We are examining a second-order system of non-stiff Initial Value Problems (IVP), focusing on a scenario where the first derivatives are not present. In the realm of solving IVPs, Runge-Kutta-Nyström (RKN) pairs have proven to be highly effective. In order to achieve a pair with eighth and sixth order accuracy, we need to find a solution to a well-defined set of equations regarding the coefficients. Traditionally, pairs are constructed to go through eight stages per step. However, we propose a novel approach with nine stages per step, which enables the creation of pairs with orders $ 8 $ and $ 6 $ that have notably smaller truncation errors. Our paper introduces a new pair that, as expected, outperforms existing pairs of the same orders in a range of important problems.
Citation: Yu He, Jianing Yang, Theodore E. Simos, Charalampos Tsitouras. A novel class of Runge-Kutta-Nyström pairs sharing orders 8(6)[J]. AIMS Mathematics, 2024, 9(2): 4882-4895. doi: 10.3934/math.2024237
We are examining a second-order system of non-stiff Initial Value Problems (IVP), focusing on a scenario where the first derivatives are not present. In the realm of solving IVPs, Runge-Kutta-Nyström (RKN) pairs have proven to be highly effective. In order to achieve a pair with eighth and sixth order accuracy, we need to find a solution to a well-defined set of equations regarding the coefficients. Traditionally, pairs are constructed to go through eight stages per step. However, we propose a novel approach with nine stages per step, which enables the creation of pairs with orders $ 8 $ and $ 6 $ that have notably smaller truncation errors. Our paper introduces a new pair that, as expected, outperforms existing pairs of the same orders in a range of important problems.
[1] | E. Fehlberg, Eine Runge-Kutta-Nystrom-Formel 9-ter Ordnung rnit Schrittweitenkontrolle fur Differentialgleichungen $\ddot{x} = f(t, x)$, ZAMM, 61 (1981), 477–485. https://doi.org/10.1002/zamm.19810611002 doi: 10.1002/zamm.19810611002 |
[2] | J. R. Dormand, M. E. A. El-Mikkawy, P. J. Prince, Families of Runge-Kutta-Nyström formulae, IMA J. Numer. Anal., 7 (1987), 235–250. https://doi.org/10.1093/imanum/7.2.235 doi: 10.1093/imanum/7.2.235 |
[3] | J. R. Dormand, M. E. A. El-Mikkawy, P. J. Prince, High-Order Embedded Runge-Kutta-Nyström formulae, IMA J. Numer. Anal., 7 (1987), 423–430. https://doi.org/10.1093/imanum/7.4.423 doi: 10.1093/imanum/7.4.423 |
[4] | M. E. A. El-Mikkawy, E. Rahmo, A new optimized non-FSAL embedded RungeKuttaNystr¨om algorithm of orders $6$ and $4$ in six stages, Appl. Math. Comput., 145 (2003), 33–43. https://doi.org/10.1016/S0096-3003(02)00436-8 doi: 10.1016/S0096-3003(02)00436-8 |
[5] | G. Papageorgiou, I. T. Famelis, Ch. Tsitouras, A P-stable singly diagonally implicit Runge-Kutta-Nyström method, Numer. Algorithms, 17 (1998), 345–353. https://doi.org/10.1023/A:1016644726305 doi: 10.1023/A:1016644726305 |
[6] | S. N. Papakostas, Ch. Tsitouras, High phase-lag order Runge–Kutta and Nyström pairs, SIAM J. Sci. Comput., 21 (1999), 747–763. https://doi.org/10.1137/S1064827597315509 doi: 10.1137/S1064827597315509 |
[7] | T. E. Simos, Ch. Tsitouras, On high order Runge–Kutta– Nyström pairs, J. Comput. Appl. Maths., 400 (2002), 113753. https://doi.org/10.1016/j.cam.2021.113753 doi: 10.1016/j.cam.2021.113753 |
[8] | M. P. Calvo, J. M. Sanz-Serna, High order symplectic Runge-Kutta-Nyström methods, SIAM J. Sci. Comput., 14 (1993), 1237–1252. https://doi.org/10.1137/0914073 doi: 10.1137/0914073 |
[9] | H. Yoshida, Construction of higher order symplectic integrators, Phys. Lett. A, 150 (1990), 262–268. https://doi.org/10.1016/0375-9601(90)90092-3 doi: 10.1016/0375-9601(90)90092-3 |
[10] | Ch. Tsitouras, A tenth order symplectic Runge–Kutta–Nyström method, Cele. Mech. & Dynam. Astron., 74 (1999), 223–230. https://doi.org/10.1023/A:1008346516048 doi: 10.1023/A:1008346516048 |
[11] | G. Papageorgiou, Ch. Tsitouras, I. T. Famelis, Explicit Numerov type methods for second order IVPs with oscillating solutions, Int. J. Modern Phys. C, 12 (2001), 657–666. https://doi.org/10.1142/S0129183101001869 doi: 10.1142/S0129183101001869 |
[12] | R. W. Brankin, I. Gladwell, J. R. Dormand, P. J. Prince, W. L. Seward, ALGORITHM 670: A Runge-Kutta-Nyström Code, ACM T. Math. Software, 15 (1989), 31–40. https://doi.org/10.1145/62038.69650 doi: 10.1145/62038.69650 |
[13] | J. C. Butcher, On Runge-Kutta processes of high order, J. Aust. Math. Soc., 4 (1964), 179–194. https://doi.org/10.1017/S1446788700023387 doi: 10.1017/S1446788700023387 |
[14] | V. N. Kovalnogov, R. V. Fedorov, M. T. Karpukhina, M. I. Kornilova, T. E. Simos, Ch. Tsitouras, Runge-Kutta-Nystrom methods of eighth order for addressing Linear Inhomogeneous problems, J. Comput. Appl. Maths., 419 (2022), 114778. https://doi.org/10.1016/j.cam.2022.114778 doi: 10.1016/j.cam.2022.114778 |
[15] | Ch. Tsitouras, I. T. Famelis, Symbolic derivation of Runge-Kutta-Nyström order conditions, J. Math. Chem., 46 (2009), 896–912. https://doi.org/10.1016/j.jsc.2003.07.001 doi: 10.1016/j.jsc.2003.07.001 |
[16] | V. N. Kovalnogov, A. F. Matveev, D. A. Generalov, T. V. Karpukhina, T. E. Simos, Ch. Tsitouras, Runge-Kutta-Nystrom Pairs of Orders $8(6)$ for Use in Quadruple Precision Computations, Mathematics, 11 (2023), 891. https://doi.org/10.3390/math11040891 doi: 10.3390/math11040891 |
[17] | R. M. Storn, K. V. Price, Differential evolution–-a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341–359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328 |
[18] | K. V. Price, R. M. Storn, J. A. Lampinen, Differential evolution, A practical Approach to Global Optimization, Berlin, Springer-Verlag, 2005. https://doi.org/10.1007/3-540-31306-0 |
[19] | R. M. Storn, K. V. Price, A. Neumaier, J. V. Zandt, DeMat, Available online: https://github.com/mikeagn/DeMatDEnrand (accessed on 17 January 2024). |
[20] | Matlab, MATLAB version 7.10.0, Natick, Massachusetts: The MathWorks Inc., 2010. |
[21] | Wolfram Research, Inc., Mathematica, Version 11.3.0, Champaign, IL, 2018. |
[22] | L. F. Shampine, Some practical Runge-Kutta formulas, Math. Comput., 46 (1986), 135–150. https://doi.org/10.2307/2008219 doi: 10.2307/2008219 |
[23] | M. K. Horn, Developments in high order Runge-Kutta-Nystrom formulas, Dissertation: The University of Texas, 1977. |
[24] | P. J. Van der Houwen, B. P. Sommeijer, Explicit Runge-Kutta (Nyström) methods with reduced phase errors for computing oscillating solutions, SIAM J. Numer. Anal., 24 (1987), 595–617. https://doi.org/10.1137/0724041 doi: 10.1137/0724041 |
[25] | Ch. Tsitouras, Explicit Two-Step Methods for Second-Order Linear IVPs, Comput. Math. Appl., 43 (2002), 943–949. https://doi.org/10.1016/S0898-1221(02)80004-9 doi: 10.1016/S0898-1221(02)80004-9 |
[26] | T. E. Simos, Ch. Tsitouras, Explicit, Ninth Order, Two Step Methods for solving Inhomogeneous Linear problems $x^{\prime \prime }(t) = \Lambda x(t)+f(t)$, Appl. Numer. Math., 153 (2020), 344–351. https://doi.org/10.1016/j.apnum.2020.03.003 doi: 10.1016/j.apnum.2020.03.003 |