Finite-time synchronization is a critical problem in the study of neural networks. The primary objective of this study was to construct feedback controllers for various models based on fuzzy shunting inhibitory cellular neural networks (FSICNNs) and find out the sufficient conditions for the solutions of those systems to reach synchronization in finite time. In particular, by imposing global assumptions of Lipschitz continuous and bounded activation functions, we prove the existence of finite-time synchronization for three basic FSICNN models that have not been studied before. Moreover, we suggest both controllers and Lyapunov functions that would yield a feasible convergence time between solutions that takes into account the chosen initial conditions. In general, we consecutively explore models of regular delayed FSICNNs and then consider them in the presence of either inertial or diffusion terms. Using criteria derived by means of the maximum-value approach in its different forms, we give an upper bound of the time up to which synchronization is guaranteed to occur in all three FSICNN models. These results are supported by 2D and 3D computer simulations and two respective numerical examples for $ 2\times 2 $ and $ 2\times 3 $ cases, which show the behavior of the solutions and errors under different initial conditions of FSICNNs in the presence and absence of designed controllers.
Citation: Zhangir Nuriyev, Alfarabi Issakhanov, Jürgen Kurths, Ardak Kashkynbayev. Finite-time synchronization for fuzzy shunting inhibitory cellular neural networks[J]. AIMS Mathematics, 2024, 9(5): 12751-12777. doi: 10.3934/math.2024623
Finite-time synchronization is a critical problem in the study of neural networks. The primary objective of this study was to construct feedback controllers for various models based on fuzzy shunting inhibitory cellular neural networks (FSICNNs) and find out the sufficient conditions for the solutions of those systems to reach synchronization in finite time. In particular, by imposing global assumptions of Lipschitz continuous and bounded activation functions, we prove the existence of finite-time synchronization for three basic FSICNN models that have not been studied before. Moreover, we suggest both controllers and Lyapunov functions that would yield a feasible convergence time between solutions that takes into account the chosen initial conditions. In general, we consecutively explore models of regular delayed FSICNNs and then consider them in the presence of either inertial or diffusion terms. Using criteria derived by means of the maximum-value approach in its different forms, we give an upper bound of the time up to which synchronization is guaranteed to occur in all three FSICNN models. These results are supported by 2D and 3D computer simulations and two respective numerical examples for $ 2\times 2 $ and $ 2\times 3 $ cases, which show the behavior of the solutions and errors under different initial conditions of FSICNNs in the presence and absence of designed controllers.
[1] | G. Velmurugan, R. Rakkiyappan, J. D. Cao, Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Networks, 73 (2016), 36–46. https://doi.org/10.1016/j.neunet.2015.09.012 doi: 10.1016/j.neunet.2015.09.012 |
[2] | A. Bouzerdoum, Classification and function approximation using feed-forward shunting inhibitory artificial neural networks, In: Proceedings Of The IEEE-INNS-ENNS International Joint Conference On Neural Networks. IJCNN 2000. Neural Computing: New Challenges And Perspectives For The New Millennium, 2000, 613–618. https://doi.org/10.1109/IJCNN.2000.859463 |
[3] | F. H. C. Tivive, A. Bouzerdoum, A face detection system using shunting inhibitory convolutional neural networks, In: 2004 IEEE International Joint Conference On Neural Networks, 2004, 2571–2575. https://doi.org/10.1109/IJCNN.2004.1381049 |
[4] | S. Yan, Z. Gu, Ju. H. Park, X. P. Xie, Synchronization of delayed fuzzy neural networks with probabilistic communication delay and its application to image encryption, IEEE Trans. Fuzzy Syst., 31 (2023), 930–940. https://doi.org/10.1109/TFUZZ.2022.3193757 doi: 10.1109/TFUZZ.2022.3193757 |
[5] | H. M. Oliveira, L. V. Melo, Huygens synchronization of two clocks, Sci. Rep., 5 (2015), 11548. https://doi.org/10.1038/srep11548 doi: 10.1038/srep11548 |
[6] | S. Y. Dong, X. Z. Liu, S. M. Zhong, K. B. Shi, H. Zhu, Practical synchronization of neural networks with delayed impulses and external disturbance via hybrid control, Neural Networks, 157 (2023), 54–64. https://doi.org/10.1016/j.neunet.2022.09.025 doi: 10.1016/j.neunet.2022.09.025 |
[7] | C. Xu, X. S. Yang, J. Q. Lu, J. W. Feng, F. E. Alsaadi, T. Hayat, Finite-time synchronization of networks via quantized intermittent pinning control, IEEE Trans. Cybernetics, 48 (2018), 3021–3027. https://doi.org/10.1109/TCYB.2017.2749248 doi: 10.1109/TCYB.2017.2749248 |
[8] | X. Y. Liu, H. S. Su, M. Z. Q. Chen, A switching approach to designing finite-time synchronization controllers of coupled neural networks, IEEE Trans. Neur. Net. Lear., 27 (2015), 471–482. https://doi.org/10.1109/TNNLS.2015.2448549 doi: 10.1109/TNNLS.2015.2448549 |
[9] | P. Pucci, J. Serrin, The maximum principle, Basel: Birkhäuser, 2007. https://doi.org/10.1007/978-3-7643-8145-5 |
[10] | V. Zeidan, C. Nour, H. Saoud, A nonsmooth maximum principle for a controlled nonconvex sweeping process, J. Differ. Equations, 269 (2020), 9531–9582. https://doi.org/10.1016/j.jde.2020.06.053 doi: 10.1016/j.jde.2020.06.053 |
[11] | Q. Du, L. L. Ju, X. Li, Z. H. Qiao, Maximum principle preserving exponential time differencing schemes for the nonlocal Allen–Cahn equation, SIAM J. Numer. Anal., 57 (2019), 875–898. https://doi.org/10.1137/18M118236X doi: 10.1137/18M118236X |
[12] | A. Kashkynbayev, M. Koptileuova, A. Issakhanov, J. D. Cao, Almost periodic solutions of fuzzy shunting inhibitory CNNs with delays, AIMS Mathematics, 7 (2022), 11813–11828. https://doi.org/10.3934/math.2022659 doi: 10.3934/math.2022659 |
[13] | X. G. Tan, C. C. Xiang, J. D. Cao, W. Y. Xu, G. H. Wen, L. Rutkowski, Synchronization of neural networks via periodic self-triggered impulsive control and its application in image encryption, IEEE Trans. Cybernetics, 52 (2022), 8246–8257. https://doi.org/10.1109/TCYB.2021.3049858 doi: 10.1109/TCYB.2021.3049858 |
[14] | Y. Wang, S. B. Ding, R. X. Li, Master–slave synchronization of neural networks via event-triggered dynamic controller, Neurocomputing, 419 (2021), 215–223. https://doi.org/10.1016/j.neucom.2020.08.062 doi: 10.1016/j.neucom.2020.08.062 |
[15] | F. Liu, C. Liu, H. X. Rao, Y. Xu, T. W. Huang, Reliable impulsive synchronization for fuzzy neural networks with mixed controllers, Neural Networks, 143 (2021), 759–766. https://doi.org/10.1016/j.neunet.2021.08.013 doi: 10.1016/j.neunet.2021.08.013 |
[16] | L. Y. Duan, J. M. Li, Fixed-time synchronization of fuzzy neutral-type BAM memristive inertial neural networks with proportional delays, Inform. Sciences, 576 (2021), 522–541. https://doi.org/10.1016/j.ins.2021.06.093 doi: 10.1016/j.ins.2021.06.093 |
[17] | M. Abudusaimaiti, A. Abdurahman, H. J. Jiang, C. Hu, Fixed/predefined-time synchronization of fuzzy neural networks with stochastic perturbations, Chaos Soliton. Fract., 154 (2022), 111596. https://doi.org/10.1016/j.chaos.2021.111596 doi: 10.1016/j.chaos.2021.111596 |
[18] | X. N. Li, H. Q. Wu, J. D. Cao, A new prescribed-time stability theorem for impulsive piecewise-smooth systems and its application to synchronization in networks, Appl. Math. Model., 115 (2023), 385–397. https://doi.org/10.1016/j.apm.2022.10.051 doi: 10.1016/j.apm.2022.10.051 |
[19] | X. N. Li, H. Q. Wu, J. D. Cao, Prescribed-time synchronization in networks of piecewise smooth systems via a nonlinear dynamic event-triggered control strategy, Math. Comput. Simulat., 203 (2023), 647–668. https://doi.org/10.1016/j.matcom.2022.07.010 doi: 10.1016/j.matcom.2022.07.010 |
[20] | X. Z. Jin, G. H. Yang, Adaptive pinning synchronization of a class of nonlinearly coupled complex networks, Commun. Nonlinear Sci., 18 (2013), 316–326. https://doi.org/10.1016/j.cnsns.2012.07.011 doi: 10.1016/j.cnsns.2012.07.011 |
[21] | Q. Chen, B. Li, W. Yin, X. W. Jiang, X. Y. Chen, Bifurcation, chaos and fixed-time synchronization of memristor cellular neural networks, Chaos Soliton. Fract., 171 (2023), 113440. https://doi.org/10.1016/j.chaos.2023.113440 doi: 10.1016/j.chaos.2023.113440 |
[22] | F. F. Du, J.-G. Lu, Adaptive finite-time synchronization of fractional-order delayed fuzzy cellular neural networks, Fuzzy Set. Syst., 466 (2023), 108480. https://doi.org/10.1016/j.fss.2023.02.001 doi: 10.1016/j.fss.2023.02.001 |
[23] | X. Z. Jin, J. H. Jiang, J. Chi, X. M. Wu, Adaptive finite-time pinned and regulation synchronization of disturbed complex networks, Commun. Nonlinear Sci., 124 (2023), 107319. https://doi.org/10.1016/j.cnsns.2023.107319 doi: 10.1016/j.cnsns.2023.107319 |
[24] | J. H. Jiang, X. Z. Jin, J. Chi, X. M. Wu, Distributed adaptive fixed-time synchronization for disturbed complex networks, Chaos Soliton. Fract., 173 (2023), 113612. https://doi.org/10.1016/j.chaos.2023.113612 doi: 10.1016/j.chaos.2023.113612 |
[25] | C. J. Cheng, T. L. Liao, C. C. Hwang, Exponential synchronization of a class of chaotic neural networks, Chaos Soliton. Fract., 24 (2005), 197–206. https://doi.org/10.1016/j.chaos.2004.09.022 doi: 10.1016/j.chaos.2004.09.022 |
[26] | M. H. Protter, H. F. Weinberger, Maximum principles in differential equations, New York: Springer, 1984. https://doi.org/10.1007/978-1-4612-5282-5 |
[27] | T. Yang, L.-B. Yang, C. W. Wu, L. O. Chua, Fuzzy cellular neural networks: applications, In: 1996 Fourth IEEE International Workshop On Cellular Neural Networks And Their Applications Proceedings (CNNA-96), 1996,225–230. https://doi.org/10.1109/CNNA.1996.566560 |
[28] | T. Yang, L. B. Yang, Fuzzy cellular neural network: a new paradigm for image processing, Int. J. Circ. Theor. Appl., 25 (1997), 469–481. https://doi.org/10.1002/(SICI)1097-007X(199711/12)25:6<469::AID-CTA967>3.0.CO;2-1 doi: 10.1002/(SICI)1097-007X(199711/12)25:6<469::AID-CTA967>3.0.CO;2-1 |
[29] | P. V. De Campos Souza, Fuzzy neural networks and neuro-fuzzy networks: a review the main techniques and applications used in the literature, Appl. Soft Comput., 92 (2020), 106275. https://doi.org/10.1016/j.asoc.2020.106275 doi: 10.1016/j.asoc.2020.106275 |
[30] | A. Kashkynbayev, J. D. Cao, Z. Damiyev, Stability analysis for periodic solutions of fuzzy shunting inhibitory CNNs with delays, Adv. Differ. Equ., 2019 (2019), 384. https://doi.org/10.1186/s13662-019-2321-z doi: 10.1186/s13662-019-2321-z |
[31] | S. C. Lee, E. T. Lee, Fuzzy neural networks, Math. Biosci., 23 (1975), 151–177. https://doi.org/10.1016/0025-5564(75)90125-X doi: 10.1016/0025-5564(75)90125-X |
[32] | M. M. Gupta, D. H. Rao, On the principles of fuzzy neural networks, Fuzzy Set. Syst., 61 (1994), 1–18. https://doi.org/10.1016/0165-0114(94)90279-8 doi: 10.1016/0165-0114(94)90279-8 |
[33] | T. Yang, L.-B. Yang, The global stability of fuzzy cellular neural network, IEEE Trans. Circuits Syst. I, 43 (1996), 880–883. https://doi.org/10.1109/81.538999 doi: 10.1109/81.538999 |
[34] | A. Kashkynbayev, A. Issakhanov, M. Otkel, J. Kurths, Finite-time and fixed-time synchronization analysis of shunting inhibitory memristive neural networks with time-varying delays, Chaos Soliton. Fract., 156 (2022), 111866. https://doi.org/10.1016/j.chaos.2022.111866 doi: 10.1016/j.chaos.2022.111866 |
[35] | C. Foias, G. R. Sell, R. Temam, Inertial manifolds for nonlinear evolutionary equations, J. Differ. Equations, 73 (1988), 309–353. https://doi.org/10.1016/0022-0396(88)90110-6 doi: 10.1016/0022-0396(88)90110-6 |
[36] | E. S. Titi, On approximate inertial manifolds to the Navier-Stokes equations, J. Math. Anal. Appl., 149 (1990), 540–557. https://doi.org/10.1016/0022-247X(90)90061-J doi: 10.1016/0022-247X(90)90061-J |
[37] | M. S. Jolly, I. G. Kevrekidis, E. S. Titi, Approximate inertial manifolds for the Kuramoto-Sivashinsky equation: analysis and computations, Physica D, 44 (1990), 38–60. https://doi.org/10.1016/0167-2789(90)90046-R doi: 10.1016/0167-2789(90)90046-R |
[38] | J. D. Cao, Y. Wan, Matrix measure strategies for stability and synchronization of inertial BAM neural network with time delays, Neural Networks, 53 (2014), 165–172. https://doi.org/10.1016/j.neunet.2014.02.003 doi: 10.1016/j.neunet.2014.02.003 |
[39] | S. Lakshmanan, M. Prakash, C. P. Lim, R. Rakkiyappan, P. Balasubramaniam, S. Nahavandi, Synchronization of an inertial neural network with time-varying delays and its application to secure communication, IEEE Trans. Neur. Net. Lear., 29 (2018), 195–207. https://doi.org/10.1109/TNNLS.2016.2619345 doi: 10.1109/TNNLS.2016.2619345 |
[40] | X. Y. Li, X. T. Li, C. Hu, Some new results on stability and synchronization for delayed inertial neural networks based on non-reduced order method, Neural Networks, 96 (2017), 91–100. https://doi.org/10.1016/j.neunet.2017.09.009 doi: 10.1016/j.neunet.2017.09.009 |
[41] | W. H. Li, X. B. Gao, R. X. Li, Stability and synchronization control of inertial neural networks with mixed delays, Appl. Math. Comput., 367 (2020), 124779. https://doi.org/10.1016/j.amc.2019.124779 doi: 10.1016/j.amc.2019.124779 |
[42] | Z. Q. Zhang, J. D. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum value approach, IEEE Trans. Fuzzy Syst., 30 (2022), 1436–1446. https://doi.org/10.1109/TFUZZ.2021.3059953 doi: 10.1109/TFUZZ.2021.3059953 |
[43] | J.-L. Wang, H.-N. Wu, T. W. Huang, S.-Y. Ren, Pinning control strategies for synchronization of linearly coupled neural networks with reaction–diffusion terms, IEEE Trans. Neur. Net. Lear., 27 (2016), 749–761. https://doi.org/10.1109/TNNLS.2015.2423853 doi: 10.1109/TNNLS.2015.2423853 |
[44] | Y. Y. Cao, Y. T. Cao, Z. Y. Guo, T. W. Huang, S. P. Wen, Global exponential synchronization of delayed memristive neural networks with reaction–diffusion terms, Neural Networks, 123 (2020), 70–81. https://doi.org/10.1016/j.neunet.2019.11.008 doi: 10.1016/j.neunet.2019.11.008 |
[45] | Q. Ma, S. Y. Xu, Y. Zou, G. D. Shi, Synchronization of stochastic chaotic neural networks with reaction-diffusion terms, Nonlinear Dyn., 67 (2012), 2183–2196. https://doi.org/10.1007/s11071-011-0138-8 doi: 10.1007/s11071-011-0138-8 |
[46] | L. Shanmugam, P. Mani, R. Rajan, Y. H. Joo, Adaptive synchronization of reaction–diffusion neural networks and its application to secure communication, IEEE Trans. Cybernetics, 50 (2020), 911–922. https://doi.org/10.1109/TCYB.2018.2877410 doi: 10.1109/TCYB.2018.2877410 |
[47] | C. Hu, H. J. Jiang, Z. D. Teng, Impulsive control and synchronization for delayed neural networks with reaction–diffusion terms, IEEE Trans. Neural Network., 21 (2010), 67–81. https://doi.org/10.1109/TNN.2009.2034318 doi: 10.1109/TNN.2009.2034318 |
[48] | Z. Y. Wang, J. D. Cao, Z. W. Cai, X. G. Tan, R. S. Chen, Finite-time synchronization of reaction-diffusion neural networks with time-varying parameters and discontinuous activations, Neurocomputing, 447 (2021), 272–281. https://doi.org/10.1016/j.neucom.2021.02.065 doi: 10.1016/j.neucom.2021.02.065 |
[49] | Z. Y. Wang, J. D. Cao, Z. W. Cai, L. Rutkowski, Anti-synchronization in fixed time for discontinuous reaction–diffusion neural networks with time-varying coefficients and time delay, IEEE Trans. Cybernetics, 50 (2020), 2758–2769. https://doi.org/10.1109/TCYB.2019.2913200 doi: 10.1109/TCYB.2019.2913200 |
[50] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, Cambridge university press, 1952. |