Research article Special Issues

A new reciprocity formula of Dedekind sums and its applications

  • Dedicated to Professor Taekyun Kim on the occasion of his sixtieth birthday
  • Received: 27 February 2024 Revised: 21 March 2024 Accepted: 26 March 2024 Published: 03 April 2024
  • MSC : 11F20, 11M20

  • Our main purpose of this article was using the analytic methods and the properties of Dirichlet $ L $-functions to study the properties of Dedekind sums and give a new reciprocity formula for it. As its applications, some exact calculating formula for one kind mean square value of Dirichlet $ L $-fuctions with the weight of the character sums were obtained.

    Citation: Zhuoyu Chen, Wenpeng Zhang. A new reciprocity formula of Dedekind sums and its applications[J]. AIMS Mathematics, 2024, 9(5): 12814-12824. doi: 10.3934/math.2024626

    Related Papers:

  • Our main purpose of this article was using the analytic methods and the properties of Dirichlet $ L $-functions to study the properties of Dedekind sums and give a new reciprocity formula for it. As its applications, some exact calculating formula for one kind mean square value of Dirichlet $ L $-fuctions with the weight of the character sums were obtained.



    加载中


    [1] T. M. Apostol, Modular functions and Dirichlet series in number theory, Springer-Verlag, 1990. https://doi.org/10.1007/978-1-4612-0999-7
    [2] H. Rademacher, On the transformation of $\log \eta(\tau)$, J. Indian Math. Soc., 19 (1955), 25–30. https://doi.org/10.1215/S0012-7094-74-04132-5 doi: 10.1215/S0012-7094-74-04132-5
    [3] H. Rademacher, E. Grosswald, Dedekind sums, Carus mathematical monographs, Math. Assoc. Amer., 1972.
    [4] L. Carlitz, The reciprocity theorem for Dedekind sums, Pacific J. Math., 3 (1953), 523–527. https://doi.org/10.2140/PJM.1953.3.523 doi: 10.2140/PJM.1953.3.523
    [5] J. B. Conrey, E. Fransen, R. Klein, C. Scott, Mean values of Dedekind sums, J. Number Theory, 56 (1996), 214–226. https://doi.org/10.1006/jnth.1996.0014
    [6] W. P. Zhang, On the mean values of Dedekind sums, J. Theor. Nombres Bordeaux, 8 (1996), 429–442. https://doi.org/10.5802/JTNB.179 doi: 10.5802/JTNB.179
    [7] L. J. Mordell, The reciprocity formula for Dedekind sums, Amer. J. Math., 73 (1951), 593–598. https://doi.org/10.2307/2372310 doi: 10.2307/2372310
    [8] Y. N. Liu, W. P. Zhang, A hybrid mean value related to the Dedekind sums and Kloosterman sums, Acta Math. Sin. Engl. Ser., 27 (2011), 435–440. https://doi.org/10.1007/s10114-010-9192-2 doi: 10.1007/s10114-010-9192-2
    [9] W. P. Zhang, On a note of one class mean square value of $L$-functions, J. Northwest Univ., 20 (1990), 9–12.
    [10] W. P. Zhang, A sum analogous to Dedekind sums and its hybrid mean value formula, Acta Arith., 107 (2003), 1–8. https://doi.org/10.4064/aa107-1-1 doi: 10.4064/aa107-1-1
    [11] E. Tsukerman, Fourier-Dedekind sums and an extension of Rademacher reciprocity, Ramanujan J., 37 (2015), 421–460. https://doi.org/10.1007/s11139-014-9555-x doi: 10.1007/s11139-014-9555-x
    [12] W. Kohnen, A short note on Dedekind sums, Ramanujan J., 45 (2018), 491–495. https://doi.org/10.1007/s11139-016-9851-8 doi: 10.1007/s11139-016-9851-8
    [13] Y. W. Chen, N. Dunn, S. Silas, Dedekind sums $s(a, b)$ and inversions modulo $b$, Int. J. Number Theory, 11 (2015), 2325–2339. https://doi.org/10.1142/S1793042115501067 doi: 10.1142/S1793042115501067
    [14] W. P. Zhang, On the fourth power mean of Dirichlet $L$-functions, Science Press, 1989,173–179.
    [15] D. Han, W. P. Zhang, Some new identities involving Dedekind sums and the Ramanujan sum, Ramanujan J., 35 (2014), 253–262. https://doi.org/10.1007/s11139-014-9591-6 doi: 10.1007/s11139-014-9591-6
    [16] S. Macourt, An integer-valued expression of Dedekind sums, Int. J. Number Theory, 13 (2017), 1253–1259. https://doi.org/10.1142/S1793042117500683 doi: 10.1142/S1793042117500683
    [17] K. Girstmair, On a recent reciprocity formula for Dedekind sums, Int. J. Number Theory, 15 (2019), 1469–1472. https://doi.org/10.1142/S1793042119500842 doi: 10.1142/S1793042119500842
    [18] Z. Y. Zheng, M. Chen, J. Xu, On Gauss sums over Dedekind domains, Int. J. Number Theory, 18 (2022), 1047–1063. https://doi.org/10.1142/S1793042122500543 doi: 10.1142/S1793042122500543
    [19] Y. K. Ma, L. L. Luo, T. Kim, H. Z. Li, A study on a type of poly-Dedekind type DC sums, J. Northwest Univ. Natl. Sci. Edit., 53 (2023), 438–442.
    [20] M. C. Dagli, On the hybrid mean value of generalized Dedekind sums, generalized Hardy sums and Ramanujan sum, Bull. Math. Soc. Sci. Math. Roum., 63 (2020), 325–333.
    [21] E. Nguyen, J. J. Ramirez, M. P. Young, The kernel of newform Dedekind sums, J. Number Theory, 223 (2021), 53–63. https://doi.org/10.1016/j.jnt.2020.10.005 doi: 10.1016/j.jnt.2020.10.005
    [22] M. Majure, Algebraic properties of the values of newform Dedekind sums, J. Number Theory, 250 (2023), 35–48. https://doi.org/10.1016/j.jnt.2023.03.004 doi: 10.1016/j.jnt.2023.03.004
    [23] T. M. Apostol, Introduction to analytic number theory, Springer-Verlag, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [24] K. Ireland, M. Rosen, A classical introduction to modern number theory, Springer-Verlag, 1990. https://doi.org/10.1007/978-1-4757-2103-4
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(929) PDF downloads(72) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog