Let $ {\mathcal{I}_{\alpha, m}} $ be the multilinear $ \theta $-type generalized fractional integrals and $ \vec{b}_{\sigma} $ be the vector with each $ b_{\sigma_{i}} \in \widetilde{{\rm{RBMO}}}\left(\mu\right) $. The boundedness for $ {\mathcal{I}_{\alpha, m}} $ and the iterated multi-commutators $ {\mathcal{I}_{\alpha, m, \vec{b}_\sigma}} $ on Lebesgue spaces over non-homogeneous spaces are showed in this paper.
Citation: Xiangxing Tao, Jiahui Wang. Commutators of multilinear $ \theta $-type generalized fractional integrals on non-homogeneous metric measure spaces[J]. AIMS Mathematics, 2022, 7(6): 9627-9647. doi: 10.3934/math.2022535
Let $ {\mathcal{I}_{\alpha, m}} $ be the multilinear $ \theta $-type generalized fractional integrals and $ \vec{b}_{\sigma} $ be the vector with each $ b_{\sigma_{i}} \in \widetilde{{\rm{RBMO}}}\left(\mu\right) $. The boundedness for $ {\mathcal{I}_{\alpha, m}} $ and the iterated multi-commutators $ {\mathcal{I}_{\alpha, m, \vec{b}_\sigma}} $ on Lebesgue spaces over non-homogeneous spaces are showed in this paper.
[1] | T. Hytönen, A framework for non-homogeneous analysis on metric spaces, and the RBMO space of Tolsa, Publ. Mat., 54 (2010), 485–504. http://dx.doi.org/10.5565/PUBLMAT_54210_10 doi: 10.5565/PUBLMAT_54210_10 |
[2] | X. Fu, D. Yang, W. Yuan, Generalized fractional integrals and their commutators over non-homogeneous metric measure spaces, Taiwanese J. Math., 18 (2014), 509–557. http://dx.doi.org/10.11650/tjm.18.2014.3651 doi: 10.11650/tjm.18.2014.3651 |
[3] | T. Hytönen, D. Yang, D. Yang, The Hardy space $H^1$ on non-homogeneous metric spaces, Math. Proc. Camb. Phil. Soc., 153 (2012), 9–31. https://doi.org/10.1017/S0305004111000776 doi: 10.1017/S0305004111000776 |
[4] | G. Lu, S. Tao, Generalized Morrey spaces over non-homogeneous metric measure spaces, J. Aust. Math. Soc., 103 (2017), 268–278. http://dx.doi.org/10.1017/S1446788716000483 doi: 10.1017/S1446788716000483 |
[5] | R. Xie, L. Shu, A. Sun, Boundedness for commutators of bilinear $\theta$-type Calderón-Zygmund operators on nonhomogeneous metric measure spaces, J. Funct. Space., 2017, 1–10. http://dx.doi.org/10.1155/2017/3690452 doi: 10.1155/2017/3690452 |
[6] | T. Zheng, X. Tao, X. Wu, Bilinear Calderón-Zygmund operators of type $\omega(t)$ on non-homogeneous space, J. Inequal. Appl., 2014, 1–18. http://dx.doi.org/10.1186/1029-242X-2014-113 doi: 10.1186/1029-242X-2014-113 |
[7] | C. Ri, Z. Zhang, Boundedness of $\theta$-type Calderón-Zygmund operators on non-homogeneous metric measure space, Front. Math. China, 11 (2016), 141–153. http://dx.doi.org/10.1007/s11464-015-0464-0 doi: 10.1007/s11464-015-0464-0 |
[8] | S. Liu, D. Yang, D. Yang, Boundedness of Calderón-Zygmund operators on non-homogeneous metric measure spaces: Equivalent characterizations, J. Math. Anal. Appl., 386 (2012), 258–272. http://dx.doi.org/10.1016/j.jmaa.2011.07.055 doi: 10.1016/j.jmaa.2011.07.055 |
[9] | X. Tao, T. Zheng, Multilinear commutators of fractional integrals over Morrey spaces with non-doubling measures, Nonlinear Differ. Equ. Appl., 18 (2011), 287–308. http://dx.doi.org/10.1007/s00030-010-0096-8 doi: 10.1007/s00030-010-0096-8 |
[10] | X. Fu, D. Yang, D. Yang, The molecular characterization of the Hardy space $H^1$ on non-homogeneous metric measure spaces and its application, J. Math. Anal. Appl., 410 (2014), 1028–1042. http://dx.doi.org/10.1016/j.jmaa.2013.09.021 doi: 10.1016/j.jmaa.2013.09.021 |
[11] | X. Tolsa, BMO, $H^1$, and Calderón-Zygmund operators for non doubling measures, Math. Ann., 319 (2001), 89–149. http://dx.doi.org/10.1007/PL00004432 doi: 10.1007/PL00004432 |
[12] | Y. Cao, J. Zhou, Morrey spaces for nonhomogeneous metric measure spaces, Abstr. Appl. Anal., 2013, 1–8. http://dx.doi.org/10.1155/2013/196459 doi: 10.1155/2013/196459 |
[13] | H. Lin, S. Wu, D. Yang, Boundedness of certain commutators over non-homogeneous metric measure spaces, Anal. Math. Phys., 7 (2017), 187–218. http://dx.doi.org/10.1007/s13324-016-0136-6 doi: 10.1007/s13324-016-0136-6 |
[14] | X. Fu, D. Yang, W. Yuan, Boundedness of multilinear commutators of Calderón-Zygmund operators on Orlicz spaces over non-homogeneous spaces, Taiwanese J. Math., 16 (2012), 2203–2238. http://dx.doi.org/10.11650/twjm/1500406848 doi: 10.11650/twjm/1500406848 |