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1. Introduction and preliminaries

Interest in the subject of fractional differential equations has increased greatly over the past
decades. Fractional differential equations appear in many fields such as physics, aerodynamics,
electro-dynamics, and control theory (see [1, 14, 17, 21, 24, 31–33]).

We studied the following singular nonlinear initial value problem involving p-Laplacian
Dβ

Cφp(Dα
C x(t)) = t−γ f (t, x(t)),

x(0) = x0, Dα
C x(0) = xα, x0, xα ∈ R,

0 ≤ γ < α, β ≤ 1,
x ∈ AC[0, 1], Dα

C x ∈ AC[0, 1].

(1.1)

f : [0, 1] × R → R is a continuous function, φp(t) = |t|p−2t, p > 1, and Dα
C x(t) denotes the Caputo

fractional derivative which is defined by Dα
C x(t) := I1−αDx(t) for 0 < α ≤ 1, where Iα stands for the

Riemann-Liouville fractional integral of order α > 0 defined by

Iαx(t) :=
1

Γ(α)

∫ t

0
(t − s)α−1x(s)ds, x ∈ L1,
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where Lp := Lp[0, 1] = {x(t) :
∫ 1

0
|x(t)|p < ∞, 1 ≤ p < ∞} and Γ(α) :=

∫ ∞
0

sα−1exp(−s) ds, α > 0
(see [14,31–33]). A literature review will be given at the end of this section. Since the problem studied
in this paper contains a singular term, we believe that the obtained results are new.

We denote the domain of an operator T by Dom(T ). The domain of the Caputo derivative is defined
by Dom(Dα

C) = {x(t) : x ∈ AC[0, 1]}, where AC[0, 1] is the set of absolutely continuous functions on
the interval [0, 1].

In general, for any m ∈ N, and 0 < α ≤ 1, Dm+α
C x(t) = I1−αDm+1x(t) with Dom(Dm+α

C ) = {x(t) :
Dmx ∈ AC[0, 1]}.

Besides the Caputo derivative, we will also use the Riemann-Liouville and generalized Caputo
derivatives.

For 0 < α ≤ 1, the Riemann-Liouville derivative is defined by
Dαx(t) := DI1−αx(t), with Dom(Dα) = {x(t) : I1−αx ∈ AC[0, 1]}. In general, for any m ∈ N, and
0 < α ≤ 1, Dm+αx(t) = Dm+1I1−αx(t), with Dom(Dm+α) = {x(t) : Dm(I1−αx) ∈ AC[0, 1]}.

For 0 < α ≤ 1, the generalized Caputo derivative is defined by
Dα
∗ x(t) := Dα(x(t) − x0), with Dom(Dα

∗ ) = {x(t) : I1−α(x − x0) ∈ AC[0, 1]}, where x0 = x(0).
We studied initial value problems on the interval [0, 1], but all results in this paper are also valid for

any interval [0,T ].
Let us give some properties of Dα, Dα

C, Dα
∗ , and Iα that we will use frequently in this paper.

Proposition 1.1. a) Iα : Lp[0, 1] → Lp[0, 1], 1 ≤ p ≤ ∞ is a bounded operator for all α > 0 ( [36],
Proposition 3.2).

b) Iα : C[0, 1]→ C[0, 1] is a bounded operator for all α > 0 ( [36], Proposition 3.2), where C[0, 1]
denotes the normed space of all continuous functions defined on the interval [0, 1], with the norm
||x|| = maxt∈[0,1]|x(t)|.

c) If α, β > 0 and x ∈ L1[0, 1], then IαIβx(t) = Iα+βx(t) for a.e. t ∈ [0, 1]. Moreover, if α+ β ≥ 1 and
x ∈ L1[0, 1], then IαIβx(t) = Iα+βx(t) for all t ∈ [0, 1] ( [36], Lemma 3.4).

d) For 0 < α ≤ 1 and m ∈ N, the operator Dm+α is the left inverse of the operator Im+α in L1[0, 1],
i.e., Dm+αIm+αx(t) = x(t), for all x ∈ L1[0, 1] ( [36], Lemma 4.2).

e) Let 0 < α < 1. The operator Dα
∗ is the left inverse of the operator Iα in the space C[0, 1], i.e.,

Dα
∗ I

αx(t) = x(t), for all x ∈ C[0, 1] ( [36], Lemma 4.5).
f) If 0 < α < 1 and x(t) ∈ AC[0, 1], then Dα

∗ x(t) = Dα(x(t)− x(0)) = Dα
C x(t) ( [36], Proposition 4.4).

Hence, the operator Dα
C is the left inverse of the operator Iα in the space AC[0, 1], i.e., Dα

CIαx(t) = x(t),
for all x ∈ AC[0, 1].

But, in general, Dα
C is not a right inverse for Iα. However, the following formula holds.

IαDα
C x(t) = x(t) − x(0), for all x ∈ AC[0, 1].

In general, fractional differential equations include the Caputo fractional derivative, generalized
Caputo fractional derivative, and Riemann-Liouville fractional derivative. Initial and boundary value
problems containing Riemann-Liouville fractional derivatives were studied by many authors (see [3,
6, 7, 12, 20, 22, 38] and references therein). The application areas of Riemann-Liouville fractional
differential equations have been gradually expanding in recent years (see [26, 27]).

In the past decades, different aspects of Caputo fractional differential equations were studied by a
number of researchers. For example, initial value problems were studied in [13,15,23,28,36,37]. The
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articles [2,4,5,8,16,25,30,34,35] deal with boundary value problems for Caputo fractional differential
equations. However, none of these articles contain the fractional p-Laplacian.

Chen et al. [9] studied the existence of antiperiodic solutions for the Lienard-type p-Laplacian
equation. Chen et al. [10] studied the solvability of periodic boundary value problem for the fractional
p-Laplacian equation in the following form:

Dβ
Cφp(Dα

C x(t)) = f (t, x(t),Dα
C x(t)),

x(0) = x(T ), Dα
C x(0) = Dα

C x(T ),
f ∈ C([0,T ] × R), 0 < α, β ≤ 1.

The existence of solutions for the anti-periodic boundary value problem of a fractional p-Laplacian
equation was studied by Chen et al. [11]. They studied the following problem:

Dβ
Cφp(Dα

C x(t)) = f (t, x(t)),
x(0) = −x(1), Dα

C x(0) = −Dα
C x(1),

f ∈ C([0,T ] × R), 0 < α, β ≤ 1.

Some anti-periodic problems were also considered in [19, 30].
Note that, none of these articles contain singularity. Since we are dealing with singular initial value

problems, we would like to give a brief overview of some related results.
In [3], Agarwal et al. studied the existence of positive solutions for the following singular fractional

boundary value problem with the Riemann-Liouville fractional derivative:

Dαu(t) + f (t, u(t),Dµu(t)) = 0, 1 < α < 2, 0 < µ ≤ α − 1,
u(0) = u(1) = 0, f is singular at 0.

In [4], Agarwal et al. proved the existence of positive solutions to the singular fractional boundary
value problem with the Caputo fractional derivative:

Dα
Cu(t) + f (t, u(t), u′,Dµ

Cu(t)) = 0, 1 < α < 2, 0 < µ < 1,
u′(0) = 0, u(1) = 0, f is singular at 0.

Webb [36] studied initial value problems for Caputo fractional differential equations with singular
nonlinearities in the forms:

Dm+α
C u(t) = t−γ f (t, u(t)), 0 < α < 1, 0 ≤ γ < α,

u′(0) = u0, ..., um(0) = um, Dmu ∈ AC[0,T ], f ∈ C([0,T ] × R).

and
D1+α
∗ u(t) = t−γ f (t, u(t),Dβ

Cu(t)), 0 ≤ γ < α < 1, 0 < β ≤ 1,
u′(0) = u0, u′(0) = u1, f ∈ C([0,T ] × R × R).

The proof of the existence of a solution to these problems is based on the Leray-Schauder fixed
point theorem and Gronwall type inequalities. Gronwall inequalities are widely used to obtain a priori
bounds ( see [18, 29, 37–39]).

We note that, for the main concepts used in this article, we generally followed [11, 36, 37].
This paper consists of three sections. The first section includes the introduction and preliminary

information. The second section includes a precise mathematical analysis of the equivalence of the
fractional differential equations and Volterra integral equations studied in this paper. The existence of
solutions to initial value problems is discussed in Section 3.
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2. Volterra integral equations

In this section, we establish a relationship between Caputo fractional differential equations and
Volterra integral equations.

Theorem 2.1. Let f ∈ C([0, 1] × R) and 0 ≤ γ < α, β ≤ 1. If a function x(t) satisfies the initial value
problem 

Dβ
Cφp(Dα

C x(t)) = t−γ f (t, x(t)),
x(0) = x0, Dα

C x(0) = xα, x0, xα ∈ R,
x ∈ AC[0, 1], Dα

C x ∈ AC[0, 1],
(2.1)

then x(t) satisfies the Volterra integral equation

x(t) = Iαφq
[
Iβ(t−γ f (t, x(t))) + x1

]
+ x0, (2.2)

where x1 = φp(xα), p, q > 1, and 1/p + 1/q = 1.

Proof. The condition x ∈ AC[0, 1] implies x ∈ Dom(Dα
C) and Dα

C x ∈ AC[0, 1] implies that φp(Dα
C x) ∈

AC[0, 1]. Consequently, φp(Dα
C x) ∈ Dom(Dβ

C). This means that under these conditions the problem
(2.1) is well-defined. Here, for the inclusion φp(Dα

C x) ∈ AC[0, 1], we have used the composition rule:
If the functions F : [c, d] → R and G : [a, b] → [c, d] are absolutely continuous, then F(G(t)) is also
absolutely continuous.

Let x(t) satisfy (2.1). Since Dβ
Cφp(Dα

C x(t)) ∈ L1, we can apply Iβ to (2.1). Then

IβDβ
Cφp(Dα

C x(t)) = Iβ
(
t−γ f (t, x(t))

)
or the same

IβI1−βD
(
φp(Dα

C x(t))
)

= Iβ
(
t−γ f (t, x(t))

)
.

D
(
φp(Dα

C x(t)) ∈ L1, then by Proposition 1.1 c) we have

ID
(
φp(Dα

C x(t))
)

= Iβ
(
t−γ f (t, x(t))

)
.

Hence, by using φp(Dα
C x) ∈ AC[0, 1] we get

φp(Dα
C x(t)) − φp(Dα

C x(0)) = Iβ
(
t−γ f (t, x(t))

)
and

Dα
C x(t) = φq

[
Iβ

(
t−γ f (t, x(t))

)
+ x1

]
, (2.3)

where x1 = φp(Dα
C x(0)) = φp(xα).

Applying the operator Iα to both sides of (2.3) and using Proposition 1.1 f) we get the Volterra
integral equation (2.2):

x(t) = Iαφq
[
Iβ(t−γ f (t, x(t))) + x1

]
+ x0.

�
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Thus, (2.1) implies (2.2). But in general (2.2) does not imply (2.1). More precisely, if x ∈ C[0, 1]
satisfies the Volterra integral equation (2.2) then, in general, it does not follow that x ∈ AC[0, 1] and
Dα

C x ∈ AC[0, 1]. However, if we use the generalized Caputo derivative Dα
∗ instead of the Caputo

derivative Dα
C then we can show that they are equivalent. The equivalence result is given in Theorem

2.2.
Additionally, we note that Iα : AC[0, 1]→ AC[0, 1] and consequently

AC[0, 1] = Dom(Dα
C) ⊂ Dom(Dα

∗ ) = {x(t) : I1−α(x − x0) ∈ AC[0, 1]}.

On the other hand, if 0 < α < 1 and x ∈ Dom(Dα
C), then Dα

∗ x(t) = Dα
C x(t) (Proposition 1.1 f)). This

means that the operator Dα
∗ is an extension of the operator Dα

C.
Now we give the equivalence result.

Theorem 2.2. Let f ∈ C([0, 1] × R) and 0 ≤ γ < α, β ≤ 1. A function x ∈ C[0, 1] satisfies the Volterra
integral equation

x(t) = Iαφq
[
Iβ(t−γ f (t, x(t))) + x1

]
+ x0, x0, x1 ∈ R (2.4)

if and only if x ∈ C[0, 1] is a solution of the following initial value problem
Dβ
∗φp(Dα

∗ x(t)) = t−γ f (t, x(t)),
x(0) = x0, Dα

∗ x(0) = x∗α,
x ∈ Dom(Dα

∗ ), φp(Dα
∗ x) ∈ Dom(Dβ

∗), Dα
∗ x ∈ C[0, 1],

(2.5)

where x∗α = φq(x1).

Proof. Let x ∈ C[0, 1] satisfy the Volterra integral equation (2.4). By using the substitution s = σt we
can write

Iβ(t−γ f (t, x(t))) =
1

Γ(β)

∫ t

0
(t − s)β−1s−γ f (s, x(s)) ds =

tβ−γ

Γ(β)

∫ 1

0
(1 − σ)β−1σ−γ f (tσ, x(tσ)) dσ.

This equality together with the conditions f ∈ C([0, 1] × R) and 0 ≤ γ < β ≤ 1 yields

φq(Iβ(t−γ f (t, x(t)))) ∈ C[0, 1]. (2.6)

It follows from (2.6) that Iαφq
[
Iβ(t−γ f (t, x(t))) + x1

]∣∣∣∣
t=0

= 0 and consequently x(0) = x0. Applying

I1−α to (2.4) and using Proposition 1.1. c) we get

I1−α(x(t) − x0) = Iφq
[
Iβ(t−γ f (t, x(t))) + x1

]
∈ C1[0, 1] ⊂ AC[0, 1].

This means that x ∈ Dom(Dα
∗ ). By Proposition 1.1 d)

Dα
∗ x(t) = Dα(x(t) − x0) = DαIαφq

[
Iβ(t−γ f (t, x(t))) + x1

]
=

φq
[
Iβ(t−γ f (t, x(t))) + x1

]
.

(2.7)
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So, Dα
∗ x ∈ C[0, 1] and Dα

∗ x(0) = φq(x1) = x∗α. Applying φp to both sides of (2.7) and using the fact
that t−γ f (t, x(t)) ∈ L1 we obtain

φp(Dα
∗ x(t)) = Iβ(t−γ f (t, x(t))) + x1 ⇒

φp(Dα
∗ x(t)) − φp(Dα

∗ x(0)) = Iβ(t−γ f (t, x(t)))⇒
I1−β[φp(Dα

∗ x(t)) − φp(Dα
∗ x(0))

]
= I(t−γ f (t, x(t))) ∈ AC[0, 1]⇒

φp(Dα
∗ x) ∈ Dom(Dβ

∗).

(2.8)

It follows from the second equation in (2.8) that

Dβ
∗φp(Dα

∗ x(t)) = t−γ f (t, x(t)).

Conversely, assume that the conditions x ∈ Dom(Dα
∗ ), φp(Dα

∗ x) ∈ Dom(Dβ
∗), and Dα

∗ x ∈ C[0, 1] are
satisfied and Eq (2.5) holds. By using these conditions, the definition of Dβ

∗ and Proposition 1.1, we
obtain from Eq (2.5) that

DI1−β[φp(Dα
∗ x(t)) − x1

]
= t−γ f (t, x(t))⇒ (by the conditions)

I1−β[φp(Dα
∗ x(t)) − x1

]
= I

(
t−γ f (t, x(t))

)
⇒ (by applying Iβ)

I
[
φp(Dα

∗ x(t)) − x1
]

= Iβ+1(t−γ f (t, x(t))
)
⇒ (taking derivative)

φp(Dα
∗ x(t)) = Iβ

(
t−γ f (t, x(t))

)
+ x1 ⇒ (by applying φq)

Dα
∗ x(t) = φq

[
Iβ

(
t−γ f (t, x(t))

)
+ x1

]
.

Now, using the definition of Dα
∗ and the condition x ∈ Dom(Dα

∗ ) we obtain that

DI1−α(x(t) − x0) = φq
[
Iβ

(
t−γ f (t, x(t))

)
+ x1

]
⇒

I1−α(x(t) − x0) = Iφq
[
Iβ

(
t−γ f (t, x(t))

)
+ x1

]
⇒

I(x(t) − x0) = Iα+1φq
[
Iβ

(
t−γ f (t, x(t))

)
+ x1

]
.

Taking the derivative from the last equation we get

x(t) = Iαφq
[
Iβ(t−γ f (t, x(t))) + x1

]
+ x0.

�

Finally, we compare the problems (2.1) and (2.5).

Theorem 2.3. Let 0 ≤ γ < α, β < 1. If a function x(t) is a solution of the problem with Caputo
derivative: 

Dβ
Cφp(Dα

C x(t)) = t−γ f (t, x(t)),
x(0) = x0, Dα

C x(0) = xα, x0, xα ∈ R,
x ∈ AC[0, 1], Dα

C x ∈ AC[0, 1],
then it is a solution of the problem with generalized Caputo derivative:

Dβ
∗φp(Dα

∗ x(t)) = t−γ f (t, x(t)),
x(0) = x0, Dα

∗ x(0) = xα,
x ∈ Dom(Dα

∗ ), φp(Dα
∗ x) ∈ Dom(Dβ

∗), Dα
∗ x ∈ C[0, 1].

Conversely, if a function x(t) is a solution of the problem with the generalized Caputo derivative
and additionally x ∈ AC[0, 1], Dα

C x ∈ AC[0, 1], then it is a solution of the problem with the Caputo
derivative.

Proof. This fact immediately follows from the definition of the domain of the operators Dα
C, Dα

∗ , and
Proposition 1.1. f), i.e., if 0 < α < 1 and x(t) ∈ AC[0, 1] then Dα

∗ x(t) = Dα(x(t) − x(0)) = Dα
C x(t). �
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3. Solvability of initial and boundary value problems

Our starting initial value problem is:

Dβ
Cφp(Dα

C x(t)) = t−γ f (t, x(t)), 0 ≤ γ < α, β < 1,
x(0) = 0, Dα

C x(0) = 0,
x ∈ AC[0, 1], Dα

C x ∈ AC[0, 1].
(3.1)

We consider the homogeneous initial value problem because by using the substitution x(t) = y(t) +
xα

αΓ(α) t
α + x0 one can transform the non-homogeneous initial conditions x(0) = x0, Dα

C x(0) = xα into the
homogeneous conditions.

Theorem 2.3 gives us the basis for defining a generalized solution concept as follows.

Definition 3.1. A function x(t) is called a generalized solution to the problem (3.1) if it is a solution to
the following problem. 

Dβ
∗φp(Dα

∗ x(t)) = t−γ f (t, x(t)), 0 ≤ γ < α, β < 1,
x(0) = 0, Dα

∗ x(0) = 0,
x ∈ Dom(Dα

∗ ), φp(Dα
∗ x) ∈ Dom(Dβ

∗), Dα
∗ x ∈ C[0, 1].

(3.2)

By Theorem 2.2, the problem (3.2) is equivalent to the Volterra integral equation:

x(t) = Iαφq
[
Iβ(t−γ f (t, x(t)))

]
, x ∈ C[0, 1]. (3.3)

For this reason, we will study the problem (3.3) instead of (3.2).
The main theorem regarding the existence of a solution to the Volterra integral equation is as follows.

Theorem 3.1. Let f be continuous on [0, 1] × R and there exist nonnegative functions a, b ∈ C[0, 1]
such that | f (t, u)| ≤ a(t) + b(t)|u|p−1, for all t ∈ [0, 1] and u ∈ R. If

Γ(1 − γ)‖b‖
Γ(α + 1)p−1Γ(1 − γ + β)

< 1, (3.4)

then the Volterra integral equation (3.3) has a solution in C[0, 1]. So, the problem (3.1) has a
generalized solution in C[0, 1].

Proof. We use Schaefer’s fixed point theorem to show the existence of a solution to problem (3.3). A
version of Schaefer’s fixed point theorem is as follows:

Let X be a Banach space. If
i) T : X → X is a continuous compact operator,
ii) the set ∪0≤λ≤1{x ∈ X : x(t) = λT x(t)} is bounded,
then T has a fixed point in X.
We have

x(t) = Iαφq
[
Iβ(t−γ f (t, x(t)))

]
.

Denoting T x(t) = Iαφq
[
Iβ(t−γ f (t, x(t)))

]
we can write this equation in the following form

T x(t) = x(t).

AIMS Mathematics Volume 9, Issue 5, 12800–12813.
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Now, we need to show that T has a fixed point in C[0, 1].

T x(t) =
1

Γ(α)

∫ t

0
(t − s)α−1φq

[ 1
Γ(β)

∫ s

0
(s − τ)β−1τ−γ f (τ, x(τ)) dτ

]
ds.

i) We have to prove that T : C[0, 1]→ C[0, 1] is a continuous compact operator. First, let us show that
T : C[0, 1]→ C[0, 1] is continuous, i.e.,

xn(t)→ x(t) in C[0, 1]⇒ T xn(t)→ T x(t) in C[0, 1].

A convergent sequence in a normed space is bounded. Hence,

xn(t)→ x(t) in C[0, 1]⇒ ‖xn(t)‖ ≤ M, for all t ∈ C[0, 1].

Since the function f is continuous on [0, 1] × [−M,M], it is uniformly continuous on this compact
set. It means that for ε > 0 there exists nε ∈ N such that

| f (t, xn(t)) − f (t, x(t))| < ε, for all n ≥ nε, and all t ∈ [0, 1].

By the definition of T ,

T xn(t) − T x(t) = Iα
[
φq

(
Iβ(t−γ f (t, xn(t)))

)
− φq

(
Iβ(t−γ f (t, x(t)))

)]
.

Let

yn(t) = Iβ(t−γ f (t, xn(t))) =
1

Γ(β)

∫ t

0
(t − s)β−1s−γ f (s, xn(s)) ds,

y(t) = Iβ(t−γ f (t, x(t))) =
1

Γ(β)

∫ t

0
(t − s)β−1s−γ f (s, x(s)) ds.

The function f is bounded on [0, 1] × [−M,M]. Hence | f (t, s)| ≤ L, for all (t, s) ∈ [0, 1] × [−M,M].
Then

‖yn‖, ‖y‖ ≤
L

Γ(β)
B(β, 1 − γ)

and
|yn(t) − y(t)| ≤

ε

Γ(β)
B(β, 1 − γ) for all n ≥ nε, and all t ∈ [0, 1],

where B(ν, µ) =
∫ 1

0
(1 − s)ν−1sµ−1 ds =

Γ(ν)Γ(µ)
Γ(ν+µ) for ν > 0, µ > 0.

Finally, it follows from the continuity of the function φp and continuity of the operator
Iα : C[0, 1]→ C[0, 1] that the operator T is continuous.

Now we prove that the operator T x(t) = Iαφq
[
Iβ(t−γ f (t, x(t)))

]
is compact. For this, we need to show

that for any bounded set Ω ⊂ C[0, 1] the set T (Ω) is compact. By the Arzela-Ascoli theorem, T (Ω) is
compact if and only if

a) T (Ω) is bounded in C[0, 1] (it is the same that T (Ω) is uniformly bounded).
b) T (Ω) is equicontinuous.
We first show that T (Ω) is bounded in C[0, 1]. Boundedness of T (Ω) means that

‖T x(t)‖ ≤ C, ∀x ∈ Ω,

AIMS Mathematics Volume 9, Issue 5, 12800–12813.
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where C does not depend on x. This is a trivial fact. However, we will give a short proof. Since Ω

is bounded, we have ‖x‖ ≤ C for all x ∈ Ω. From the continuity of f it follows that it is uniformly
continuous on [0, 1] × [−C,C]. Then | f (t, x(t)| ≤ M for all x ∈ Ω and all t ∈ [0, 1]. Hence,

|Iβ(t−γ f (t, x(t)))| =∣∣∣∣ 1
Γ(β)

∫ t

0
(t − s)β−1s−γ f (s, x(s)) ds

∣∣∣∣ ≤ M
Γ(β) B(β, 1 − γ).

(3.5)

On the other hand, Iα : C[0, 1]→ C[0, 1] is a bounded operator and

‖Iαx(t)‖ ≤
1

Γ(α + 1)
‖x(t‖. (3.6)

Then, by using (3.5), (3.6), and the monotonicity of sq−1, we obtain that

‖T x(t)‖ =
∥∥∥Iαφq

[
Iβ(t−γ f (t, x(t)))

]∥∥∥ ≤ 1
Γ(α + 1)

[ M
Γ(β)

B(β, 1 − γ)
]q−1

.

This means that T (Ω) is uniformly bounded.
b) Now we show that T (Ω) is equicontinuous. To prove this, we use the same technique as in [11]

(see theorem 3.1 in [11]).
Let 0 ≤ t1 < t2 ≤ 1 and x ∈ Ω. By (3.5) we have

|φq
[
Iβ(t−γ f (t, x(t)))

]
| ≤

( M
Γ(β)

B(β, 1 − γ)
)q−1

. (3.7)

Then, using (3.7) we get

|T x(t2) − T x(t1)| = 1
Γ(α)

∣∣∣∣∫ t2
0

(t2 − s)α−1φq
[
Iβ(s−γ f (s, x(s)))

]
ds−∫ t1

0
(t1 − s)α−1φq

[
Iβ(s−γ f (s, x(s)))

]
ds

∣∣∣∣ =

1
Γ(α)

∣∣∣∣∫ t1
0

(
(t2 − s)α−1 − (t1 − s)α−1)φq

[
Iβ(s−γ f (s, x(s)))

]
ds+∫ t2

t1
(t2 − s)α−1φq

[
Iβ(s−γ f (s, x(s)))

]∣∣∣∣ ≤
1

Γ(α+1)

(
M

Γ(β) B(β, 1 − γ)
)q−1[

tα1 + tα2 + 2(t2 − t1)α
]
.

This inequality together with uniform continuity of tα on [0, 1] yields that T (Ω) is equicontinuous.
ii) Let us prove that the set ∪0≤λ≤1{x ∈ C[0, 1] : x(t) = λT x(t)} is bounded. Let x(t) = λT x(t), λ ∈

(0, 1]. By the condition of the theorem | f (t, u)| ≤ a(t) + b(t)|u|p−1, for all t ∈ [0, 1] and all u ∈ R. Then

|x(t) ≤ |T x(t)| =
1

Γ(α)

∣∣∣∣∫ t

0
(t − s)α−1φq

[ 1
Γ(β)

∫ s

0
(s − τ)β−1τ−γ f (τ, x(τ)) dτ

]
ds

∣∣∣∣.
Setting τ = σs, we obtain that

|x(t)| ≤ 1
Γ(α)

∣∣∣∣∫ t

0
(t − s)α−1φq

[
sβ−γ
Γ(β)

∫ 1

0
(1 − σ)β−1σ−γ f (σs, x(σs)) dσ

]
ds

∣∣∣∣ ≤
1

Γ(α)

∣∣∣∣∫ t

0
(t − s)α−1[ B(β,1−γ)

Γ(β) (‖a‖ + ‖b‖‖x‖p−1)
]q−1ds

∣∣∣∣ =

1
Γ(α+1)

[ Γ(1−γ)
Γ(1−γ+β) (‖a‖ + ‖b‖‖x‖p−1)

]q−1
,

AIMS Mathematics Volume 9, Issue 5, 12800–12813.



12809

where we have used B(β, 1− γ) =
Γ(β)Γ(1−γ)
Γ(1−γ+β) . Since (p− 1)(q− 1) = 1, we obtain from the last inequality

that
‖x‖p−1 ≤

1
Γ(α + 1)p−1

Γ(1 − γ)
Γ(1 − γ + β)

(
‖a‖ + ‖b‖‖x‖p−1)

and consequently,
‖b‖‖x‖p−1

‖a‖ + ‖b‖‖x‖p−1 ≤
Γ(1 − γ)‖b‖

Γ(α + 1)p−1Γ(1 − γ + β)
. (3.8)

If the set ∪0≤λ≤1{x ∈ C[0, 1] : x(t) = λT x(t)} were unbounded then there would be a sequence in
this set that converges to infinity. Then taking limit as ‖x‖ → ∞ in (3.8) and using the condition of the
theorem Γ(1−γ)‖b‖

Γ(α+1)p−1Γ(1−γ+β) < 1, we get the following contradiction

1 ≤
Γ(1 − γ)‖b‖

Γ(α + 1)p−1Γ(1 − γ + β)
< 1.

Hence, the set ∪0≤λ≤1{x ∈ C[0, 1] : x(t) = λT x(t)} is bounded and, by Schaefer’s theorem, the
operator T has a fixed point. �

Using the methods applied in Theorem 3.1, we obtain the following result for the smallest
eigenvalue of the fractional p-laplacian operator.

Corollary 3.1. Let µ1 be the smallest eigenvalue of the following eigenvalue problem:

Dβ
∗φp(Dα

∗ x(t)) = µ|x|p−2x, µ > 0, p > 1, 0 < α, β ≤ 1,
x(0) = 0, Dα

∗ x(0) = 0.

Then
µ1 ≥ Γ(α + 1)p−1Γ(β + 1).

Proof. Let 0 < µ1 < Γ(α + 1)p−1Γ(β + 1) be an eigenvalue of the given problem. Then,

Dβ
∗φp(Dα

∗ x(t)) = µ1|x|p−2x,
x(0) = 0, Dα

∗ x(0) = 0.

By Theorem 2.2, this problem is equivalent to the Volterra integral equation:

x(t) = Iαφq
[
Iβ(µ1|x|p−2x)

]
, x ∈ C[0, 1].

According to Theorem 3.1, we have a = 0, b = µ1 and by the assumption 0 < µ1 < Γ(α+1)p−1Γ(β+1)
the condition

‖b‖
Γ(α + 1)p−1Γ(1 + β)

=
µ1

Γ(α + 1)p−1Γ(1 + β)
< 1

is satisfied. Then under these conditions we have proved in Theorem 3.1 that the set∪0≤λ≤1{x ∈ C[0, 1] :
x(t) = λT x(t)} is bounded, where T x(t) = Iαφq

[
Iβ(µ1|x|p−2x)

]
. But, since µ1 is an eigenvalue, the set

x(t) = λT x(t)} is unbounded for λ = 1. This is a contradiction. Consequently, µ1 ≥ Γ(α + 1)p−1Γ(β +

1). �

Finally, we give an example as an application of Theorem 3.1.
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Example 3.1. If 0 < b < 1
2 then the following problem has a solution in C[0, 1].

D
1
2
∗ φ3(D

1
2
∗ x(t)) = t−1/3(1 + bx2(t)),

x(0) = 0, Dα
∗ x(0) = 0.

Let us check the conditions of Theorem 3.1. In this case
f (t, x(t)) = 1 + bx2(t), p = 3, γ = 1

3 , α = β = 1
2 and 0 < γ < α, β < 1. Then

Γ(1 − γ)‖b‖
Γ(α + 1)p−1Γ(1 − γ + β)

=
Γ( 2

3 )b

Γ(3
2 )2Γ( 7

6 )
.

Γ( 2
3 ) = 1, 35411.., Γ

(
3
2

)
= 0, 88622.., Γ

(
7
6

)
= 0, 92771.. and

Γ(2
3 )b

Γ( 3
2 )2Γ(7

6 )
<

1, 4b
(0, 88)20, 92

< 2b < 1.

Consequently, the condition
Γ(1 − γ)‖b‖

Γ(α + 1)p−1Γ(1 − γ + β)
< 1

is satisfied and the problem has a solution.

4. Conclusions

The main subject of this paper was the initial value problems for Caputo fractional differential
equations with singular nonlinearities involving the p-Laplacian operator. The most important
difference of this paper from other studies on this subject is that the equation

Dβ
Cφp(Dα

C x(t)) = t−γ f (t, x(t)), 0 ≤ γ < α β ≤ 1

contains the singular term t−γ.
In general, Volterra integral equations are used to solve problems given for fractional differential

equations. However, their equivalence is not always shown in the literature. In this article, the
equivalence of such problems was discussed in full detail. We would like to emphasize that we
benefited from the techniques of Webb [36] in this subject.

For the case f = µ|x|p−2x, γ = 0, a result related to the lower bound of the eigenvalues is given as
Corollary 3.1.

By the methods, applied in the article, similar results can be obtained for higher order equations and
different initial and boundary value problems.
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