1)S2(θ)+η2(1)S2(θ))G1(θ,ϖ)dθ=(12η1(0)+η2(0))∫10S2(θ)G1(θ,ϖ)dθ(12η1(1)+η2(1))∫10S2(θ)G1(θ,ϖ)dθ=2M′S1−M′S21+MS2+M′S1−MS1=ρZ1. |
Obviously, ρZ1>0, and
ρZ1−12=2M′S1−M′S21+MS2+M′S1−MS1−12=MS1+3M′S1−MS2−2M′S2−12(1+MS2+M′S1−MS1)<0. |
Thus 0<ρZ1<12 and (3.18) is satisfied.
By the same procedure,
minα∈[0,κ]G4(α,ϖ)≥ρZ2G4(1,ϖ)=ρZ2maxα∈[0,1]G4(α,ϖ). | (3.19) |
Finally, from (3.16) and (3.18), we can easily show that the following results hold:
maxα∈[0,1]GZ1(α,ϖ)≤maxα∈[0,1]G1(α,ϖ)+maxα∈[0,1]G2(α,ϖ)=G1(0,ϖ)+G2(1,ϖ), |
and
minα∈[0,κ]GZ1(α,ϖ)≥minα∈[0,κ]G1(α,ϖ)+minα∈[0,κ]G2(α,ϖ)≥12G1(0,ϖ)+ρZ1G2(1,ϖ)>ρZ1(G1(0,ϖ)+G2(1,ϖ))≥ρZ1maxα∈[0,1]GZ1(α,ϖ). |
Similarly, from (3.17) and (3.19), we can also easily show that
maxα∈[0,1]GZ2(α,ϖ)≤G3(0,ϖ)+G4(1,ϖ), |
and
minα∈[0,κ]GZ2(α,ϖ)>ρZ2maxα∈[0,1]GZ2(α,ϖ). |
Lemma 3.5. If (C1) is satisfied, then ψ(α) holds the following properties:
(I) ψ1(α)≤ψ1(1)=maxα∈[0,1]ψ1(α) and ψ2(α)≤ψ2(1)=maxα∈[0,1]ψ2(α);
(II) minα∈[0,κ]ψ1(α)≥ρZ1maxα∈[0,1]ψ1(α) and minα∈[0,κ]ψ2(α)≥ρZ2maxα∈[0,1]ψ2(α).
Proof. Using Lemma 3.3 and (2.5), implies ψ1(α) is increasing on α∈[0,1], and thus
minα∈[0,κ]ψ1(α)=ψ1(0)=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(η1(0)S1(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ, |
maxα∈[0,1]ψ1(α)=ψ1(1)=∫10H1(ϖ)dϖ+∫10(η1(1)S1(ϖ)+η2(1)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ |
and
ψ1(0)ψ1(1)=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(η1(0)S1(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ∫10H1(ϖ)dϖ+∫10(η1(1)S1(ϖ)+η2(1)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ | (3.20) |
≥2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+∫10(12η1(0)S2(ϖ)+η2(0)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ∫10H1(ϖ)dϖ+∫10(12η1(1)S2(ϖ)+η2(1)S2(ϖ))((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ=2∫10H1(ϖ)dϖ−∫10H2(ϖ)dϖ+(12η1(0)+η2(0))∫10S2(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ∫10H1(ϖ)dϖ+(12η1(1)+η2(1))∫10S2(ϖ)((2−ϖ)∫10H1(θ)dθ+(ϖ−1)∫10H2(θ)dθ)dϖ. | (3.21) |
Setting H2(0)=2H1(0) and H1(1)=0, then (3.20) implies
ψ1(0)ψ1(1)≥2M′S1−M′S21+MS2+M′S1−MS1=ρZ1. |
Also,
ψ2(0)ψ2(1)≥ρZ2. |
Thus,
ψ1(α)≤ψ1(1)=maxα∈[0,1]ψ1(α),minα∈[0,κ]ψ1(α)≥ρZ1maxα∈[0,1]ψ1(α),ψ2(α)≤ψ2(1)=maxα∈[0,1]ψ2(α),minα∈[0,κ]ψ2(α)≥ρZ2maxα∈[0,1]ψ2(α). |
Suppose that μ1 and μ2 be nonnegative convex and continuous functionals on Θ, μ3 be nonnegative concave and continuous functional on Θ and μ4 be a nonnegative continuous functional on Θ. For M1,M2,M3,M4>0, let us introduce the convex sets:
Θ(μ1,M1)={(X,Y)∈Θ:μ1(X,Y)<M1},Θ(μ1,μ3;M3,M1)={(X,Y)∈Θ:M3≤μ3(X,Y),μ1(X,Y)≤M1},Θ(μ1,μ2,μ3;M3,M2,M1)={(X,Y)∈Θ:M3≤μ3(X,Y),μ2(X,Y)≤M2,μ1(X,Y)≤M1}, |
and a closed set
Θ(μ1,μ4;M4,M1)={(X,Y)∈Θ:M4≤μ4(X,Y),μ1(X,Y)≤M1}. |
Lemma 4.1. Let Θ be a cone in a real Banach space χ. Let μ1 and μ2 be nonnegative continuous convex functionals on Θ, μ3 be nonnegative continuous concave functional on Θ and μ4 be a nonnegative continuous functionals on Θ satisfying μ4(λ(X,Y))≤λμ4(X,Y) for 0≤λ≤1, such that for some positive numbers N and M1,
μ3(X,Y)≤μ4(X,Y),‖(X,Y)‖≤Nμ1(X,Y), | (4.1) |
for all (X,Y)∈¯Θ(μ1,M1). Suppose
T:¯Θ(μ1,M1)→¯Θ(μ1,M1) |
is completely continuous and there exist positive numbers M2, M3 and M4 with M4<M3 such that
(C3): {(X,Y)∈Θ(μ1,μ2,μ3; M3,M2,M1):μ3(X,Y)>M3}≠∅ and μ3(X,Y)>M3 for (X,Y)∈Θ(μ1,μ2,μ3; M3,M2,M1);
(C4): μ3(T(X,Y))>M3 for (X,Y)∈Θ(μ1,μ3;M3,M1) with μ2(T(X,Y))>M4;
(C5): (0,0)∉Θ(μ1,μ4;M4,M1) and μ4(T(X,Y))<M4 for (X,Y)∈Θ(μ1,μ4;M4,M1) with μ4(X,Y)=M4.
Then, T has at least three fixed points (X1,Y1),(X2,Y2),(X3,Y3)∈¯Θ(μ1,M1) such that
μ1(Xj,Yj)≤M1,j=1,2,3;μ3(X1,Y1)>M3,M4<μ3(X2,Y2),μ4(X2,Y2)<M3,μ3(X2,Y2)<M4. |
Let χ={(X,Y)∈C([0,1],R)×C([0,1],R)} be endowed with the norm ‖(X,Y)‖=maxα∈[0,1]|(X,Y)|, then χ is a Banach space.
We define a set Θ⊂χ by
Θ={(X,Y)∈χ:(X(α),Y(α))≥0,minα∈[0,1](X,Y)(α)≥ρmaxα∈[0,1](X,Y)(α)}. |
For (X,Y),(˜X,˜Y)∈Θ and ν1,ν2≥0, it is easy to obtain that ν1(X,Y)(α)+ν2(˜X,˜Y)(α)≥0, and
minα∈[0,κ]{ν1(X,Y)(α)+ν2(˜X,˜Y)(α)}≥minα∈[0,κ]{ν1(X,Y)(α)}+minα∈[0,κ]{ν2(˜X,˜Y)(α)}≥ρmaxα∈[0,1]{ν1(X,Y)(α)}+ρmaxα∈[0,1]{ν2(˜X,˜Y)(α)}=ρ(maxα∈[0,1]{ν1(X,Y)(α)}+maxα∈[0,1]{ν2(˜X,˜Y)(α)})≥ρmaxα∈[0,1]{ν1(X,Y)(α)+ν2(˜X,˜Y)(α)}. |
Thus, for (X,Y),(˜X,˜Y)∈Θ and ν1,ν2≥0, ν1(X,Y)(α)+ν2(˜X,˜Y)(α)∈Θ. And if (X,Y)∈Θ, (X,Y)≠0, it can be seen that −(X,Y)∉Θ. Thus, Θ is a cone in χ.
Let T:Θ→χ be an operator, i.e., T=(T1,T2), defined by
T1(X,Y)(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α),T2(X,Y)(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α). |
Lemma 4.2. If (C1) is true, then T:Θ→Θ is a completely continuous operator.
Proof. For (X,Y)∈Θ, it is easy to know that T is a continuous operator, and T(X,Y)(α)≥0. By (3.15), we have
minα∈[0,κ]T1(X,Y)(α)=minα∈[0,κ]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+minα∈[0,κ]ψ1(α)=∫10minα∈[0,κ]GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+minα∈[0,κ]ψ1(α)≥∫10ρZ1minα∈[0,κ]GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ρZ1minα∈[0,κ]ψ1(α)≥ρZ1maxα∈[0,1]T1(X,Y)(α). |
Similarly, for minα∈[0,κ]T2(X,Y)(α)≥ρZ2maxα∈[0,1]T2(X,Y)(α). So, T(Θ)⊆Θ.
Set Θτ⊂Θ be bounded, i.e., ∃ a constant τ>0 in such a way that ‖(X,Y)‖≤τ, for every (X,Y)∈Θτ. Let M0=maxα∈[0,1],(X,Y)|ϝ1(α,Dγ1X(α),Dγ2Y(α))|>0 and N0=maxα∈[0,1],(X,Y)|ϝ2(α,Dγ1X(α),Dγ2Y(α))|>0. For (X,Y)∈Θτ, from Lemmas 3.3 and 3.4, we have
ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)≤ϑq(M0∫10KB1(ϖ,θ)dθ)≤ϑq(M0Γ(B1+1)) |
and
|T1(X,Y)(α)|=|∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α)|≤∫10|GZ1(α,ϖ)|ϑq(M0Γ(B1+1))dϖ+|ψ1(α)|≤ϑq(M0Γ(B1+1))∫10GZ1(α,ϖ)dϖ+ψ1(1)≤ϑq(M0Γ(B1+1))∫10(G1(α,ϖ)+G2(α,ϖ))dϖ+ψ1(1):=M01. | (4.2) |
Similarly,
ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)≤ϑq(N0∫10KB2(ϖ,θ)dθ)≤ϑq(N0Γ(B2+1)) |
and
|T2(X,Y)(α)|=|∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ2(α)|≤∫10|GZ2(α,ϖ)|ϑq(N0Γ(B2+1))dϖ+|ψ2(α)|≤ϑq(N0Γ(B2+1))∫10GZ2(α,ϖ)dϖ+ψ2(1)≤ϑq(N0Γ(B2+1))∫10(G3(α,ϖ)+G4(α,ϖ))dϖ+ψ2(1):=N01. | (4.3) |
So that T(X,Y)≤max{M01,N01}, which implies T(Θτ) is uniformly bounded. Next, we will show that T(Θτ) is equicontinuous. Since GZ(α,ϖ), ψ(α) are continuous on [0,1]×[0,1], it is uniformly continuous on [0,1]×[0,1]. Thus, for any ϵ>0, there exists a constant ς1>0, such that
|GZ1(α1,ϖ)−GZ1(α2,ϖ)|<ϵ4ϑq(M0Γ(B1+1)),|ψ1(α1)−ψ1(α2)|<ϵ4, |
for α1,α2∈[0,1] with |α1−α2|<ς1. Therefore,
|T1(X,Y)(α1)−T1(X,Y)(α2)|=|∫10GZ1(α1,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α1) | (4.4) |
−∫10GZ1(α2,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(α2)|≤∫10|GZ1(α1,ϖ)−GZ1(α2,ϖ)|ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+|ψ1(α1)−ψ1(α2)|≤ϵ4ϑq(M0Γ(B1+1))ϑq(M0Γ(B1+1))+ϵ4=ϵ2. | (4.5) |
Similarly
|T2(X,Y)(α1)−T2(X,Y)(α2)|≤ϵ2. | (4.6) |
Combining (4.4) and (4.6), we obtain
|T(X,Y)(α1)−T(X,Y)(α2)|≤ϵ. |
Implies, T(Θτ) is equicontinuous.
Thus Arzelˊa-Ascoli Theorem implies that T is a completely continuous operator.
Define the functionals
μ1(X,Y)=‖(X,Y)‖,μ2(X,Y)=μ4(X,Y)=maxα∈[0,1]|(X,Y)(α)|,μ3(X,Y)=minα∈[0,κ]|(X,Y)(α)|, |
then μ1 and μ2 are continuous nonnegative convex functionals, μ3 is a continuous nonnegative concave functional, μ4 is a continuous nonnegative functional, and
ρμ2(X,Y)≤μ3(X,Y)≤μ2(X,Y)=μ4(X,Y),‖(X,Y)‖≤Nμ1(X,Y). |
Thus, (4.1) in Lemma 4.1 is fulfilled.
Let
l1=∫10GZ1(0,ϖ)−GZ1(1,ϖ)ϑq(∫10KB1(ϖ,θ)dθ)dϖ,l2=∫10GZ2(0,ϖ)−GZ2(1,ϖ)ϑq(∫κ0KB2(ϖ,θ)dθ)dϖ,l3=∫10GZ1(0,ϖ)−GZ1(1,ϖ)ϑq(∫10KB1(ϖ,θ)dθ)dϖ,l4=∫10GZ2(0,ϖ)−GZ2(1,ϖ)ϑq(∫κ0KB2(ϖ,θ)dθ)dϖ. |
Theorem 4.1. Let (C1) is true, and ∃ constants M1,M3,M4≥ψ(1) with M4<M3<ρM1minl2l4l1l3 and M2=M3ρ, in such a way that
(C6) ϝ1(α,X,Y)≤ϑp(M1−ψ1(1)l1) and ϝ2(α,X,Y)≤ϑp(M1−ψ2(1)l2), (α,X,Y)∈[0,1]×[0,M1]×[0,M1];
(C7) ϝ1(α,X,Y)>ϑp(M3−ρZ1ψ1(1)ρZ1l3) and ϝ2(α,X,Y)>ϑp(M3−ρZ2ψ2(1)ρZ2l4), (α,X,Y)∈[0,κ]×[M3,M3ρZ1]×[0,M1];
(C8) ϝ1(α,X,Y)<ϑp(M4−ψ1(1)l1) and ϝ2(α,X,Y)<ϑp(M4−ψ2(1)l2), (α,X,Y)∈[0,1]×[0,M4]×[0,M1].
Then, (1.2) has at least three positive solutions (X1,Y1), (X2,Y2), (X3,Y3) satisfying
‖(Xi,Yi)‖≤M1(i=1,2,3), | (4.7) |
minα∈[0,κ]‖(X1,Y1)(α)‖≤M3,M4<minα∈[0,κ]‖(X2,Y2)(α)‖,maxα∈[0,1]‖(X2,Y2)(α)‖<M3,maxα∈[0,1]‖(X3,Y3)(α)‖<M4. | (4.8) |
Proof. Obviously, the fixed points of T are equivalent to the solutions of (1.2). For (X,Y)∈¯Θ(μ1,M1), we get
μ1(X,Y)=‖(X,Y)‖≤M1, |
thus
maxα∈[0,1]|(X,Y)|≤M1, |
and then
0≤(X,Y)≤M1. |
By (C6), we have
maxα∈[0,1]|T1(X,Y)(α)|≤maxα∈[0,1]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+maxα∈[0,1]ψ1(α)≤∫10(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+ψ1(1)≤∫10(G1(0,ϖ)−G2(1,ϖ))ϑq(ϑp(M1l1)∫10KB1(ϖ,θ)dθ)dϖ+ψ1(1)=M1−ψ1(1)l1∫10(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)dθ)dϖ+ψ1(1)=M1. |
Similarly,
maxα∈[0,1]|T2(X,Y)(α)|≤M1. |
So,
μ1(T(X,Y))=‖T(X,Y)‖=maxα∈[0,1]|T(X,Y)(α)|≤M1. |
Thus, T:¯Θ(μ1,M1)→¯Θ(μ1,M1).
For (X,Y)=M3ρ, (X,Y)(α)∈Θ(μ1,μ2,μ3;M3,M2,M1), μ3(M3ρ)>M3, we get
{(X,Y)∈Θ(μ1,μ2,μ3;M3,M2,M1):μ3(X,Y)>M3}≠∅. |
For (X,Y)(α)∈Θ(μ1,μ2,μ3;M3,M2,M1), we know that M3≤(X,Y)(α)≤M2=M3ρ for α∈[0,κ].
In view of (C7),
μ3(T1(X,Y))=minα∈[0,κ]|T1(X,Y)(α)|≥minα∈[0,κ]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+minα∈[0,κ]ψ1(α)≥∫10ρZ1(G1(0,ϖ)−G2(1,ϖ))ϑq(∫κ0KB1(ϖ,θ)ϑp(M3−ρZ1ψ1(1)ρZ1l3)dθ)dϖ+ρZ1ψ1(1)=ρZ1ϑp(M3−ρZ1ψ1(1)ρZ1l3)∫κ0(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)dθ)dϖ+ρZ1ψ1(1)=M3. |
Similarly,
μ3(T2(X,Y))≥M3. |
So, μ3(T(X,Y))>M3 for all (X,Y)(α)∈Θ(μ1,μ2,μ3;M3,M2,M1). Hence, (C3) of Lemma 4.1 is fulfilled.
By (4.7), for all (X,Y)∈Θ(μ1,μ3;M3,M1) with μ2(T(X,Y))>M2=M3ρ, one get
μ2(T(X,Y))>ρM2=ρM3ρ=M3. |
Implies (C4) of Lemma 4.1 is true.
As μ4(0,0)=0<M4, thus 0∉Θ(μ1,μ4;M4,M1). If (X,Y)∈Θ(μ1,μ4;M4,M1) with μ4(X,Y)=M4, we deduced μ1(X,Y)≤M1. Thus, maxα∈[0,1](X,Y)(α)=M4 and 0≤(X,Y)(α)≤M1.
Using (C8), we get
μ4(T1(X,Y))=maxα∈[0,1]|T1(X,Y)(α)|≤minα∈[0,1]∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ+maxα∈[0,1]ψ1(α)<∫10ρZ1(G1(0,ϖ)−G2(1,ϖ))ϑq(∫κ0KB1(ϖ,θ)ϑp(M4−ψ1(1)l1)dθ)dϖ+ψ1(1)=M4−ψ1(1)l1∫κ0(G1(0,ϖ)−G2(1,ϖ))ϑq(∫10KB1(ϖ,θ)dθ)dϖ+ψ1(1)=M4. |
Similarly,
μ4(T2(X,Y))≤M4. |
So, μ3(T(X,Y))<M3 for all (X,Y)(α)∈Θ(μ1,μ4;M4,M1). Therefore, the condition (C4) of Lemma 4.1 hold.
To sum up, all the conditions of Lemma 4.1 are verified, and it was noticed that (Xi,Yi)(α)≥ψ(0)>0. Hence, the coupled system (1.2) has at least three positive solutions (X1,Y1), (X2,Y2), (X3,Y3) satisfying (4.7) and (4.8).
Definition 5.1. The system (1.2) is HU stable if there exist πZ1,Z2=max{πZ1,πZ2}>0 in such a way that, for ε=max{εZ1,εZ2}>0 and for any (X,Y)∈χ satisfying
{|DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))|≤εZ1, α∈[0,1],|DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))|≤εZ2, α∈[0,1], | (5.1) |
∃ (ˆX,ˆY)∈χ satisfying (1.2) such that
‖(X,Y)−(ˆX,ˆY)‖≤πZ1,Z2ε, α∈[0,1]. |
Definition 5.2. The coupled implicit FDEs (1.2) is GHU stable if there exist Φ∈C(R+,R+) with Φ(0)=0 such that, for any solution (X,Y)∈χ of inequality (5.1), there exists a solution (ˆX,ˆY)∈χ of (1.2) fulfilling
‖(X,Y)−(ˆX,ˆY)‖≤Φ(ε), α∈[0,1]. |
Let ΨZ1,Z2=max{ΨZ1,ΨZ2}∈C([0,1],R), and πΨZ1,ΨZ2=max{πΨZ1,πΨZ2}>0.
Definition 5.3. The coupled system of implicit FDEs (1.2) is said to be HUR stable with respect to ΨZ1,Z2 if there exists constants πΨZ1,ΨZ2 such that, for some ε>0 and for any solution (X,Y)∈χ of the inequality
{|DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))|≤ΨZ1(α)εZ1, α∈[0,1],|DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))|≤ΨZ2(α)εZ2, α∈[0,1], | (5.2) |
there exists (ˆX,ˆY)∈χ satisfying (1.2) in such a way that
‖(X,Y)−(ˆX,ˆY)‖≤πΨZ1,ΨZ2ΨZ1,Z2ε, α∈[0,1]. | (5.3) |
Definition 5.4. The system (1.2) is said to be HUR stable with respect to ΨZ1,Z2 if there exists constants πΨZ1,ΨZ2 such that, for any approximate solution (X,Y)∈χ of inequality (5.2), there exists a solution (ˆX,ˆY)∈χ of (1.2) fulfilling
‖(X,Y)−(ˆX,ˆY)‖≤πΨZ1,ΨZ2ΨZ1,Z2(α), α∈[0,1]. | (5.4) |
Remark 5.1. We say that (X,Y)∈χ is a solution of the system of inequalities (5.1) if there exist functions Λf, Λg∈C([0,1],R) depending upon X,Y, respectively, such that
(I)
|Λf(α)|≤εZ1,|Λg(α)|≤εZ2,α∈[0,1]; |
(II)
{DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))=Λf(α),DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))=Λg(α). |
Lemma 5.1. Under the assumptions given in Remark 5.1, the solution (X,Y)∈χ of coupled system
{DB1ϑp(DZ1X(α))+ϝ1(α,Dγ1X(α),Dγ2Y(α))=Λf(α),α∈[0,1],DB2ϑp(DZ2)Y(α)+ϝ2(α,Dγ1X(α),Dγ2Y(α))=Λg(α),α∈(0,1),(ϑp(DZ1X(0)))i=ϑp(DZ1X(1))=0,i=¯1,m−1,(ϑp(DZ2Y(0)))i=ϑp(DZ2Y(1))=0,i=¯1,m−1,X(0)+X′(0)=∫10S1(ϖ)X(ϖ)dϖ+∫10H1(ϖ)dϖ,X(1)+X′(1)=∫10S2(ϖ)X(ϖ)dϖ+∫10H2(ϖ)dϖ,Y(0)+Y′(0)=∫10S3(ϖ)Y(ϖ)dϖ+∫10H3(ϖ)dϖ,Y(1)+Y′(1)=∫10S4(ϖ)Y(ϖ)dϖ+∫10H4(ϖ)dϖ,Xj(0)=0,Yj(0)=0,j=¯2,n−1, | (5.5) |
satisfies the system of inequalities
|X(α)−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ1(α)|≤ϑq(εZ1)M01−ψ1(1)ϑq(M0),|Y(α)−∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ2(α)|≤ϑq(εZ2)N01−ψ2(1)ϑq(N0). |
Proof. In light of Lemma 3.2, a solution of the coupled system (5.1) is
{X(α)=∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)Λf(θ)dθ)dϖ+ψ1(α),Y(α)=∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)Λg(θ)dθ)dϖ+ψ2(α), | (5.6) |
Using (4.2) in (5.6), we have
|X(α)−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ1(α)|≤∫10|GZ1(α,ϖ)|ϑq(εZ1∫10|KB1(ϖ,θ)|dθ)dϖ≤ϑq(εZ1)M01−ψ1(1)ϑq(M0). |
Similarly, using (4.3) in (5.6), we get
|Y(α)−∫10GZ2(α,ϖ)ϑq(∫10KB2(ϖ,θ)ϝ2(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ2(α)|≤ϑq(εZ2)N01−ψ2(1)ϑq(N0). |
For the next result, we suppose the following condition.
(C9) Let N1,N2,S1,S2∈C([0,1],R), and there exists L1,L2,L3,L4>0 such that
|ϝ1(α,N1,S1)−ϝ1(α,N2,S2)|≤L1|N1−N2|+L2|S1−S2|,|ϝ2(α,N1,S1)−ϝ2(α,N2,S2)|≤L3|N1−N2|+L4|S1−S2|. |
Theorem 5.1. Suppose the condition (C9) and Lemma 5.1 satisfies, then (1.2) is HU stable, if υ1υ4−υ2υ3=υ4−υ2>0, where
υ1=1−(M01−ψ1(1))ϑq(L1Γ(B1−γ1)Γ(1−γ1))ϑq(M0Γ(B1+1)),υ2=(M01−ψ1(1))ϑq(L2Γ(B1−γ2)Γ(1−γ2))ϑq(M0Γ(B1+1)),υ3=1−(N01−ψ2(1))ϑq(L3Γ(B2−γ1)Γ(1−γ1))ϑq(N0Γ(B2+1)),υ4=(N01−ψ2(1))ϑq(L4Γ(B2−γ2)Γ(1−γ2))ϑq(N0Γ(B2+1)). |
Proof. Consider (X,Y)∈χ to be any solution of (5.5), and (ˆX,ˆY)∈χ is a solution of the coupled system (1.2), then we take
|(X(α)−ˆX(α))|≤|X(α)−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−ψ1(α)+∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))dθ)dϖ−∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)ϝ1(θ,Dγ1ˆX(θ),Dγ2ˆY(θ))dθ)dϖ|≤ϑq(εZ1)M01−ψ1(1)ϑq(M0)+∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)|ϝ1(θ,Dγ1X(θ),Dγ2Y(θ))−ϝ1(θ,Dγ1ˆX(θ),Dγ2ˆY(θ))|dθ)dϖ≤ϑq(εZ1)M01−ψ1(1)ϑq(M0)+∫10GZ1(α,ϖ)ϑq(∫10KB1(ϖ,θ)(L1Dγ1|X(θ)−ˆX(θ)|+L2Dγ2|Y(θ)−ˆY(θ)|)dθ)dϖ≤(M01−ψ1(1))(ϑq(εZ1)ϑq(M0)+ϑq(L1Γ(B1−γ1)Γ(1−γ1))ϑq(M0Γ(B1+1))|X(α)−ˆX(α)|+ϑq(L2Γ(B1−γ2)Γ(1−γ2))ϑq(M0Γ(B1+1))|Y(α)−ˆY(α)|) |
implies that
υ1‖u−ˆX‖−υ2‖v−ˆY‖≤(M01−ψ1(1))ϑq(εZ1)ϑq(M0). | (5.7) |
Similarly, we have
υ4‖v−ˆY‖−υ3‖u−ˆX‖≤(N01−ψ2(1))ϑq(εZ2)ϑq(N0). | (5.8) |
From (5.7) and (5.8), we get
[υ1−υ2−υ3υ4][‖X−ˆX‖‖Y−ˆY‖]≤[(M01−ψ1(1))ϑq(εZ1)ϑq(M0)(N01−ψ2(1))ϑq(εZ2)ϑq(N0)] |
implies
[‖X−ˆX‖‖Y−ˆY‖]≤[υ4υ4−υ2υ2υ4−υ2υ3υ4−υ2υ1υ4−υ2][(M01−ψ1(1))ϑq(εZ1)ϑq(M0)(N01−ψ2(1))ϑq(εZ2)ϑq(N0)]. | (5.9) |
From system (5.9), we have
‖X−ˆX‖≤υ4υ4−υ2(M01−ψ1(1))ϑq(εZ1)ϑq(M0)+υ2υ4−υ2(N01−ψ2(1))ϑq(εZ2)ϑq(N0),‖Y−ˆY‖≤υ3υ4−υ2(M01−ψ1(1))ϑq(εZ1)ϑq(M0)+υ1υ4−υ2(N01−ψ2(1))ϑq(εZ2)ϑq(N0), |
which implies that
‖X−ˆX‖+‖Y−ˆY‖≤υ1υ4−υ2(N01−ψ2(1))ϑq(εZ2)ϑq(N0)+υ2υ4−υ2(N01−ψ2(1))ϑq(εZ2)ϑq(N0)+υ3υ4−υ2(M01−ψ1(1))ϑq(εZ1)ϑq(M0)+υ4υ4−υ2(M01−ψ1(1))ϑq(εZ1)ϑq(M0). |
If max{ϑq(εZ1),ϑq(εZ2)}=ϑq(εZ) and υ1υ4−υ2N01−ψ2(1)ϑq(N0)+υ2υ4−υ2N01−ψ2(1)ϑq(N0)+υ3υ4−υ2M01−ψ1(1)ϑq(M0)+υ4υ4−υ2M01−ψ1(1)ϑq(M0)=υZ1,Z2, then
‖(X,Y)−(ˆX,ˆY)‖≤υZ1,Z2ϑq(εZ). |
Hence, system (1.2) is HU stable. Also, if
‖(X,Y)−(ˆX,ˆY)‖≤υZ1,Z2Φ(ϑq(εZ)), |
with Φ(0)=0, then the solution of system (1.2) is GHU stable.
Theorem 5.2. Suppose the conditions (C9) and Lemma 5.1 holds, then (1.2) is GHU stable, if υ1υ4−υ2υ3=υ4−υ2>0, where υ1, υ2, υ3 and υ4 is defined in Theorem 5.1.
Proof. By applying steps of Theorem 5.1, we can easily show that system (1.2) is GHU stable, by using Definition 5.4.
For the next theorem, we assume that
(C10) ∃ non-decreasing functions ˉwZ,ˉwB∈C([0,1],R+) in such a way that
IZˉwZ(α)≤LZˉwZ(α) |
and
IBˉwB(α)≤LBˉwB(α), |
where LZ,LB>0.
Theorem 5.3. Suppose the conditions (C9), (C10) and Lemma 5.1 satisfies, then system (1.2) is HUR stable if υ1υ4−υ2υ3=υ4−υ2>0.
Proof. By applying steps of Theorem 5.1, we can easily show that system (1.2) is HUR stable, by using Definition 5.3.
Theorem 5.4. Suppose the conditions (C9), (C10) and Lemma 5.1 holds, then system (1.2) is GHUR stable if υ1υ4−υ2υ3=υ4−υ2>0.
Proof. By applying steps of Theorem 5.1, we can easily show that system (1.2) is GHUR stable, by using Definition 5.4.
In this section, we demonstrate an example to illustrate the main results.
Example 6.1. Consider the following system of implicit FDEs:
{D94ϑ32(D72X(α))+ϝ1(α,D12X(α),D13Y(α))=0,α∈(0,1),D115ϑ32(D103)Y(α)+ϝ2(α,D12X(α),D13Y(α))=0,α∈(0,1),(ϑ32(D72X(0)))′=ϑ32(D72X(1))=0,(ϑ32(D103Y(0)))′=ϑ32(D103Y(1))=0,X(0)+X′(0)=∫10(ϖ+1)X(ϖ)dϖ+∫10ϖdϖ4,X(1)+X′(1)=∫10(3ϖ2+ϖ)X(ϖ)dϖ+∫10ϖdϖ3,Y(0)+Y′(0)=∫10(2ϖ+1)Y(ϖ)dϖ+∫10ϖdϖ2,Y(1)+Y′(1)=∫10(5ϖ2+2ϖ)Y(ϖ)dϖ+∫10ϖdϖ,Xj=Yj,wherej=2,3. | (6.1) |
Choosing M1=25000, M3=65, M4=3 and κ=13. Reminding ψ1, ψ2 from (2.5), (2.6) and ρZ1 and ρZ2 from Lemma 3.4, we get
ψ1(1)=1.87144,ψ2(1)=2.32681,ρZ1=0.046572<italic>and</italic>ρZ2=0.0097325. |
In (6.1), we see that
ϝ1(α,D12X(α),D13Y(α))=tan(α150)+D12X(α)+cos(D13Y(α)),ϝ2(α,D12X(α),D13Y(α))=sin(D12X(α))−D13Y(α)160, |
which satisfies the following conditions:
(C6) supϝ1(α,X,Y)≈246.534≤minϑp(M1−ψ1(1)l1)≈291.732,
supϝ2(α,X,Y)≈241.492≤minϑp(M1−ψ2(1)l2)≈284.618, (α,X,Y)∈[0,1]×[0,25000]×[0,25000];
(C7) infϝ1(α,X,Y)≈240.631>ϑp(M3−ρZ1ψ1(1)ρZ1l3)≈201.981 (α,X,Y)∈[0,13]×[65,M3ρZ1]×[0,25000];
infϝ2(α,X,Y)≈271>ϑp(M3−ρZ2ψ2(1)ρZ2l4)≈201.843, (α,X,Y)∈[0,13]×[65,M3ρZ2]×[0,25000];
(C8) supϝ2(α,X,Y)≈198.938<ϑp(M4−ψ1(1)l1)≈243.861,
supϝ2(α,X,Y)≈183.861<ϑp(M4−ψ2(1)l2)≈202.991, (α,X,Y)∈[0,1]×[0,3]×[0,25000].
Then, all assumptions of Theorem 4.1 are satisfied. Thus, BVP (6.1) has at least three positive solutions (X1,Y1), (X2,Y2), (X3,Y3) satisfying
‖(Xi,Yi)‖≤25000(i=1,2,3),minα∈[0,κ]|(X1,Y1)|>65,3<minα∈[0,κ]|(X2,Y2)|,maxα∈[0,1]|(X2,Y2)|<65,maxα∈[0,1]|(X3,Y3)|<3. |
For HUS, we found L1=L2=1150, L3=L4=1160, υ1≈0.02961, υ2≈0.9721, υ3≈0.03291 and υ4≈0.9948. Hence, by Theorem 5.1, we have υ4−υ2≈0.9948−0.0227>0.
In this paper, we considered an implicit coupled BVP of p-Laplacian FDEs (1.2), which involved disturbing functions. The relating fractional order derivative is taken in Caputo sense. By using the Avery-Peterson fixed point theorem for the proposed problem, we found at least three solutions, under sufficient conditions. In addition, we presented four types of Ulam's stability, i.e., Hyers-Ulam stability, generalized Hyers-Ulam stability, Hyers-Ulam-Rassias stability and generalized Hyers-Ulam-Rassias stability, for the coupled implicit fractional p-Laplacian system, and an example is provided to authenticate the theoretical results.
This research is supported by the scientific research project of Anhui Provincial Department of Education (KJ2021A1155; KJ2020A0780).
The authors declare no conflict of interest.
[1] |
R. Agarwal, Y. Zhou, Y. He, Existence of fractional neutral functional differential equations, Comput. Math. Appl., 59 (2010), 1095–1100. http://dx.doi.org/10.1016/j.camwa.2009.05.010 doi: 10.1016/j.camwa.2009.05.010
![]() |
[2] |
M. Ahmad, A. Zada, J. Alzabut, Stability analysis of a nonlinear coupled implicit switched singular fractional differential equations with p-Laplacian, Adv. Differ. Equ., 2019 (2019), 436. http://dx.doi.org/10.1186/s13662-019-2367-y doi: 10.1186/s13662-019-2367-y
![]() |
[3] |
M. Ahmad, A. Zada, J. Alzabut, Hyers-Ulam stability of a coupled system of fractional differential equations of Hilfer-Hadamard type, Demonstr. Math., 52 (2019), 283–295. http://dx.doi.org/10.1515/dema-2019-0024 doi: 10.1515/dema-2019-0024
![]() |
[4] |
Asma, J. Gomez-Aguilar, G. Rahman, M. Javed, Stability analysis for fractional order implicit ψ-Hilfer differential equations, Math. Method. Appl. Sci., 45 (2022), 2701–2712. http://dx.doi.org/10.1002/mma.7948 doi: 10.1002/mma.7948
![]() |
[5] |
R. Dhayal, J. Gomez-Aguilar, J. Torres-Jimenez, Stability analysis of Atangana-Baleanu fractional stochastic differential systems with impulses, Int. J. Syst. Sci., 53 (2022), 3481–3495. http://dx.doi.org/10.1080/00207721.2022.2090638 doi: 10.1080/00207721.2022.2090638
![]() |
[6] |
A. Gonzalez-Calderon, L. Vivas-Cruz, M. Taneco-Hernandez, J. Gomez-Aguilar, Assessment of the performance of the hyperbolic-NILT method to solve fractional differential equations, Math. Comput. Simulat., 206 (2023), 375–390. http://dx.doi.org/10.1016/j.matcom.2022.11.022 doi: 10.1016/j.matcom.2022.11.022
![]() |
[7] |
L. Guo, U. Riaz, A. Zada, M. Alam, On implicit coupled Hadamard fractional differential equations with generalized Hadamard fractional integro-differential boundary conditions, Fractal Fract., 7 (2023), 13. http://dx.doi.org/10.3390/fractalfract7010013 doi: 10.3390/fractalfract7010013
![]() |
[8] |
M. Iswarya, R. Raja, G. Rajchakit, J. Cao, J. Alzabut, C. Huang, Existence, uniqueness and exponential stability of periodic solution for discrete-time delayed BAM neural networks based on coincidence degree theory and graph theoretic method, Mathematics, 7 (2019), 1055. http://dx.doi.org/10.3390/math7111055 doi: 10.3390/math7111055
![]() |
[9] |
H. Khan, T. Abdeljawad, J. Gomez-Aguilar, H. Tajadodi, A. Khan, Fractional order Volterra integro-differential equation with Mittag-Leffler kernel, Fractals, 29 (2021), 2150154. http://dx.doi.org/10.1142/S0218348X21501541 doi: 10.1142/S0218348X21501541
![]() |
[10] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and application of fractional differential equation, Amsterdam: Elsevier, 2006. |
[11] |
X. Liu, M. Jia, W. Ge, Multiple solutions of a p-Laplacian model involving fractional derivatives, Adv. Differ. Equ., 2013 (2013), 126. http://dx.doi.org/10.1186/1687-1847-2013-126 doi: 10.1186/1687-1847-2013-126
![]() |
[12] |
H. Lu, Z. Han, S. Sun, J. Liu, Existence on positive solutions for boundary value problems of nonlinear fractional differential equations with p-Laplacian, Adv. Differ. Equ., 2013 (2013), 30. http://dx.doi.org/10.1186/1687-1847-2013-30 doi: 10.1186/1687-1847-2013-30
![]() |
[13] |
O. Martinez-Fuentes, F. Melendez-Vazquez, G. Fernandez-Anaya, J. Gomez-Aguilar, Analysis of fractional-order nonlinear dynamic systems with general analytic kernels: lyapunov stability and inequalities, Mathematics, 9 (2021), 2084. http://dx.doi.org/10.3390/math9172084 doi: 10.3390/math9172084
![]() |
[14] | M. Matar, A. Lubbad, J. Alzabut, On p-Laplacian boundary value problems involving Caputo-Katugampula fractional derivatives, Math. Method. Appl. Sci., in press. http://dx.doi.org/10.1002/mma.6534 |
[15] | M. Obloza, Hyers stability of the linear differential equation, Rocznik NaukDydakt, Prace Mat., 13 (1993), 259–270. |
[16] |
K. Oldham, Fractional differential equations in electrochemistry, Adv. Eng. Softw., 41 (2010), 9–12. http://dx.doi.org/10.1016/j.advengsoft.2008.12.012 doi: 10.1016/j.advengsoft.2008.12.012
![]() |
[17] |
A. Pratap, R. Raja, J. Cao, J. Alzabut, C. Huang, Finite-time synchronization criterion of graph theory perspective fractional order coupled discontinuous neural networks, Adv. Differ. Equ., 2020 (2020), 97. http://dx.doi.org/10.1186/s13662-020-02551-x doi: 10.1186/s13662-020-02551-x
![]() |
[18] |
U. Riaz, A. Zada, Analysis of (α,β)-order coupled implicit Caputo fractional differential equations using topological degree method, Int. J. Nonlin. Sci. Num., 22 (2021), 897–915. http://dx.doi.org/10.1515/ijnsns-2020-0082 doi: 10.1515/ijnsns-2020-0082
![]() |
[19] |
U. Riaz, A. Zada, Z. Ali, Y. Cui, J. Xu, Analysis of coupled systems of implicit impulsive fractional differential equations involving Hadamard derivatives, Adv. Differ. Equ., 2019 (2019), 226. http://dx.doi.org/10.1186/s13662-019-2163-8 doi: 10.1186/s13662-019-2163-8
![]() |
[20] |
U. Riaz, A. Zada, Z. Ali, I. Popa, S. Rezapour, S. Etemad, On a Riemann-Liouville type implicit coupled system via generalized boundary conditions, Mathematics, 9 (2021), 1205. http://dx.doi.org/10.3390/math9111205 doi: 10.3390/math9111205
![]() |
[21] |
F. Rihan, Numerical modeling of fractional order biological systems, Abstr. Appl. Anal., 2013 (2013), 816803. http://dx.doi.org/10.1155/2013/816803 doi: 10.1155/2013/816803
![]() |
[22] | J. Sabatier, O. Agrawal, J. Machado, Advances in fractional calculus, Dordrecht: Springer, 2007. http://dx.doi.org/10.1007/978-1-4020-6042-7 |
[23] |
A. Seemab, M. Rehman, J. Alzabut, A. Hamdi, On the existence of positive solutions for generalized fractional boundary value problems, Bound. Value Probl., 2019 (2019), 186. http://dx.doi.org/10.1186/s13661-019-01300-8 doi: 10.1186/s13661-019-01300-8
![]() |
[24] | V. Tarasov, Fractional dynamics: application of fractional calculus to dynamics of particles, fields and media, Berlin: Springer, 2010. http://dx.doi.org/10.1007/978-3-642-14003-7 |
[25] | S. Ulam, A collection of the mathematical problems, New York: Interscience Publishers, 1960. |
[26] | B. Vintagre, I. Podlybni, A. Hernandez, V. Feliu, Some approximations of fractional order operators used in control theory and applications, Fract. Calc. Appl. Anal., 3 (2000), 231–248. |
[27] |
H. Waheed, A. Zada, R. Rizwan, I. Popa, Hyers-Ulam stability for a coupled system of fractional differential equation with p-Laplacian operator having integral boundary conditions, Qual. Theory Dyn. Syst., 21 (2022), 92. http://dx.doi.org/10.1007/s12346-022-00624-8 doi: 10.1007/s12346-022-00624-8
![]() |
[28] |
H. Yepez-Martinez, J. Gomez-Aguilar, M. Inc, New modified Atangana-Baleanu fractional derivative applied to solve nonlinear fractional differential equations, Phys. Scr., 98 (2023), 035202. http://dx.doi.org/10.1088/1402-4896/acb591 doi: 10.1088/1402-4896/acb591
![]() |
[29] |
A. Zada, J. Alzabut, H. Waheed, I. Popa, Ulam-Hyers stability of impulsive integrodifferential equations with Riemann-Liouville boundary conditions, Adv. Differ. Equ., 2020 (2020), 64. http://dx.doi.org/10.1186/s13662-020-2534-1 doi: 10.1186/s13662-020-2534-1
![]() |
[30] | A. Zada, F. Khan, U. Riaz, T. Li, Hyers-Ulam stability of linear summation equations, Punjab Univ. J. Math., 49 (2017), 19–24. |
[31] |
A. Zada, U. Riaz, F. Khan, Hyers-Ulam stability of impulsive integral equations, Boll. Unione Mat. Ital., 12 (2019), 453–467. http://dx.doi.org/10.1007/s40574-018-0180-2 doi: 10.1007/s40574-018-0180-2
![]() |
[32] |
A. Zada, H. Waheed, J. Alzabut, X. Wang, Existence and stability of impulsive coupled system of fractional integrodifferential equations, Demonstr. Math., 52 (2019), 296–335. http://dx.doi.org/10.1515/dema-2019-0035 doi: 10.1515/dema-2019-0035
![]() |
[33] |
L. Zhang, W. Zahag, X. Liu, M. Jia, Positive solutions of fractional p-Laplacian equations with integral boundary value and two parameters, J. Inequal. Appl., 2020 (2020), 2. http://dx.doi.org/10.1186/s13660-019-2273-6 doi: 10.1186/s13660-019-2273-6
![]() |
1. | Luchao Zhang, Xiping Liu, Mei Jia, Zhensheng Yu, Piecewise conformable fractional impulsive differential system with delay: existence, uniqueness and Ulam stability, 2024, 70, 1598-5865, 1543, 10.1007/s12190-024-02017-3 | |
2. | Yahia Awad, Yusuf Pandir, On the Existence and Stability of Positive Solutions of Eigenvalue Problems for a Class of P-Laplacian ψ -Caputo Fractional Integro-Differential Equations, 2023, 2023, 2314-4785, 1, 10.1155/2023/3458858 | |
3. | Yahia Awad, Yousuf Alkhezi, Solutions of Second-Order Nonlinear Implicit ψ-Conformable Fractional Integro-Differential Equations with Nonlocal Fractional Integral Boundary Conditions in Banach Algebra, 2024, 16, 2073-8994, 1097, 10.3390/sym16091097 | |
4. | Hasanen A. Hammad, Hassen Aydi, Mohra Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, 2023, 2023, 1029-242X, 10.1186/s13660-023-03018-9 |