In this paper, we prove a prime number theorem in short intervals for the Rankin-Selberg $ L $-function $ L(s, \phi\times\phi) $, where $ \phi $ is a fixed dihedral Maass newform. As an application, we give a lower bound for the proportion of primes in a short interval at which the Hecke eigenvalues of the dihedral form are greater than a given constant.
Citation: Bin Guan. A prime number theorem in short intervals for dihedral Maass newforms[J]. AIMS Mathematics, 2024, 9(2): 4896-4906. doi: 10.3934/math.2024238
In this paper, we prove a prime number theorem in short intervals for the Rankin-Selberg $ L $-function $ L(s, \phi\times\phi) $, where $ \phi $ is a fixed dihedral Maass newform. As an application, we give a lower bound for the proportion of primes in a short interval at which the Hecke eigenvalues of the dihedral form are greater than a given constant.
[1] | A. A. Karatsuba, M. B. Nathanson, Basic analytic number theory, Berlin, Heidelberg: Springer, 1993. https://doi.org/10.1007/978-3-642-58018-5 |
[2] | J. Liu, Y. Ye, Perron's formula and the prime number theorem for automorphic $L$-functions, Pure Appl. Math. Q., 3 (2007), 481–497. https://doi.org/10.4310/PAMQ.2007.v3.n2.a4 doi: 10.4310/PAMQ.2007.v3.n2.a4 |
[3] | Y. Motohashi, On sums of Hecke-Maass eigenvalues squared over primes in short intervals, J. London Math. Soc., 91 (2015), 367–382. https://doi.org/10.1112/jlms/jdu079 doi: 10.1112/jlms/jdu079 |
[4] | M. Coleman, A zero-free region for the Hecke $L$-functions, Mathematika, 37 (1990), 287–304. https://doi.org/10.1112/S0025579300013000 doi: 10.1112/S0025579300013000 |
[5] | A. Sankaranarayanan, J. Sengupta, Zero-density estimate of $L$-functions attached to Maass forms, Acta Arith., 127 (2007), 273–284. https://doi.org/10.4064/aa127-3-5 doi: 10.4064/aa127-3-5 |
[6] | Z. Xu, A new zero-density result of $L$-functions attached to Maass forms, Acta Math. Sin. English Ser., 27 (2011), 1149–1162. https://doi.org/10.1007/s10114-011-8310-0 doi: 10.1007/s10114-011-8310-0 |
[7] | R. Godement, H. Jacquet, Zeta functions of simple algebras, Berlin, Heidelberg: Springer, 1972. https://doi.org/10.1007/BFb0070263 |
[8] | P. Humphries, J. Thorner, Towards a $ {\rm{GL}} _n$ variant of the Hoheisel phenomenon, Trans. Amer. Math. Soc., 375 (2022), 1801–1824. https://doi.org/10.1090/tran/8544 doi: 10.1090/tran/8544 |
[9] | T. C. Watson, Rankin triple products and quantum chaos, arXiv: 0810.0425, 2008. https://doi.org/10.48550/arXiv.0810.0425 |
[10] | H. Iwaniec, E. Kowalski, Analytic number theory, Providence, RI: American Mathematical Society, 2004. https://doi.org/10.1090/coll/053 |
[11] | D. Bump, Automorphic forms and representations, Cambridge: Cambridge University Press, 1997. https://doi.org/10.1017/CBO9780511609572 |
[12] | Z. Rudnick, P. Sarnak, Zeros of principal $L$-functions and random matrix theory, Duke Math. J., 81 (1996), 269–322. https://doi.org/10.1215/S0012-7094-96-08115-6 doi: 10.1215/S0012-7094-96-08115-6 |
[13] | K. Soundararajan, J. Thorner, Weak subconvexity without a Ramanujan hypothesis, Duke Math. J., 168 (2019), 1231–1268. https://doi.org/10.1215/00127094-2018-0065 doi: 10.1215/00127094-2018-0065 |
[14] | J. Hoffstein, D. Ramakrishnan, Siegel zeros and cusp forms, Int. Math. Res. Not., 1995 (1995), 279–308. https://doi.org/10.1155/S1073792895000225 doi: 10.1155/S1073792895000225 |
[15] | H. Maass, Über eine neue Art von nichtanalytischen automorphen Funktionen und die Bestimmung Dirichletscher Reihen durch Funktionalgleichungen, Math. Ann., 121 (1949), 141–183. https://doi.org/10.1007/BF01329622 doi: 10.1007/BF01329622 |
[16] | W. Luo, $L^4$-norms of the dihedral Maass forms, Int. Math. Res. Not., 2014 (2014), 2294–2304. https://doi.org/10.1093/imrn/rns298 doi: 10.1093/imrn/rns298 |
[17] | B. Huang, S. Lester, Quantum variance for dihedral Maass forms, Trans. Amer. Math. Soc., 376 (2023), 643–695. https://doi.org/10.1090/tran/8780 doi: 10.1090/tran/8780 |
[18] | P. Humphries, R. Khan, On the random wave conjecture for dihedral Maaß forms, Geom. Funct. Anal., 30 (2020), 34–125. https://doi.org/10.1007/s00039-020-00526-4 doi: 10.1007/s00039-020-00526-4 |
[19] | A. Ingham, On the estimation of $N(\sigma, T)$, Quart. J. Math. Oxford Ser., 11 (1940), 291–292. https://doi.org/10.1093/qmath/os-11.1.201 doi: 10.1093/qmath/os-11.1.201 |
[20] | M. Huxley, On the difference between consecutive primes, Invent. Math., 15 (1972), 164–170. https://doi.org/10.1007/BF01418933 doi: 10.1007/BF01418933 |
[21] | H. Montgomery, Zeros of $L$-functions, Invent. Math., 8 (1969), 346–354. https://doi.org/10.1007/BF01404638 doi: 10.1007/BF01404638 |
[22] | H. Montgomery, Ten lectures on the interface between analytic number theory and harmonic analysis, Providence, RI: American Mathematical Society, 1994. https://doi.org/10.1090/cbms/084 |