In this paper, we first give an alternative proof for a result of Liu et al. in [Math. Inequal. Appl. 20 (2017) 537–542]. Then we present two inequalities for the block Hadamard product and the Khatri-Rao product respectively. The inequalities obtained extend the result of Liu et al.
Citation: Sheng Dong, Qingwen Wang, Lei Hou. Determinantal inequalities for block Hadamard product and Khatri-Rao product of positive definite matrices[J]. AIMS Mathematics, 2022, 7(6): 9648-9655. doi: 10.3934/math.2022536
In this paper, we first give an alternative proof for a result of Liu et al. in [Math. Inequal. Appl. 20 (2017) 537–542]. Then we present two inequalities for the block Hadamard product and the Khatri-Rao product respectively. The inequalities obtained extend the result of Liu et al.
[1] | D. Choi, Determinantal inequalities of positive definite matrices, Math. Inequal. Appl., 19 (2016), 167–172. http://dx.doi.org/10.7153/mia-19-12 doi: 10.7153/mia-19-12 |
[2] | R. Horn, C. Johnson, Matrix analysis, Cambridge: Cambridge University Press, 2012. |
[3] | R. Horn, R. Mathias, Y. Nakamura, Inequalities for unitarily invariant norms and bilinear matrix products, Linear Multilinear A., 30 (1991), 303–314. http://dx.doi.org/10.1080/03081089108818114 doi: 10.1080/03081089108818114 |
[4] | M. Günther, L. Klotz, Schur's theorem for a block Hadamard product, Linear Algebra Appl., 437 (2012), 948–956. http://dx.doi.org/10.1016/j.laa.2012.04.002 doi: 10.1016/j.laa.2012.04.002 |
[5] | S. Kim, J. Kim, H. Lee, Oppenheim and Schur type inequalities for Khatri-Rao products of positive definite matrices, Kyungpook Math. J., 57 (2017), 641–649. http://dx.doi.org/10.5666/KMJ.2017.57.4.641 doi: 10.5666/KMJ.2017.57.4.641 |
[6] | M. Lin, An Oppenheim type inequalities for a block Hadamard product, Linear Algebra Appl., 452 (2014), 1–6. http://dx.doi.org/10.1016/j.laa.2014.03.025 doi: 10.1016/j.laa.2014.03.025 |
[7] | M. Lin, Determinantal inequalities for block triangular matrices, Math. Inequal. Appl., 18 (2015), 1079–1086. http://dx.doi.org/10.7153/mia-18-83 doi: 10.7153/mia-18-83 |
[8] | J. Liu, Q. Wang, F. Sun, Determinantal inequalities for Hadamard product of positive definite matrices, Math. Inequal. Appl., 20 (2017), 537–542. http://dx.doi.org/10.7153/mia-20-36 doi: 10.7153/mia-20-36 |
[9] | S. Liu, Matrix results on the Khatri-Rao and Tracy-Singh products, Linear Algebra Appl., 289 (1999), 267–277. http://dx.doi.org/10.1016/S0024-3795(98)10209-4 doi: 10.1016/S0024-3795(98)10209-4 |
[10] | C. Rao, Estimation of heteroscedastic variances in linear models, J. Am. Stat. Assoc., 65 (1970), 161–172. http://dx.doi.org/10.1080/01621459.1970.10481070 doi: 10.1080/01621459.1970.10481070 |
[11] | F. Zhang, Matrix theory, basic results and techniques, New York: Springer Press, 2011. http://dx.doi.org/10.1007/978-1-4614-1099-7 |