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1. Introduction

In this context, we a ·re examining specific Second-o ·rder Initial Value P ·roblems (IVP) desc ·ribed by
the following equation:

ψ′′ = ϕ(t, ψ), ψ(t0) = ψ0, and ψ′(t0) = ψ′0 (1.1)

In this scena ·rio, ϕ : R × Rm → Rm rep ·resents a function that is both continuous and diffe ·rentiable, and
we have (ψ0, ψ

′
0) ∈ R2m.

Our app ·roach involves app ·roximating the solution to p ·roblem (1.1) at a se ·ries of distinct points(
tn, ψn, ψ

′
n
)

using an explicit Runge-Kutta-Nyst ·röm method with an algeb ·raic o ·rder denoted as p. He ·re
is an overview of the method’s structure:

ϕi = ϕ(tn + λiκn, ψn + λiκnψ
′
n + κ

2
n

i−1∑
j=1

θi jϕ j), i = 1, 2, · · · , s

ψn+1 = ψn + κnψ
′
n + κ

2
n
∑s

i=1 ζiϕi,

ψ′n+1 = ψ
′
n + κn

∑s
i=1 ζ

′
iϕi,

whe ·re κn = tn+1 − tn, rep ·resenting the step size. Throughout the last five decades, the ·re has been
a pe ·rsistent and lasting fascination with these techniques, as illust ·rated by the cont ·ributions of E.
Fehlbe ·rg [1], Do ·rmand and colleagues [2, 3], El-Mikkawy and Rahmo [4], Papageo ·rgiou and his team
[5], Papakostas and collaborators [6], and Simos along with others [7]. Fu ·rthermore, the ·re have been
int ·roductions of RKN methods boasting unique cha ·racteristics. Houven and colleagues delved into
RKN methods that minimize phase lags, while Calvo and Sanz-Se ·rna [8], Yoshida [9], and Tsitou ·ras
[10] devised RKN algo ·rithms with the symplectic att ·ribute. Numerov type methods may also be
selected for addressing such problems [11].

In the upcoming discussion, we establish the value of p as eight and augment this app ·roach with
an additional fo ·rmula of sixth o ·rder. As a result, we also compute a fifth-o ·rder estimate, utilizing the
same values of ϕi in the following manner:

ψ̂n+1 = ψn + κnψ
′
n + κ

2
n
∑s

i=1 ζ̂iϕi,

ψ̂′n+1 = ψ
′
n + κn

∑s
i=1 ζ̂

′
iϕi.

In all instances, we utilize the mo ·re p ·recise app ·roximations, namely ψn and ψ′n, to p ·rogress in time
with the solutions.

Consequently, we de ·rive an er ·ror estimate as:

µ = ∥ψn+1 − ψ̂n+1∥ = O(κ7).

We then make a compa ·rison between µ and tolerance τ, a sm·all positive value specified by the user.
This user-defined v·alue, refe ·rred to as the tole ·rance, enables us to estimate the length of the upcoming
step using the following fo ·rmula:

κn+1 = 0.9 · κn ·

(
τ

µ

)1/7

, (1.2)
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The p ·rocedure for adjusting this step is a widely accepted p ·ractice for RKN8(6) pai ·rs [2, 12]. If τ is
less than µ, we abstain f ·rom advancing the solution. Instead, we essentially reite ·rate the cu ·rrent step,
but this time, we employ κn+1 as the updated, sho ·rter step size, replacing κn.

For rep ·resenting the coefficients, the Butcher tableau serves as a valuable tool [13]. Consequently,
the method is structured as:

λ Θ

ζ, ζ̂
ζ′, ζ̂′

In this a ·rrangement, Θ ∈ Rs×s, and ζT, ζ̂T, ζ′T, ζ̂′T, λ ∈ Rs, with the weights represented as row vectors.
In the following context, we consider a pair involving nine st·ages (s = 9). The Butcher t·ableau

given in Table 1 displ·ays its coefficients.

Table 1. The Butcher t·ableau associated with the 9 st·ages RKN pairs sharing orders 8(6).

0
λ2 θ21

λ3 θ31 θ32

λ4 θ41 θ42 θ43

λ5 θ51 θ52 θ53 θ54

λ6 θ61 θ62 θ63 θ64 θ65

λ7 θ71 θ72 θ73 θ74 θ75 θ76

1 θ81 θ82 θ83 θ84 θ85 θ86 θ87

1 θ91 θ92 θ93 θ94 θ95 θ96 θ97 0
8th-order ζ ζ1 0 ζ3 ζ4 ζ5 ζ6 ζ7 0 0
6th-order ζ̂ ζ̂1 0 ζ̂3 ζ̂4 ζ̂5 ζ̂6 ζ̂7 0 0
8th-order ζ′ ζ′1 0 ζ′3 ζ′4 ζ′5 ζ′6 ζ′7 ζ′8 ζ′9
6th-order ζ̂′ ζ̂′1 0 ζ̂′3 ζ̂′4 ζ̂′5 ζ̂′6 ζ̂′7 ζ̂′8 ζ̂′9

RKN pai ·rs with o ·rders eight and six, effectively utilizing eight st·ages per step, we ·re investigated
in [3] and [6]. The pai ·rs given the ·re may rep ·resented with the same Table 1 but with θ9 j = ζ j for
j = 1, 2, · · · , 8. By employing such a technique, we only requi ·re eight stages per step, as the final
stage is recycled as the fi ·rst stage in the subsequent step. This is commonly refe ·rred to as FSAL, which
stands for “Fi ·rst Stage As Last”.

Eighth-o ·rder RKN methods with only seven st·ages per step have been developed exclusively for the
specific c·ase of line·ar inhomogeneous p ·roblems, as mentioned in [14].

2. Runge-Kutta-Nyström methods of eighth order

We utilize an RKN method for (1.1) and make use of the Taylor series exp·ansions for ψ(tn+κ)−ψn+1

and ψ′(tn + κ) − ψ′n+1. When aligning expressions up to h8 for an eighth-order method, the subsequent
outcomes are derived:

ψ(tn + κ) − ψn+1 = κ
2ξ2,1G2,1 + κ

3ξ3,1G3,1 + · · · + κ
8 (
ξ8,1G8,1 + ... + ξ8,20G8,20

)
+ O

(
κ9

)
(2.1)
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ψ′(tn + κ) − ψ′n+1 = κξ̃1,1G1,1 + κ
2ξ̃2,1G2,1 + · · · + κ

8
(
ξ̃8,1G8,1 + ... + ξ̃8,36G8,36

)
+ O

(
κ9

)
(2.2)

The exp ·ressions ξi j depend on ζ,Q, λ, while ξ̃i j a ·re contingent on ζ′,Q, λ. An algo ·rithm for
their symbolic de ·rivation is p ·rovided in [15]. The exp ·ressions Gi j involve elementa ·ry diffe ·rentials
conce ·rning ψ′, ϕ, and their pa ·rtial de ·rivatives. These elementa ·ry diffe ·rentials are inherent to the
p ·roblem and are beyond the method’s cont ·rol. However, for an eighth-o ·rder RKN method, it becomes
necessary to elimin·ate the coefficients ξi j and ξ̃i j in the exp ·ressions (2.1-2.2) to achieve the desired
level of accuracy. In T·able 2, we enumerate the quantity of order conditions, which encompass both ξi j

and ξ̃i j for e·ach order. For instance, in a third algebraic order method, we need to satisfy 0 + 1 + 1 = 2
equations for ψ and an additional 1 + 1 + 2 = 4 order conditions for ψ′.

Table 2. Number of equ·ations of conditions for RKN methods.

order
method number of︸      ︷︷      ︸ - order→ 1 2 3 4 5 6 7 8 9 10

RKN order conditions for ψ 0 1 1 2 3 6 10 20 36 72
order conditions for ψ′ 1 1 2 3 6 10 20 36 72 137

Upon examination of the Butcher tableau presented above, and in consideration of the available
coefficients for a nine-stage method, when compared to the order conditions up to the eighth order as
indicated in Table 2, it becomes evident that we have an insufficient number of coefficients. Therefore,
we proceed by introducing several simplifying assumptions aimed at significantly reducing the number
of order conditions.

First and foremost, we establish the equation:

ζ = ζ′ · (Is − λ), (2.3)

Here, Is ∈ R
s×s represents the identity matrix, and Λ = diag(λ). With this assumption in place, we

automatically satisfy the order conditions for ψ after removing the equations of the same order for ψ′.
Our primary objective is to eliminate only ξ̃i j concerning ζ′,Θ, λ.

Once again, when we sum the values in the last row of Table 2, it becomes apparent that we still
have an excess of conditions compared to the available coefficients. Hence, we proceed by introducing
the following assumptions:

Θ · I =
1
2
λ2, Θ · λ =

1
6
λ3, Θ · λ2 =

1
12
λ4, (2.4)

Here, λi signifies componentwise matrix multiplication (i.e., Hadamard multiplication), while λ0 =

I = [1, 1, · · · , 1]T ∈ Rs. It’s important to note that this multiplication operation takes precedence over
the dot product.

Additionally, we take into account the row simplification condition for RKN methods.

ζ′ · (Θ + Λ −
1
2

(λ ◦ λ) −
1
2

Is) = 0s

with 0s ∈ R
s×s a matrix with zero entries. Finally we introduce the subsidi·ary simplifying assumptions

(ζ · Θ)2 = 0, (ζ′ · Θ)2 = 0, (ζ′ · (λ ◦ λ) · Θ)2 = 0, (ζ̂ · Θ)2 = 0.
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Subsequently, we significantly reduce the quantity of order conditions, allowing us to proceed with
the derivation of the coefficients for an eighth-order method (namely, ζ, ζ′,Θ and λ) using the following
algorithm.

BEGIN ALGORITHM
Select arbitr·ary v·alues for the coefficients ζ′9, θ85, θ86, θ87, θ92, λ4, λ5, λ6 and λ7.
Then compute successively and explicitly

λ3 =


15 − 20λ4 − 20λ5 + 28λ4λ5 − 20λ6 + 28λ4λ6 + 28λ5λ6 − 42λ4λ5λ6

−20λ7 + 28λ4λ7 + 28λ5λ7 − 42λ4λ5λ7 + 28λ6λ7

−42λ4λ6λ7 − 42λ5λ6λ7 + 70λ4λ5λ6λ7


2(10 − 14λ4 − 14λ5 + 21λ4λ5 − 14λ6 + 21λ4λ6 + 21λ5λ6

−35λ4λ5λ6 − 14λ7 + 21λ4λ7 + 21λ5λ7 − 35λ4λ5λ7

+21λ6λ7 − 35λ4λ6λ7 − 35λ5λ6λ7 + 70λ4λ5λ6λ7)


λ2 =

1
2
λ3

Solve Vandermonde equations

ζ′ · e = 1, ζ′ · λ =
1
2
, ζ′ · λ2 =

1
3
, ζ′ · λ3 =

1
4
,

ζ′ · λ4 =
1
5
, ζ′ · λ5 =

1
6
, ζ′ · λ6 =

1
7
,

for ζ′1, ζ
′
3, ζ
′
4, ζ
′
5, ζ
′
6, ζ
′
7, ζ
′
8. The last Vandermonde equation ζ′ · λ7 = 1

8 since the choice of λ3 inherently
fulfills this condition. Then the vector ζ is found explicitly from (2.3).

Solve (Θ · λ)4 =
λ2

4
2 , (Θ · λ2)4 =

λ3
4

6 , for θ42 and θ43.

Solve (ζ · Θ)2 = 0, (ζ′ · Θ)2 = 0, (ζ′ · (λ ◦ λ) · Θ)2 = 0 and (ζ̂′ · Θ)2 = 0 for θ72, θ62, θ52, θ82.

Solve the following three integral equations

ζ′ · (λ − Is) · (Λ − λ7Is) · Θ · (Λ − λ3Is).(Λ − λ4Is) · λ

=

∫ 1

0
(x − 1)(x − Λ7)

∫ x

0

∫ x

0
(x − x3)(x − λ4)xdxdxdx,

ζ′ · (Λ − Is) · Θ · (Λ − λ3Is) · (Λ − λ4Is).(Λ − λ5Is) · λ

=

∫ 1

0
(x − 1)

∫ x

0

∫ x

0
(x − x3)(x − λ4)(x − λ5)xdxdxdx,

ζ′ · (Λ − Is) · Θ · (Λ − λ3Is) · (Λ − λ4Is).(Λ − λ5Is) · λ

=

∫ 1

0
(x − 1)

∫ x

0

∫ x

0
(x − x3)(x − λ4)(x − λ5)xdxdxdx,

AIMS Mathematics Volume 9, Issue 2, 4882–4895.
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for θ65, θ76, θ75.

Evaluate θ53, θ54, θ63, θ64, θ73, θ74, θ83, θ84 from (Θ · λ) j =
λ2

j

2 , (Θ · λ2) j =
λ3

j

6 , for j = 5, 6, 7, 8.

Evaluate θ93, θ94, θ95, θ96, θ97 from ζ′ · (Θ + Λ − 1
2 (λ ◦ λ) − 1

2 Is) = 0s for its respective coordinates.
The first column of Θ is found by

θ j1 =
λ2

j

2
−

j−1∑
k=2

θ jk, j = 2, 3, · · · , 9.

The vector ζ̂′ comes after solving the corresponding Vandermonde equations along with a remaining
integral equation

END OF ALGORITHM

It is worth noting that this streamlined procedure has never been presented before. It proved to be
highly advantageous in our process of deriving the pair.

3. Producing a RKN pair of orders 8 and 6

Using the algorithm outlined in the preceding section, we can establish an eighth-order RKN method
while adhering to a practical limitation of eight stages per step. This method presents us with six free
parameters, which we can leverage to optimize our new approach. Our primary objective is to minimize
the terms related to the principal error components, specifically focusing on the Euclide·an norm of the
ninth-order coefficients e9 j, : j = 1, 2, · · · , 36 and ẽ9 j, : j = 1, 2, · · · , 72, as they manifest in the series
exp·ansions (2.1-2.2).

In cases where double precision arithmetic is employed, the typical aim is to maintain the
coefficients at the smallest feasible magnitude. Coefficients on the order of 103, function values at
the scale of 102, and a tolerance level of ε = 10−11 might strain the available digits. Nevertheless, when
employing quadruple precision, we can effectively handle these more substantial coefficients while still
preserving tolerances as low as around 10−23. Allowing the coefficients to grow opens up the possibility
for initiating a fresh minimization process [16].

Here we focus on double precision computations. In order to address our task, we make use of
the Differential Evolution (DE) Algorithm [17, 18]. Differential Evolution represents an iterative
process, where at each iteration, known as gener·ation g, we work with a collective of ”individuals”(
ζ̂′9

(g), θ
(g)
85 , · · · , λ

(g)
4 , λ

(g)
5 , λ

(g)
6 , λ

(g)
7

)
i
, i = 1, 2, · · · , P, with P being the popul·ation size. An initial

popul·ation
(
ζ′9

(0), θ(0)
85 , · · · , λ

(0)
7

)
i
, i = 1, 2, · · · , P, is initially cre·ated in a random manner during the

method’s initial step. The fitness function we utilize is defined as follows:

s =
√
ξ2

9,1 + ξ
2
9,2 + · · · + ξ

2
9,36 +

√
ξ̃2

9,1 + ξ̃
2
9,2 + · · · + ξ̃

2
9,72 =

∥∥∥Ξ(9)
∥∥∥

2
+

∥∥∥Ξ̃′(9)
∥∥∥

2

This function quantifies the error associated with a ninth-order method and must be minimized for
each individual within the initial population. The optimization process encompasses three phases:
Differentiation, Crossover, and Selection. We utilized the DeMat software [19] implemented in
MATLAB [20] to execute this technique. Achieving success in a single optimization run is not
guaranteed; hence, we ran the procedure multiple times to obtain a solution. Subsequently, the results
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were further refined to enhance the level of accuracy, employing multi-precision arithmetic and the
NMinimize function within Mathematica [21].

Details regarding the coefficients of the generated method and the integration algorithm utilized in
the numerical tests are available in Table 3.

Table 3. Coefficients of the new pair RKNT8(6)9.

0

50636389
704362245

3599715
1393043879

101272778
704362245

2007339
582610979

4014678
582610979

5601632
13092959

205315767
2298909916 −

173142329
977467009

138681326
773264719

25660393
34815795 −723714874

549460595
2439854271
741682162 −

1702861157
866963471

279702247
1062332866

44986679
52545954

17756357945
864039792 −

52998327383
1059967031

52493566912
1639341693 −

3222015486
1383105619

134954744
1084005543

14200983
14248358 −24139417776

1745827307
45957899000
1361313679 −

13333762455
626503381

1619615115
888431528

6521545
391548217

9620282
1413707653

1 −17114373398
1072840941

17619232321
574444270 −

8358258209
674963318 −

1686023083
532011477 −

187948636
42720231

361348112
36989561 −70523021

17471878

1 −18380168871
910042447

163509818
17684341

23284410832
834563425 −

30101365272
1318750783 −

18886348365
884006261

38539543917
814907704 −

11547380395
590596501 0 0

8th-order ζ 34671799
842260068 0 144249888

734327161
109052807
596751465

46947293
666421313

3728242
610500809

2768777
893496930 0 0

6th-order ζ̂ 1396355
33920341 0 138043832

702739113
251710491
1377376774

80696586
1145573765

4305634
704519725

1314393
424316254 0 0

8th-order ζ′ 34671799
842260068 0 283604130

1236153301
304520675
953442212

1497971628
5591689039

47303577
1114338140

969222007
1039950713 −

1290766697
1230666728

8502977
39270418

6th-order ζ̂′ 1396355
33920341 0 304714768

1328178045
158732101
496977984

28494118
106371239

33382235
785800536

516462388
554354445 −

1253055931
1195253697

171049779
790529362

In
http://users.uoa.gr/˜tsitourasc/rknt869.m

we included the algorithm of the previous section and the coefficients of the new pair in Mathematica
format.

Table 4 provides an overview of the fundamental characteristics of the principal eighth-order RKN
pairs examined in this context. The norms presented in the table correspond to the Euclide·an norm
of the ninth-order coefficients (i.e., of κ9) in expressions (2.1-2.2). It is our expectation that the new
method will excel in comparison to others by significantly reducing local truncation errors.

Following the theoretical analysis given in [22] we deduce that the efficiency ratio is

8
9
·

(
8.3 · 10−7

1.5 · 10−8

)1/8

≈ 1.47,

AIMS Mathematics Volume 9, Issue 2, 4882–4895.
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against DEP8(6). i.e. DEP8(6) is theoretically about 47% costlier that our new proposal even if we
need a stage more per step. In [6] a pair with smaller principal truncation error was presented, namely
PT8(6). Similarly, it can be shown that PT8(6) is about 21% costlier.

Table 4. Basic characteristics of the RKN Pairs considered.

pair stages FSAL
∥∥∥Ξ(9)

∥∥∥
2

∥∥∥Ξ̃′(9)
∥∥∥

2

PT8(6) [6] 8 YES 1.7 · 10−7 1.6 · 10−7

DEP8(6) [3] 8 YES 8.3 · 10−7 8.2 · 10−7

RKNT8(6)9 9 YES 1.5 · 10−8 1.3 · 10−8

To explore the linear stability, we employ the methodologies outlined by Horn [23] or Dormand et
al. [2]. Consequently, we examine the test problem ψ′′ = µ2ψ (where µ is a complex number). Taking
in account that ψ′ = µψ, we deduce the recursive relations for ψ and ψ′ as follows:

ψn+1 =

{
1 + ν2ζ

(
I − ν2Θ

)−1
e + ν

(
1 + ν2ζ

(
I − ν2Θ

)−1
λ
)}
· ψn = R (ν) · ψn,

ψ′n+1 =

{
νζ′

(
I − ν2Θ

)−1
e +

(
1 + ν2ζ′

(
I − ν2Θ

)−1
λ
)}
· ψ′n = R′ (ν) · ψ′n,

with ν = κµ. Consequently, there exist two absolute stability regions for RKN methods, specifically
for ψ and ψ′. These regions are determined by the conditions |R(ν)| < 1 and |R′(ν)| < 1. The
corresponding graphical representations are provided in Figure 1, where a comparison is made among
the pairs presented in Table 4.

This type of stability analysis is associated with the A-stability property of Runge–Kutta methods.
Then we may use higher steplengths and avoid catastrophic consequences. But here, we are interested
in using rather short steps and achieve high accuracy. Thus, stability plays a lesser role in our goal.

As an alternative, we can investigate stability concerning the test problem ψ′′ = −µ2ψ [24], which
helps identify intervals of periodicity. Our primary focus in this context is on achieving exceptionally
high levels of accuracy. Consequently, the significance of extended stability regions diminishes in our
pursuit of such precision.

AIMS Mathematics Volume 9, Issue 2, 4882–4895.
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Figure 1. Absolute stability regions for y (left), for y′ (right).

4. Numerical results

4.1. The methods

The explicit eighth-order methods chosen for testing include the following:

• PT8(6) : A RKN p·air of orders 8(6) given in [6].
• DEP8(6): A RKN p·air of orders 8(6) detailed in [3].
• RKNT8(6)9: The RKN p·air of orders 8(6) introduced in this study.

These pairs were executed in the standard manner, with an error estimate µ evaluated at each step.
Subsequently, we applied formula (1.2) to determine the new step size, considering their error’s
asymptotic behavior as O(κ7). All simulations were conducted utilizing the framework described in
the preceding section. DEP8(6) is so far the most widely known RKN pair of such orders for all-
purpose problems. Its outstanding results justify our choice.

4.2. The problems

In our experiments, we opted for several widely recognized problems sourced from existing
literature. These problems were tackled with tolerances spanning from τ = 10−5, 10−6 to 10−11. For
each of these runs, we meticulously recorded the quantity of steps taken (both accepted and rejected)
and the highest glob·al error observed at the grid points. The findings, featuring stage counts in relation
to errors, have been visualized in a variety of efficiency plots (in logarithmic scales). All computational
tasks were carried out using MATLAB.
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4.2.1. Model problem

One of the initial test problems is a Model equation, given by:

ψ′′ = −ψ(t), ψ(0) = 1, ψ′(0) = 0,

with an established theoreti·cal solution of

ψ(t) = cos(t).

We conducted the integration for this problem within the interval t ∈ [0, 10π]. The corresponding
efficiency plots can be found in the upper left section of Figure 2.
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Figure 2. Efficiency plots for the problems under consideration.

AIMS Mathematics Volume 9, Issue 2, 4882–4895.



4892

4.2.2. Inhomogeneous Line·ar system: [25]

This differential equation is given as follows:

ψ′′ =

 1
100 − 1

10

− 1
10

1
100

 · ψ +
[

0
sin t

]
,

with the theoretic·al solution being:

ψ =

 cos 3
10 t − 1000

10101 sin t

cos 3
10 t − 10100

10101 sin t


4.2.3. Simple Line·ar system

This system of differential equation is described as follows:

ψ′′ =

 −3
4

1
4

1
4 −3

4

 · ψ
with the theoretic·al solution being:

ψ =

 cos t + sin t

− cos t − sin t


Integration of this problem was carried out within the interval t ∈ [0, 10π], and the corresponding
efficiency plots have been depicted in the lower left section of Figure 2.

4.2.4. Wave equation

We finally consider the Wave equation of the form [26],

∂2ψ

∂t2 = 4
∂2ψ

∂r2 + sin t · cos
(
πr

100

)
, 0 ≤ r ≤ 100, t ∈ [0, 10π],

∂ψ

∂r
(t, 0) =

∂ψ

∂r
(t, 100) = 0

ψ (0, r) ≡ 0,
∂ψ

∂t
(0, r) =

1002

4π2 − 1002 cos
πr

100
,

with exact solution

ψ (t, r) =
1002

4π2 − 1002 · sin(t) · cos
πr

100
.

We apply semi-discretization to ∂2ψ

∂r2 using fourth-order symmetric differences at interior points, and
employ one-sided differences of the same order at the boundaries. This leads to our resulting system:
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ψ′′1
ψ′′2

ψ′′N+1


=

4
(∆r)2



−415
72 8 −3 8

9 −1
8 0 · · ·

257
144 −10

3
7
4 −2

9
1

48 0 · · ·

− 1
12

4
3 −5

2
4
3 − 1

12

...

0 . . .
. . .

. . .
. . .

. . . 0
... − 1

12
4
3 −5

2
4
3 − 1

12

· · · 0 1
48 −2

9
7
4 −10

3
257
144

· · · 0 −1
8

8
9 −3 8 −415

72



·



ψ1

ψ2
...

ψN+1



+ sin t ·



cos
(

0·∆r
r · π

)
cos

(
1·∆r

r · π
)

...

cos
(

N·∆r
r · π

)


.

By selecting ∆r as 1
4 , we establish a linear system with constant coefficients where N = 401.

Subsequently, we approximate ψ1 as ψ(t, 0), ψ2 as ψ(t,∆r), ψ3 as ψ(t, 2∆r), and so forth up to ψ401

as ψ(t, 400∆r).
We solved the aforementioned equation within the time interval [0, 10π], using the same tolerance

levels as previously described. The efficiency graph, which records the st·ages utilized by the four
pairs against the maximum global errors observed across the entire grid, is presented in the lower right
section of Figure 2.

The results demonstrate that the new pair outperforms the DEP8(6) pair in the examined problems.
In most cases, the level of accuracy achieved was approximately one digit. The Wave is a mildly-stiff
problem and explicit pairs are not well suited for such type of problems. Even so though, the new
pair seems to get some advantage in efficiency. These findings highlight that when it’s essential to
attain high levels of precision in addressing specific second-order initial value problems (IVPs), the
new method significantly excels over previous approaches.

5. Conclusions

In this manuscript, we examined Runge-Kutta-Nyström pairs meticulously tailored for tackling
second-order Initial Value Problems in situations where the first derivative is absent. We harnessed
the substantial handling capacity of the coefficients available after adding a stage. The primary
innovation of our endeavor lies in the remarkably reduced truncation error terms of the suggested
method, distinguishing it from the eighth-order pairs previously documented in the literature. Our
diligent numerical testing of pertinent problems substantiates the merit of our approach.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

AIMS Mathematics Volume 9, Issue 2, 4882–4895.



4894

Acknowledgements

This work was supported by the Key Science and Technology Research of Henan Province,
China (Grant No. 222102210279, 232102210129, 232102210076, 232102210074, 222102210232 and
232102211038) and Postgraduate Joint Training Base Project of Henan Province, China (Grant No.
YJS2022JD45).

Conflict of interest

No conflicts of interest are declared by the authors

References

1. E. Fehlberg, Eine Runge-Kutta-Nystrom-Formel 9-ter Ordnung rnit Schrittweitenkontrolle
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