Research article Special Issues

On a class of Lyapunov's inequality involving $ \lambda $-Hilfer Hadamard fractional derivative

  • Received: 26 July 2023 Revised: 30 September 2023 Accepted: 25 October 2023 Published: 23 January 2024
  • MSC : 34A08, 34A40, 26D10, 33E12

  • In this paper, we presented and proved a general Lyapunov's inequality for a class of fractional boundary problems (FBPs) involving a new fractional derivative, named $ \lambda $-Hilfer. We proved a criterion of existence which extended that of Lyapunov concerning the ordinary case. We used this criterion to solve the fractional differential equation (FDE) subject to the Dirichlet boundary conditions. In order to do so, we invoked some properties and essential results of $ \lambda $-Hilfer fractional boundary value problem (HFBVP). This result also retrieved all previous Lyapunov-type inequalities for different types of boundary conditions as mixed. The order that we considered here only focused on $ 1 < r\leq 2 $. General Hartman-Wintner-type inequalities were also investigated. We presented an example in order to provide an application of this result.

    Citation: Lakhdar Ragoub, J. F. Gómez-Aguilar, Eduardo Pérez-Careta, Dumitru Baleanu. On a class of Lyapunov's inequality involving $ \lambda $-Hilfer Hadamard fractional derivative[J]. AIMS Mathematics, 2024, 9(2): 4907-4924. doi: 10.3934/math.2024239

    Related Papers:

  • In this paper, we presented and proved a general Lyapunov's inequality for a class of fractional boundary problems (FBPs) involving a new fractional derivative, named $ \lambda $-Hilfer. We proved a criterion of existence which extended that of Lyapunov concerning the ordinary case. We used this criterion to solve the fractional differential equation (FDE) subject to the Dirichlet boundary conditions. In order to do so, we invoked some properties and essential results of $ \lambda $-Hilfer fractional boundary value problem (HFBVP). This result also retrieved all previous Lyapunov-type inequalities for different types of boundary conditions as mixed. The order that we considered here only focused on $ 1 < r\leq 2 $. General Hartman-Wintner-type inequalities were also investigated. We presented an example in order to provide an application of this result.



    加载中


    [1] R. A. C. Ferreira, A Lyapunov-type inequality for a fractional boundary value problem, Fract. Calc. Appl. Anal., 16 (2013), 978–984. https://doi.org/10.2478/s13540-013-0060-5 doi: 10.2478/s13540-013-0060-5
    [2] R. A. C. Ferreira, On a Lyapunov-type inequality and the zeros of a certain Mittag-Leffler function, J. Math. Anal. Appl., 412 (2014), 1058–1063. https://doi.org/10.1016/j.jmaa.2013.11.025 doi: 10.1016/j.jmaa.2013.11.025
    [3] R. A. Ferreira, Lyapunov-type inequality for an anti-periodic fractional boundary value problem, Frac. Calc. Appl. Anal., 20 (2017), 284–291. https://doi.org/10.1515/fca-2017-0015 doi: 10.1515/fca-2017-0015
    [4] M. Jleli, B. Samet, On a Lyapunov-type inequality for a fractional differential equation with a mixed boundary condition, J. Appl. Anal., 2014. https://doi.org/10.7153/mia-18-33 doi: 10.7153/mia-18-33
    [5] M. Jleli, M. Kirane, B. Samet, Hartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another function, Discrete Dyn. Nat. Soc., 2017 (2017). https://doi.org/10.1155/2017/5123240 doi: 10.1155/2017/5123240
    [6] M. Jleli, L. Ragoub B. Samet, On a Lyapunov-type inequality for a fractional differential equation under a Robin boundary condition, J. Funct. Space., 2015 (2015). https://doi.org/10.1155/2015/468536 doi: 10.1155/2015/468536
    [7] M. Jleli, B. Samet, Lyapunov-type inequalities for a fractional differential equation with mixed boundary conditions, Math. Inequal. Appl., 18 (2015), 443–451. https://doi.org/10.7153/mia-18-33 doi: 10.7153/mia-18-33
    [8] M. Jleli, M. Kirane, B. Samet, Hartman-Wintner-type inequality for a fractional boundary value problem via a fractional derivative with respect to another function, Discrete Dyn. Nat. Soc., 2017 (2017). https://doi.org/10.1155/2017/5123240 doi: 10.1155/2017/5123240
    [9] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, vol. 204 of North-Holland Mathematics Studies, Elsevier, Amsterdam, The Netherlands, 2006.
    [10] A. M. Liapunov, Problème général de la stabilité du mouvement, Ann. Fac. Sci. Univ. Toulouse, 2 (1907), 203–407.
    [11] J. Rong, C. Bai, Lyapunov-type inequality for a fractional differential equation with fractional boundary conditions, Adv. Differ. Equ., 2015 (2015), 82. https://doi.org/10.1186/s13662-015-0430-x doi: 10.1186/s13662-015-0430-x
    [12] M. Jleli, J. Nieto, B. Samet, Lyapunov-type inequalities for a higher order fractional differential equation with fractional integral boundary conditions, Electron. J. Qual. Theo., 2017 (2017), 16. https://doi.org/10.14232/ejqtde.2017.1.16 doi: 10.14232/ejqtde.2017.1.16
    [13] A. Chidouh, D. F. Torres, A generalized Lyapunov's inequality for a fractional boundary value problem, J. Comput. Appl. Math., 312 (2017), 192–197. https://doi.org/10.1016/j.cam.2016.03.035 doi: 10.1016/j.cam.2016.03.035
    [14] M. Kirane, B. T. Torebek, Lyapunov and Hartman-Wintner type inequalities for a nonlinear fractional boundary value problem with generalized Hilfer derivative, arXiv: 1702.06073, 2017. https://doi.org/10.48550/arXiv.1702.06073
    [15] M. Al-Qurashi, L. Ragoub, Lyapunov's inequality for a fractional differential equation subject to a non-linear integral condition, In: ADVCOMP 2016: The Tenth International Conference on Advanced Engineering Computing and Applications in Sciences, 2016, 98–101.
    [16] M. Al-Qurashi, L. Ragoub, Lyapunov-type inequality for a Riemann-Liouville fractional differential boundary value problem, Hacet. J. Math. Stat., 45 (2016). https://doi.org/10.15672/HJMS.20164517216 doi: 10.15672/HJMS.20164517216
    [17] M. Al-Qurashi, L. Ragoub, Non existence of solutions to a fractional boundary differential equation, J. Nonlinear Sci. Appl., 9 (2016), 2233–2243. https://doi.org/10.22436/jnsa.009.05.27 doi: 10.22436/jnsa.009.05.27
    [18] B. G. Pachpatte, Lyapunov type integral inequalities for certain differential equations, Georgian Math. J., 4 (1997), 1391–1397. https://doi.org/10.1515/GMJ.1997.139 doi: 10.1515/GMJ.1997.139
    [19] S. Panigrahi, Liapunov-type integral inequalities for certain higher-order differential equations, Electron. J. Differ. Eq., 28 (2009), 1–13.
    [20] N. Parhi, S. Panigrahi, Lyapunov-type inequality for higher-order differential equations, Math. Slovaca, 52 (2002), 31–46. https://doi.org/10.1023/A:1021791014961 doi: 10.1023/A:1021791014961
    [21] B. F. Zohra, H. Benaouda, K. Mokhtar, Lyapunov and Hartman-Wintner type Inequalities for a nonlinear fractional BVP with generalized $\Psi$-Hilfer derivative, Math. Meth. Appl. Sci., 2020, 1–13. https://doi.org/10.1002/mma.6590 doi: 10.1002/mma.6590
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(895) PDF downloads(57) Cited by(2)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog