We have studied initial value problems for Caputo fractional differential equations with singular nonlinearities involving the p-Laplacian operator. We have given a precise mathematical analysis of the equivalence of the fractional differential equations and Volterra integral equations studied in this paper. A theorem for the global existence of the solution was proven. In addition, an example was given at the end of the article as an application of the results found in this paper.
Citation: Mahir Hasanov. Initial value problems for fractional p-Laplacian equations with singularity[J]. AIMS Mathematics, 2024, 9(5): 12800-12813. doi: 10.3934/math.2024625
We have studied initial value problems for Caputo fractional differential equations with singular nonlinearities involving the p-Laplacian operator. We have given a precise mathematical analysis of the equivalence of the fractional differential equations and Volterra integral equations studied in this paper. A theorem for the global existence of the solution was proven. In addition, an example was given at the end of the article as an application of the results found in this paper.
[1] | M. S. Abdo, S. A. Idris, W. Albalawi, A. Abdel-Aty, M. Zakarya, E. E. Mahmoud, Qualitative study on solutions of piecewise nonlocal implicit fractional differential equations, J. Funct. Spaces, 2023 (2023), 2127600. https://doi.org/10.1155/2023/2127600 doi: 10.1155/2023/2127600 |
[2] | R. P. Agarwal, B. Ahmad, Existence theory for anti-periodic boundary value problems of fractional differential equations and inclusions, Comput. Math. Appl., 62 (2011), 1200–1214. https://doi.org/10.1016/j.camwa.2011.03.001 doi: 10.1016/j.camwa.2011.03.001 |
[3] | R. P. Agarwal, D. O'Regan, S. Stanek, Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations, J. Math. Anal. Appl., 371 (2010), 57–68. https://doi.org/10.1016/j.jmaa.2010.04.034 doi: 10.1016/j.jmaa.2010.04.034 |
[4] | R. P. Agarwal, D. O'Regan, S. Stanek, Positive solutions for mixed problems of singular fractional differential equations, Math. Nachr., 285 (2012), 27–41. https://doi.org/10.1002/mana.201000043 doi: 10.1002/mana.201000043 |
[5] | B. Ahmad, J. J. Nieto, Existence of solutions for anti-periodic boundary value problems involving fractional differential equations via Leray-Schauder degree theory, Topol. Method. Nonlinear Anal., 35 (2010), 295–304. |
[6] | A. Babakhani, V. Daftardar-Gejji, Existence of positive solutions of nonlinear fractional differential equations, J. Math. Anal. Appl., 278 (2003), 434–442. https://doi.org/10.1016/S0022-247X(02)00716-3 doi: 10.1016/S0022-247X(02)00716-3 |
[7] | L. C. Becker, T. A. Burton, I. K. Purnaras, Complementary equations: A fractional differential equation and a Volterra integral equation, Electron. J. Qual. Theory Differ. Equ., 2015, 12. https://doi.org/10.14232/ejqtde.2015.1.12 doi: 10.14232/ejqtde.2015.1.12 |
[8] | M. Benchohra, S. Hamani, S. K. Ntouyas, Boundary value problems for differential equations with fractional order and nonlocal conditions, Nonlinear Anal.-Theor., 71 (2009), 2391–2396. https://doi.org/10.1016/j.na.2009.01.073 doi: 10.1016/j.na.2009.01.073 |
[9] | T. Chen, W. Liu, C. Yang, Antiperiodic solutions for Lienard-type differential equation with $ p $-Laplacian operator, Bound. Value Probl., 210 (2010), 194824. https://doi.org/10.1155/2010/194824 doi: 10.1155/2010/194824 |
[10] | T. Chen, W. Liu, J. Liu, Solvability of periodic boundary value problem for fractional p-Laplacian equation, Appl. Math. Comput, 244 (2014), 422–431. http://doi.org/10.1016/j.amc.2014.06.105 doi: 10.1016/j.amc.2014.06.105 |
[11] | T. Chen, W. Liu, An anti-periodic boundary value problem for the fractional differential equation with a $ p $-Laplacian operator, Appl. Math. Lett., 25 (2012), 1671–1675. https://doi.org/10.1016/j.aml.2012.01.035 doi: 10.1016/j.aml.2012.01.035 |
[12] | M. A. Darwish, S. K. Ntouyas, On initial and boundary value problems for fractional order mixed type functional differential inclusions, Comput. Math. Appl., 59 (2010), 1253–1265. https://doi.org/10.1016/j.camwa.2009.05.006 doi: 10.1016/j.camwa.2009.05.006 |
[13] | J. Deng, Z. Deng, Existence of solutions of initial value problems for nonlinear fractional differential equations, Appl. Math. Lett., 32 (2014), 6–12. http://doi.org/10.1016/j.aml.2014.02.001 doi: 10.1016/j.aml.2014.02.001 |
[14] | K. Diethelm, The analysis of fractional differential equations: An application-oriented exposition using differential operators of Caputo type, Heidelberg: Springer Berlin, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[15] | P. W. Eloe, T. Masthay, Initial value problems for Caputo fractional differential equations, J. Fract. Calc. Appl., 9 (2018), 178–195. |
[16] | M. El-Shahed, J. J. Nieto, Nontrivial solutions for a nonlinear multi-point boundary value problem of fractional order, Comput. Math. Appl., 59 (2010), 3438–3443. https://doi.org/10.1016/j.camwa.2010.03.031 doi: 10.1016/j.camwa.2010.03.031 |
[17] | S. Etemad, M. A. Ragusa, S. Rezapour, A. Zada, Existence property of solutions for multi-order q-difference FBVPs based on condensing operators and end-point technique, Fixed Point Theor., 25 (2024), 115–142. https://doi.org/10.24193/fpt-ro.2024.1.08 doi: 10.24193/fpt-ro.2024.1.08 |
[18] | D. Henry, Geometric theory of semilinear parabolic equations, Heidelberg: Springer Berlin, 1981. https://doi.org/10.1007/BFb0089647 |
[19] | D. Jiang, W. Gao, Upper and lower solution method and a singular boundary value problem for the one-dimensional $ p $-Laplacian, J. Math. Anal. Appl., 252 (2000), 631–648. https://doi.org/10.1006/jmaa.2000.7012 doi: 10.1006/jmaa.2000.7012 |
[20] | E. Kaslik, S. Sivasundaram, Non-existence of periodic solutions in fractional order dynamical systems and a remarkable difference between integer and fractional-order derivatives of periodic functions, Nonlinear Anal.-Real, 13 (2012), 1489–1497. https://doi.org/10.1016/j.nonrwa.2011.11.013 doi: 10.1016/j.nonrwa.2011.11.013 |
[21] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. https://doi.org/10.1016/S0304-0208(06)80011-3 |
[22] | N. Kosmatov, A boundary value problem of fractional order at resonance, Electron. J. Differ. Equ., 2010 (2010), 135. |
[23] | N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Anal.-Theor., 70 (2009), 2521–2529. https://doi.org/10.1016/j.na.2008.03.037 doi: 10.1016/j.na.2008.03.037 |
[24] | S. Krim, A. Salim, M. Benchohra, Nonlinear contractions and Caputo tempered implicit fractional differential equations in b-metric spaces with infinite delay, Filomat, 37 (2023), 7491–7503. |
[25] | K. Q. Lan, W. Lin, Positive solutions of systems of Caputo fractional differential equations, Commun. Appl. Anal., 17 (2013), 61–86. |
[26] | M. Marin, A. Hobiny, I. Abbas, The effects of fractional time derivatives in porothermoelastic materials using finite element method, Mathematics, 9 (2021), 1606. https://doi.org/10.3390/math9141606 doi: 10.3390/math9141606 |
[27] | M. Marin, A. Seadawy, S. Vlase, A. Chirila, On mixed problem in thermoelasticity of type Ⅲ for Cosserat media. J. Taibah Univ. Sci., 16 (2022), 1264–1274. https://doi.org/10.1080/16583655.2022.2160290 doi: 10.1080/16583655.2022.2160290 |
[28] | C. Li, S. Sarwar, Existence and continuation of solutions for Caputo type fractional differential equations, Electron. J. Differ. Equ., 2016 (2016), 207. https://ejde.math.txstate.edu/Volumes/2016/207/li.pdf |
[29] | D. S. Mitrinovic, J. E. Pecaric, A. M. Fink, Inequalities involving functions and their integrals and derivatives, Dordrecht: Springer, 1991. https://doi.org/10.1007/978-94-011-3562-7 |
[30] | S. K. Ntouyas, E. Pourhadi, Positive solutions of nonlinear fractional three-point boundary-value problem, Le Matematiche, 73 (2018), 139–154. http://doi.org/10.4418/2018.73.1.10 doi: 10.4418/2018.73.1.10 |
[31] | I. Podlubny, Fractional differential equations, Academic Press, 1999. |
[32] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. https://doi.org/10.1007/978-1-4020-6042-7 |
[33] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Switzerland; Philadelphia: Gordon and Breach Science Publishers, 1993. |
[34] | G. Wang, B. Ahmad, L. Zhang, Impulsive anti-periodic boundary value problem for nonlinear differential equations of fractional order, Nonlinear Anal.-Theor., 74 (2011), 792–804. http://doi.org/10.1016/j.na.2010.09.030 doi: 10.1016/j.na.2010.09.030 |
[35] | J. Wang, M. Feckan, Y. Zhou, Nonexistence of periodic solutions and asymptotically periodic solutions for fractional differential equations. Commun. Nonlinear Sci. Numer. Simulat., 18 (2013), 246–256. http://doi.org/10.1016/j.cnsns.2012.07.004 doi: 10.1016/j.cnsns.2012.07.004 |
[36] | J. R. L. Webb, Initial value problems for Caputo fractional equations with singular nonlinerities, Electron. J. Differ. Equ., 2019 (2019), 117. |
[37] | J. R. L. Webb, Weakly singular Gronwall inequalities and applications to fractional differential equations, J. Math. Anal. Appl., 471 (2019), 692–711. https://doi.org/10.1016/j.jmaa.2018.11.004 doi: 10.1016/j.jmaa.2018.11.004 |
[38] | H. Ye, J. Gao, Y. Ding, A generalized Gronwall inequality and its application to a fractional differential equation, J. Math. Anal. Appl., 328 (2007), 1075–1081. https://doi.org/10.1016/j.jmaa.2006.05.061 doi: 10.1016/j.jmaa.2006.05.061 |
[39] | T. Zhu, New Henry-Gronwall integral inequalities and their applications to fractional differential equations, Bull. Braz. Math. Soc., 49 (2018), 647–657. https://doi.org/10.1007/s00574-018-0074-z doi: 10.1007/s00574-018-0074-z |