Research article

On coupled Gronwall inequalities involving a $ \psi $-fractional integral operator with its applications

  • Received: 18 November 2021 Revised: 12 February 2022 Accepted: 14 February 2022 Published: 17 February 2022
  • MSC : 26A24, 26A33, 26D10, 34A08, 34D20, 35A23, 39B82, 47H10

  • In this paper, we obtain a new generalized coupled Gronwall inequality through the Caputo fractional integral with respect to another function $ \psi $. Based on this result, we prove the existence and uniqueness of solutions for nonlinear delay coupled $ \psi $-Caputo fractional differential system. Moreover, the Ulam-Hyers stability of solutions for $ \psi $-Caputo fractional differential system is discussed. An example is also presented to demonstrate the application of main results.

    Citation: Dinghong Jiang, Chuanzhi Bai. On coupled Gronwall inequalities involving a $ \psi $-fractional integral operator with its applications[J]. AIMS Mathematics, 2022, 7(5): 7728-7741. doi: 10.3934/math.2022434

    Related Papers:

  • In this paper, we obtain a new generalized coupled Gronwall inequality through the Caputo fractional integral with respect to another function $ \psi $. Based on this result, we prove the existence and uniqueness of solutions for nonlinear delay coupled $ \psi $-Caputo fractional differential system. Moreover, the Ulam-Hyers stability of solutions for $ \psi $-Caputo fractional differential system is discussed. An example is also presented to demonstrate the application of main results.



    加载中


    [1] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integrals and Derivatives Theory and Applications, Gordon and Breach Science Publishers, 1993.
    [2] A. A. Kilbas, H. M. Srivastava, J. J Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science, 2006.
    [3] M. Feckan, J. Wang, M. Pospsil, Fractional-Order Equations and Inclusions, Berlin/Boston: de Gruyter, 2017.
    [4] V. Kiryakova, Generalized Fractional Calculus and Applications, New York: J. Wiley & Sons, Inc., 1994.
    [5] V. Kiryakova, A brief story about the operators of generalized fractional calculus, Fract. Calc. Appl. Anal., 11 (2008), 203–220.
    [6] J. V.da C. Sousa, E. C. de Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91.
    [7] A. Seemab, M. Ur Rehman, J. Alzabut, A. Hamdi, On the existence of positive solutions for generalized fractional boundary value problems, Bound. Value Probl., 2019 (2019), 186. https://doi.org/10.1186/s13661-019-01300-8 doi: 10.1186/s13661-019-01300-8
    [8] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [9] R. Almeida, A. B. Malinowska, M. T. T. Monteiro, Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications, Math. Methods Appl. Sci., 41 (2018), 336–352. https://doi.org/10.1002/mma.4617 doi: 10.1002/mma.4617
    [10] F. Jarad, T. Abdeljawad, Generalized fractional derivatives and Laplace transform, Discrete Contin. Dyn. Syst. Ser. S, 13 (2019), 709–722. https://doi.org/10.3934/dcdss.2020039 doi: 10.3934/dcdss.2020039
    [11] J. V.da C. Sousa, E. C. de Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, Diff. Equations Appl., 11 (2019), 87–106.
    [12] H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math, Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061
    [13] Y. Adjabi, F. Jarad, T. Abdeljawad, On generalized fractional operators and a Gronwall type inequality with applications, Filomat, 31 (2017), 5457–5473. https://doi.org/10.2298/FIL1717457A doi: 10.2298/FIL1717457A
    [14] J. Alzabut, T. Abdeljawad, A generalized discrete fractional Gronwall inequality and its application on the uniqueness of solutions for nonlinear delay fractional difference system, Appl. Anal. Discrete Math., 12 (2018), 36–48. https://doi.org/10.2298/AADM1801036A doi: 10.2298/AADM1801036A
    [15] R. I. Butt, T. Abdeljawad, M. A. Alqudah, M. Ur Rehman, Ulam stability of Caputo $q$-fractional delay difference equation: $q$-fractional Gronwall inequality approach, J. Inequal. Appl., 2019 (2019), 305. https://doi.org/10.1186/s13660-019-2257-6 doi: 10.1186/s13660-019-2257-6
    [16] S. S. Dragomir, Some Gronwall type inequalities and applications, Hauppauge: Nova Science Pub Inc, 2003.
    [17] J. Alzabut, T. Abdeljawad, F. Jarad, W. Sudsutad, A Gronwall inequality via the generalized proportional fractional derivative with applications, J. Inequal. Appl., 2019 (2019), 101. https://doi.org/10.1186/s13660-019-2052-4 doi: 10.1186/s13660-019-2052-4
    [18] J. Alzabut, Y. Adjabi, W. Sudsutad, Mutti-Ur. Rehman, New generalizations for Gronwall type inequalities involving a $\psi$-fractional operator and their applications, AIMS Math., 6 (2021), 5053–5077. https://doi.org/10.3934/math.2021299 doi: 10.3934/math.2021299
    [19] J. Vanterler, D. C. Sousa, E. C. D. Oliveira, A Gronwall inequality and the Cauchy-type problem by means of $\psi$-Hilfer operator, arXiv: 1709.03634v1.
    [20] J. Vanterler, D. C. Sousa, E. C. D. Oliveira, On the $\psi$-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91.
    [21] A. D. Mali, K. D. Kucche, J. Vanterier, On coupled system of nonlinear $\psi$-Hilfer hybrid fractional differential equations, Int. J. Nonlin. Sci. Num., . https://doi.org/10.1515/ijnsns-2021-0012.
    [22] K. D. Kucche, A. D. Mali, On the nonlinear $(k, \psi)$-Hilfer fractional differential equations, Chaos Soliton. Fract., 152 (2021), 111335.
    [23] K. D. Kucche, J. P. Kharade, Analysis of impulsive $\varphi$-Hilfer fractional differential equations, Mediterr. J. Math., 17 (2020), 163. https://doi.org/10.1007/s00009-020-01575-7 doi: 10.1007/s00009-020-01575-7
    [24] A. D. Mali, K. D. Kucche, Nonlocal boundary value problem for generalized Hilfer implicit fractional differential equations, Math. Meth, Appl. Sci., 2020 (2020), 1–24. https://doi.org/10.1002/mma.6521 doi: 10.1002/mma.6521
    [25] K. D. Kucche, A. D. Mali, J. V. da C. Sousa, On the nonlinear $\Psi$-Hilfer fractional differential equations, Comput. Appl. Math., 8 (2019), 73.
    [26] S. M. Ulam, Problems in Modern Mathematics, Chapter 6, John Wiley and Sons, New York, 1940.
    [27] S. M. Ulam, A collection of Mathematical Problems, Interscience, New York, 1960.
    [28] Th. M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl., 158 (2003), 106–113. https://doi.org/10.1016/0022-247X(91)90270-A doi: 10.1016/0022-247X(91)90270-A
    [29] M. Benchohra, J. E. Lazreg, On stability of nonlinear implicit fractional differential equations, Matematiche (Catania), 70 (2015), 49–61.
    [30] J. Wang, L. Lv, Y. Zhou, Ulam stability and data dependence for fractional differential equations with Caputo derivative, Elect. J. Qual. Theory Differ. Equ., 63 (2011), 1–10. https://doi.org/10.14232/ejqtde.2011.1.63 doi: 10.14232/ejqtde.2011.1.63
    [31] Q. Dai, S. Liu, Stability of the mixed Caputo fractional integro-differential equation by means of weighted space method, AIMS Math., 7 (2022), 2498–2511. https://doi.org/10.3934/math.2022140 doi: 10.3934/math.2022140
    [32] H. Khan, W. Chen, A. Khan, T. S. Khan, Q. M. Al-Madlal, Hyers-Ulam stability and existence criteria for coupled fractional differential equations involving $p$-Laplacian operator, Adv. Differ. Equ., 2018 (2018), 455. https://doi.org/10.1186/s13662-018-1899-x doi: 10.1186/s13662-018-1899-x
    [33] R. Ameen, F. Jarad, T. Abdeljawad, Ulam stability for delay fractional differential equations with a generalized Caputo derivative, Filomat, 32 (2018), 5265–5274. https://doi.org/10.2298/FIL1815265A doi: 10.2298/FIL1815265A
    [34] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006
    [35] I. A. Rus, Ulam stabilities of ordinay differential equations in a Banach space, Carp. J. Math., 26 (2010), 103–107.
    [36] R. Wong, Approximations of Integrals, SIAM. Philadelphia, 2001.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1551) PDF downloads(127) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog