Research article Special Issues

Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-$ \alpha $ integrals and Montgomery identity

  • Received: 25 January 2024 Revised: 13 March 2024 Accepted: 19 March 2024 Published: 02 April 2024
  • MSC : 39B62, 39B05, 26D15, 26D20, 26D10

  • In this article, the Montgomery identity and Ostrowski inequality are established for univariate first-order diamond-alpha differentiable functions. We also investigate the generalization of Ostrowski-type inequalities for bivariate functions with bounded second-order diamond-alpha derivatives by applying integration by parts for $ \diamondsuit_\alpha $-integrals. Moreover, some extensions of dynamic trapezoid- and Grüss-type inequalities are also obtained by using the Montgomery identity.

    Citation: Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb. Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-$ \alpha $ integrals and Montgomery identity[J]. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624

    Related Papers:

  • In this article, the Montgomery identity and Ostrowski inequality are established for univariate first-order diamond-alpha differentiable functions. We also investigate the generalization of Ostrowski-type inequalities for bivariate functions with bounded second-order diamond-alpha derivatives by applying integration by parts for $ \diamondsuit_\alpha $-integrals. Moreover, some extensions of dynamic trapezoid- and Grüss-type inequalities are also obtained by using the Montgomery identity.



    加载中


    [1] A. Ostrowski, $\ddot{U}$ber die absolutabweichung einer differentiierbaren funktion von ihrem integralmittelwert, Comment. Math. Helv., 10 (1937), 226–227. https://doi.org/10.1007/BF01214290 doi: 10.1007/BF01214290
    [2] F. Ahmad, P. Cerone, S. S. Dragomir, N. A. Mir, On some bounds of Ostrowski and Cebyev type, J. Math. Inequal., 4 (2010), 53–65. https://doi.org/10.7153/jmi-04-07 doi: 10.7153/jmi-04-07
    [3] P. Cerone, S. S. Dragomir, J. Roumeliotis, An inequality of Ostrowski-Gr$\ddot{u}$ss type for twice differentiable mappings and applications in numerical integration, Kyungpook Math. J., 39 (1999), 333–341. https://doi.org/10.1515/dema-1999-0404 doi: 10.1515/dema-1999-0404
    [4] S. S. Dragomir, A generalization of Ostrowski integral inequality for mappings whose derivatives belong to $L_1 [a, b]$ and applications in numerical integration, J. Comput. Anal. Appl., 3 (2001), 343–360. https://doi.org/10.48550/arXiv.1503.08283 doi: 10.48550/arXiv.1503.08283
    [5] S. S. Dragomir, A generalization of the Ostrowski integral inequality for mappings whose derivatives belong to $L_p [a, b]$ and applications in numerical integration, J. Math. Anal. Appl., 255 (2001), 605–626. https://doi.org/10.1006/jmaa.2000.7300 doi: 10.1006/jmaa.2000.7300
    [6] S. S. Dragomir, P. Cerone, J. Roumeliotis, A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Appl. Math. Lett., 13 (2000), 19–25. https://doi.org/10.1016/S0893-9659(99)00139-1 doi: 10.1016/S0893-9659(99)00139-1
    [7] W. Liu, Several error inequalities for a quadrature formula with a parameter and applications, Comput. Math. Appl., 56 (2008), 1766–1772. https://doi.org/10.1016/j.camwa.2008.04.016 doi: 10.1016/j.camwa.2008.04.016
    [8] W. J. Liu, Y. Huang, X. X. Pan, New weighted Ostrowski-Gruss-Cebysev type inequalities, Bull. Korean Math. Soc., 45 (2008), 477–483.
    [9] W. J. Liu, Q. L. Xue, S. F. Wang, Several new perturbed Ostrowski-like type inequalities, J. Inequal. Pure Appl. Math., 8 (2007), 110.
    [10] D. S. Mitrinovi$\acute{c}$, J. E. Pe$\check{c}$ari$\acute{c}$, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Springer Science & Business Media, 2012.
    [11] G. Gr$\ddot{u}$ss, $\ddot{U}$ber das Maximum des absoluten Betrages von, Math. Z., 39 (1935), 215–226. https://doi.org/10.1007/BF01201355 doi: 10.1007/BF01201355
    [12] B. G. Pachpatte, On trapezoid and Gr$\ddot{u}$ss-like integral inequalities, Tamkang J. Math., 34 (2003), 356–370. https://doi.org/10.5556/j.tkjm.34.2003.238 doi: 10.5556/j.tkjm.34.2003.238
    [13] S. Hilger, Ein Makettenkalkl mit anwendung auf zentrumsmannigfaltigkeiten, Wurzburg: Universtat Wurzburg, 1988.
    [14] S. S. Dragomir, T. M. Rassias, Ostrowski type inequalities and applications in numerical integration, Dordrecht: Kluwer Academic, 2002. https://doi.org/10.1007/978-94-017-2519-4
    [15] A. Ekinci, Inequalities for convex functions on time scales, TWMS J. Appl. Eng. Math., 9 (2019), 64–72.
    [16] M. Hu, L. Wang, Dynamic inequalities on time scales with applications in permanence of predator-prey system, Discrete Dyn. Nat. Soc., 2012 (2012). https://doi.org/10.1155/2012/281052 doi: 10.1155/2012/281052
    [17] Q. Sheng, M. Fadag, J. Henderson, J. M. Davis, An exploration of combined dynamic derivatives on time scales and their applications, Nonlinear Anal.-Real, 7 (2006), 395–413. https://doi.org/10.1016/j.nonrwa.2005.03.008 doi: 10.1016/j.nonrwa.2005.03.008
    [18] M. Ahmad, K. M. Awan, S. Hameed, K. A. Khan, A. Nosheen, Bivariate Montgomery identity for alpha diamond integrals, Adv. Differential Equ., 2019 (2019), 1–13. https://doi.org/10.1186/s13662-019-2254-6 doi: 10.1186/s13662-019-2254-6
    [19] W. Liu, A. Tuna, Diamond-alpha weighted Ostrowski type and Gr$\ddot{u}$ss type inequalities on time scales, Appl. Math. Comput., 270 (2015), 251–260. https://doi.org/10.1016/j.amc.2015.06.132 doi: 10.1016/j.amc.2015.06.132
    [20] M. Bohner, T. Matthews, A. Tuna, Diamond-alpha Gr$\ddot{u}$ss type inequalities on time scales, Int. J. Dyn. Syst. Diffe., 3 (2011), 234–247. https://doi.org/10.1504/IJDSDE.2011.038504 doi: 10.1504/IJDSDE.2011.038504
    [21] W. Liu, A. Tuna, Y. Jiang, On weighted Ostrowski type, Trapezoid type, Grüss type and Ostrowski-Grüss like inequalities on time scales, Appl. Anal., 93 (2014), 551–571. https://doi.org/10.1080/00036811.2013.786045 doi: 10.1080/00036811.2013.786045
    [22] X. Y. Du, Z. X. Mao, J. F. Tian, Y-function and L'Hospital-type monotonicity rules with nabla and diamond-alpha derivatives on time scales, arXiv Preprint, 2024. https://doi.org/10.48550/arXiv.2401.12774
    [23] M. Bilal, K. A. Khan, A. Nosheen, J. Pecaric, Bounds of some divergence measures using Hermite polynomial via diamond integrals on time scales, Qual. Theor. Dyn. Syst., 23 (2024), 54. https://doi.org/10.1007/s12346-023-00911-y doi: 10.1007/s12346-023-00911-y
    [24] T. Truong, B. Schneider, L. Nguyen, Diamond alpha differentiability of interval-valued functions and its applicability to interval differential equations on time scales, Iran. J. Fuzzy Syst., 21 (2024), 143–158. https://doi.org/10.22111/IJFS.2024.45184.7977 doi: 10.22111/IJFS.2024.45184.7977
    [25] M. Bohner, T. Matthews, The Gr$\ddot{u}$ss inequality on time scales, Commun. Math. Anal., 3 (2007).
    [26] M. Bohner, T. Matthews, Ostrowski inequalities on time scales, J. Inequal. Pure Appl. Math., 9 (2008), 8.
    [27] A. A. El-Deeb, On some dynamic inequalities of Ostrowski, trapezoid, and Grüss type on time scales, J. Inequal. Appl., 2022 (2022), 1–14. https://doi.org/10.1186/s13660-022-02825-w doi: 10.1186/s13660-022-02825-w
    [28] A. B. Malinowska, D. F. Torres, The diamond-alpha Riemann integral and mean value theorems on time scales, arXiv Preprint, 2008. https://doi.org/10.48550/arXiv.0804.4420
    [29] A. Abdeldaim, A. A. El-Deeb, P. Agarwal, H. A. El-Sennary, On some dynamic inequalities of Steffensen type on time scales, Math. Method. Appl. Sci., 41 (2018), 4737–4753. https://doi.org/10.1002/mma.4927 doi: 10.1002/mma.4927
    [30] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkh$\ddot{a}$user, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [31] M. R. S. Rahmat, M. S. M. Noorani, A new conformable nabla derivative and its application on arbitrary time scales, Adv. Differential Equ., 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03385-x doi: 10.1186/s13662-021-03385-x
    [32] T. A. Ghareeb, S. H. Saker, A. A. Ragab, Ostrowski type integral inequalities, weighted Ostrowski, and trapezoid type integral inequalities with powers, J. Math. Comput. Sci., 26 (2022), 291–308. https://doi.org/10.22436/jmcs.026.03.07 doi: 10.22436/jmcs.026.03.07
    [33] A. M. Brito da Cruz, N. Martins, D. F. Torres, The diamond integral on time scales, B. Malays. Math. Sci. So., 38 (2015), 1453–1462. https://doi.org/10.1007/s40840-014-0096-7 doi: 10.1007/s40840-014-0096-7
    [34] D. Mozyrska, D. F. Torres, Diamond-alpha polynomial series on time scales, arXiv Preprint, 2008. https://doi.org/10.48550/arXiv.0805.0274
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(660) PDF downloads(45) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog