Research article

Determinantal inequalities for block Hadamard product and Khatri-Rao product of positive definite matrices

  • Received: 26 December 2021 Revised: 23 February 2022 Accepted: 28 February 2022 Published: 15 March 2022
  • MSC : 15A45, 47A63

  • In this paper, we first give an alternative proof for a result of Liu et al. in [Math. Inequal. Appl. 20 (2017) 537–542]. Then we present two inequalities for the block Hadamard product and the Khatri-Rao product respectively. The inequalities obtained extend the result of Liu et al.

    Citation: Sheng Dong, Qingwen Wang, Lei Hou. Determinantal inequalities for block Hadamard product and Khatri-Rao product of positive definite matrices[J]. AIMS Mathematics, 2022, 7(6): 9648-9655. doi: 10.3934/math.2022536

    Related Papers:

  • In this paper, we first give an alternative proof for a result of Liu et al. in [Math. Inequal. Appl. 20 (2017) 537–542]. Then we present two inequalities for the block Hadamard product and the Khatri-Rao product respectively. The inequalities obtained extend the result of Liu et al.



    加载中


    [1] D. Choi, Determinantal inequalities of positive definite matrices, Math. Inequal. Appl., 19 (2016), 167–172. http://dx.doi.org/10.7153/mia-19-12 doi: 10.7153/mia-19-12
    [2] R. Horn, C. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 2012.
    [3] R. Horn, R. Mathias, Y. Nakamura, Inequalities for unitarily invariant norms and bilinear matrix products, Linear Multilinear A., 30 (1991), 303–314. http://dx.doi.org/10.1080/03081089108818114 doi: 10.1080/03081089108818114
    [4] M. Günther, L. Klotz, Schur's theorem for a block Hadamard product, Linear Algebra Appl., 437 (2012), 948–956. http://dx.doi.org/10.1016/j.laa.2012.04.002 doi: 10.1016/j.laa.2012.04.002
    [5] S. Kim, J. Kim, H. Lee, Oppenheim and Schur type inequalities for Khatri-Rao products of positive definite matrices, Kyungpook Math. J., 57 (2017), 641–649. http://dx.doi.org/10.5666/KMJ.2017.57.4.641 doi: 10.5666/KMJ.2017.57.4.641
    [6] M. Lin, An Oppenheim type inequalities for a block Hadamard product, Linear Algebra Appl., 452 (2014), 1–6. http://dx.doi.org/10.1016/j.laa.2014.03.025 doi: 10.1016/j.laa.2014.03.025
    [7] M. Lin, Determinantal inequalities for block triangular matrices, Math. Inequal. Appl., 18 (2015), 1079–1086. http://dx.doi.org/10.7153/mia-18-83 doi: 10.7153/mia-18-83
    [8] J. Liu, Q. Wang, F. Sun, Determinantal inequalities for Hadamard product of positive definite matrices, Math. Inequal. Appl., 20 (2017), 537–542. http://dx.doi.org/10.7153/mia-20-36 doi: 10.7153/mia-20-36
    [9] S. Liu, Matrix results on the Khatri-Rao and Tracy-Singh products, Linear Algebra Appl., 289 (1999), 267–277. http://dx.doi.org/10.1016/S0024-3795(98)10209-4 doi: 10.1016/S0024-3795(98)10209-4
    [10] C. Rao, Estimation of heteroscedastic variances in linear models, J. Am. Stat. Assoc., 65 (1970), 161–172. http://dx.doi.org/10.1080/01621459.1970.10481070 doi: 10.1080/01621459.1970.10481070
    [11] F. Zhang, Matrix theory, basic results and techniques, New York: Springer Press, 2011. http://dx.doi.org/10.1007/978-1-4614-1099-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1436) PDF downloads(100) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog