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1. Introduction

In order to describe the results of this paper, we first introduce the definition of the Dedekind sums
S (r, q). For any integers q ≥ 2 and r, the classical Dedekind sums S (r, q) is defined as follows (see [1]):

S (r, q) =
q∑

c=1

((
c
q

)) ((
rc
q

))
,

where ((u)) is usually defined as

((u)) =
{

u − [u] − 1
2 , if u is not an integer;

0, if u is an integer.

Usually, we know that S (r, q) describes the behavior of the logarithm for the eta-function (see [2,3])
under modular transformations. Because of the importance of S (r, q) in analytic number theory, many
authors have studied the various arithmetical properties of S (r, q) and obtained a series of meaningful
results (some of them can be found in [4–16]). To avoid complexity, we do not want to list them one by
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one. However, it is worth mentioning that Girstmair acquired an interesting result in [17], and it should
be noted that perhaps the most important property of S (r, q) is its reciprocity theorem (see [1, 4, 7]).
That is, for any positive integers u and v with (u, v) = 1, one has the following identity

S (u, v) + S (v, u) =
u2 + v2 + 1

12uv
−

1
4
. (1.1)

Obviously, this formula is not only looks very beautiful, but also reveals the profound properties
between S (u, v) and S (v, u). Rademacher and Grosswald [3] also obtained a three-term formula similar
to (1.1). Besides, there are many properties of Dedekind sums that are worth studying, and many
scholars have achieved rich results. In particular, some of the new papers related to Dedekind sums
can also be found in the references [18–22].

Our main purpose of this paper is using the analytic methods and the properties of Dirichlet L-
functions to study the properties of S (r, q) and give a new reciprocity formula for it, which is Lemma 3
in the paper. As its applications, we deduced several new calculating formula for the mean square value
of Dirichlet L-functions with the weight of the character sums. In other words, we have the following
three results:

Theorem 1. For any positive integer q > 1 and (q, 6) = 1, we have the following identities

∑
χ mod q
χ(−1)=−1

χ(3) · χ(2) · |L(1, χ)|2 =
π2

18
·
ϕ2(q)

q2 ·

q
4
·
∏
p|q

(
1 +

1
p

)
−

9
2
+

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 ,
where

∑
χ mod q
χ(−1)=−1

denotes the summation over all odd characters modulo q and
∏
p|q

represents the product

over all distinct prime divisors of q, L(s, χ) is the Dirichlet L-function corresponding to character
χ mod q, ϕ(q) is the Euler function and

(
∗

3

)
is the Legendre symbol modulo 3.

Theorem 2. For any positive integer q > 1 with (q, 6) = 1, we also have the identity

∑
χ mod q
χ(−1)=1

|L(1, χλ3)|2 =
π2

27
·
ϕ2(q)

q2

2q ·
∏
p|q

(
1 +

1
p

)
−

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 ,
where

∑
χ mod q
χ(−1)=1

denotes the summation over all even characters modulo q, and λ3 =
(
∗

3

)
denotes the

Legendre symbol modulo 3.

Theorem 3. For any positive integer q > 1 with (q, 6) = 1, we can obtain the identity

∑
λ mod q
λ(−1)=1

λ(2) · |L(1, λψ3)|2 = −
π2

27
·
ϕ2(q)

q2

q ·∏
p|q

(
1 +

1
p

)
− 2

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 ,
where

ψ3 =

(
∗

3

)
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denotes the Legendre symbol modulo 3.
To illustrate the interest of this article, here we provide several numerical examples to justify our

obtained results. If we take q = 5 in Theorems 1 and 2, we could obtain the following two corollaries:

Corollary 1. Let ψ be any non-real character modulo 5. We obtain the identity

|L(1, ψ)| =

√
2

5
· π.

Corollary 2. Let λ =
(
∗

3

)
·
(
∗

5

)
modulo 15. We have the identity

|L(1, λ)| =
2π
√

15
.

If we take q = 7 in Theorem 2 and q = 35, Theorems 2 and 3, we can also have the following
corollaries:

Corollary 3. Let χ be any non-real even character modulo 7. Then we have the identity

|L(1, χ)| =
2π
√

21
.

Corollary 4. Let ψ3 denote the Legendre symbol modulo 3. Then we have∑
λ mod 35
λ(−1)=1

λ(2) · |L(1, λψ3)|2 = −
9792

11025
· π2.

Corollary 5. Let ψ3 denote the Legendre symbol modulo 3. Then we have∑
χ mod 35
χ(−1)=1

|L(1, χψ3)|2 =
416
245
· π2.

Some notes: It is clear that by replacing χ(3) with χ(5) or χ(7) in Theorem 1 we can also get some
similar results, but the situation is more complicated and we do not list them.

In addition, Theorems 2 and 3 show two interesting results. In fact, for the mean square value of
Dirichlet L-functions with the even characters at point s = 1, there are so far only various asymptotic
formulas, without any exact identities. For Theorems 2 and 3, we obtained two exact calculating
formulae for them just by turning all characters χ with χ(−1) = 1 into χλ3 with χλ3(−1) = −1.

2. Several lemmas

In this section, we will give three simple lemmas that are necessary in the proofs of three theorems.
Hereinafter, we shall combine some knowledge of analytic number theory and the properties of the
Dirichlet L-functions and Dedekind sums, which can be found in references [1, 23, 24], so we will not
repeat them here. First, we have the following:

AIMS Mathematics Volume 9, Issue 5, 12814–12824.
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Lemma 1. Let q > 2 be an integer. Then for any integer v with (v, q) = 1, we have the following
equation:

S (v, q) =
1
π2q

∑
h|q

h2

ϕ(h)

∑
χ mod h
χ(−1)=−1

χ(v)|L(1, χ)|2,

where L(s, χ) denotes the Dirichlet L-function corresponding to χ mod h.

Proof. See [6, Lemma 2]. □

Lemma 2. Let q be a positive odd number. For any positive odd number r with (r, q) = 1, we can
calculate the identity

S (r, 2q) = 3 · S (r, q) − S (2r, q) − S
(
2r, q

)
,

where 2 · 2 ≡ 1 mod q.

Proof. Let χ0 denote the principal character modulo 2. Note that 2 ∤ q and for any h | q, we know that

ϕ(2h) = ϕ(h)

and
(r, 2q) = 1.

According to the Lemma 1, we can obtain

S (r, 2q) =
1

2π2q

∑
h|2q

h2

ϕ(h)

∑
χ mod h
χ(−1)=−1

χ(r)|L(1, χ)|2

=
1

2π2q

∑
h|q

h2

ϕ(h)

∑
χ mod h
χ(−1)=−1

χ(r)|L(1, χ)|2 +
1

2π2q

∑
h|q

(2h)2

ϕ(2h)

∑
χ mod 2h
χ(−1)=−1

χ(r)|L(1, χ)|2

=
1
2
· S (r, q) +

2
π2q

∑
h|q

h2

ϕ(h)

∑
χ mod h
χ(−1)=−1

χ(r)|L(1, χχ0)|2.

(2.1)

For any non-principal character χ mod h with h | q, using the properties of Dirichlet L-functions and
the Euler product formula (see [23, Theorem 11.6]), we can calculate that

|L(1, χχ0)|2 =

∣∣∣∣∣∣∣∏p

(
1 −

χ(p)χ0(p)
p

)−1
∣∣∣∣∣∣∣
2

=

∣∣∣∣∣1 − χ(2)
2

∣∣∣∣∣2 ·
∣∣∣∣∣∣∣∏p

(
1 −

χ(p)
p

)−1
∣∣∣∣∣∣∣
2

=

(
5
4
−
χ(2)

2
−
χ(2)

2

)
· |L(1, χ)|2 .

(2.2)
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Combining (2.1), (2.2) and Lemma 1, we have the identity

S (r, 2q) =
1
2
· S (r, q) +

2
π2q

∑
h|q

h2

ϕ(h)

∑
χ mod h
χ(−1)=−1

χ(r)
(
5
4
−
χ(2)

2
−
χ(2)

2

)
· |L(1, χ)|2

=
1
2
· S (r, q) +

5
2
· S (r, q) −

1
π2q

∑
h|q

h2

ϕ(h)

∑
χ mod h
χ(−1)=−1

χ(2r)|L(1, χ)|2

−
1
π2q

∑
h|q

h2

ϕ(h)

∑
χ mod h
χ(−1)=−1

χ
(
2r

)
|L(1, χ)|2

=3 · S (r, q) − S (2r, q) − S
(
2r, q

)
.

This completes the proof of Lemma 2. □

Lemma 3. Let h and q be two positive odd numbers with (h, q) = 1. Then we have the reciprocity
formula

S
(
2q, h

)
+ S

(
2h, q

)
=

h2 + q2 + 4
24hq

−
1
4
,

where 2 in S
(
2h, q

)
and S

(
2q, h

)
are q+1

2 and h+1
2 , respectively.

Proof. For any positive odd numbers h and q with (h, q) = 1, according to the Lemma 2, we can obtain

S (h, 2q) = 3 · S (h, q) − S (2h, q) − S
(
2h, q

)
(2.3)

and

S (q, 2h) = 3 · S (q, h) − S (2q, h) − S
(
2q, h

)
. (2.4)

Applying (2.3), (2.4) and the reciprocity formula (1.1), we have the following identity:

S (h, 2q) + S (2q, h) + S (q, 2h) + S (2h, q) = 3 · S (h, q) + 3 · S (q, h) − S
(
2q, h

)
− S

(
2h, q

)
or

4q2 + h2 + 1
24hq

−
1
4
+

4h2 + q2 + 1
24qh

−
1
4
= 3 ·

(
h2 + q2 + 1

12hq
−

1
4

)
− S

(
2q, h

)
− S

(
2h, q

)
or

S
(
2q, h

)
+ S

(
2h, q

)
=

h2 + q2 + 4
24hq

−
1
4
.

This proves Lemma 3. □

It is clear that our Lemma 3 gave a new reciprocity formula for Dedekind sums.
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3. Proofs of the theorems

In this section, we use the three simple lemmas in Section 2 and the reciprocity formula (1.1) to
prove our three results. We will first prove Theorem 1.

Proof. Taking h = 3 in Lemma 3 and because of 2 · 2 ≡ 1 mod 3, if q = 6k + 1, from the definition of
S (h, q), we can obtain

S
(
2q, 3

)
= S (2q, 3) = S (2, 3) = −S (1, 3) = −

1
18
. (3.1)

If q = 6k − 1, from the definition of S (h, q), we can also obtain

S
(
2q, 3

)
= S (2q, 3) = S (−2, 3) = S (1, 3) =

1
18
. (3.2)

Combining (3.1) and (3.2), for any odd positive integer q with (q, 3) = 1, we have

S
(
2q, 3

)
= S (2q, 3) = −

(
q
3

)
18
. (3.3)

Note that S (r + hq, q) = S (r, q), from (3.3) and Lemma 3 we have

S
(
2 · 3, q

)
= S

(
3q + 3

2
, q

)
= S

(
q + 3

2
, q

)
=

q2 + 13
72q

−
1
4
+

(
q
3

)
18
. (3.4)

According to the formula (3.1)–(3.3) and the properties of the Möbius function, we calculate∑
d|q

µ(d) ·
q
d
· S

(q
d
, 3

)
=

∑
d|q

µ(d) ·
q
d
·

(
q/d
3

)
18
=

q
18
·

(q
3

)
·
∑
d|q

µ(d) ·
(

d
3

)
d

= ϕ(q) ·

(
q
3

)
18
·
∏
p|q

p −
(

p
3

)
p − 1

,

(3.5)

where µ(n) denotes the Möbius function.
From the formula (3.4) and Lemma 1 we have

q
72
−

1
4
+

13
72q
+

(
q
3

)
18
=

1
π2q

∑
k|q

k2

ϕ(k)

∑
χ mod k
χ(−1)=−1

χ(3) · χ(2) · |L(1, χ)|2. (3.6)

Note that (3.5), applying Möbius inversion formula (see [23, Theorem 2.9]) for (3.6) we have∑
χ mod q
χ(−1)=−1

χ(3) · χ(2) · |L(1, χ)|2 =
π2 · ϕ(q)

q2 ·
∑
d|q

µ(d)

 q2

72d2 −
1
4
·

q
d
+

(
q/d
3

)
18
+

13
72


= π2 ·

ϕ2(q)
q2 ·

 1
72
· q ·

∏
p|q

(
1 +

1
p

)
−

1
4
+

(
q
3

)
18
·
∏
p|q

p −
(

p
3

)
p − 1

 .
The proof of Theorem 1 is finished. □
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Next we prove Theorem 2.

Proof. For any odd number q > 3 with (q, 3) = 1, we have

S (1, q) =
q−1∑
a=1

(
a
q
−

1
2

)2

=
q

12
−

1
4
+

1
6q
. (3.7)

On the basis of (3.7), Lemma 1 and the Möbius inversion formula, we can obtain

∑
χ mod q
χ(−1)=−1

|L(1, χ)|2 =
π2

12
·
ϕ2(q)

q2

q ·∏
p|q

(
1 +

1
p

)
− 3

 (3.8)

and ∑
χ mod 3q
χ(−1)=−1

|L(1, χ)|2 =
π2

27
·
ϕ2(q)

q2

4q ·
∏
p|q

(
1 +

1
p

)
− 3

 . (3.9)

According to the formulae (1.1), (3.3), (3.5) and the Möbius inversion formula, we also calculate the

∑
χ mod q
χ(−1)=−1

χ(3) · |L(1, χ)|2 =
π2

36
·
ϕ2(q)

q2

q ·∏
p|q

(
1 +

1
p

)
− 9 − 2

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 . (3.10)

On the other hand, let λ3 =
(
∗

3

)
denote the Legendre symbol modulo 3, and λ0

3 denote the principal
character modulo 3. Then note that∑

χ mod 3q
χ(−1)=−1

|L(1, χ)|2 =
∑

χ mod q
χ(−1)=−1

|L
(
1, χλ0

3

)
|2 +

∑
χ mod q
χ(−1)=1

|L (1, χλ3) |2

=
∑

χ mod q
χ(−1)=−1

∣∣∣∣∣1 − χ(3)
3

∣∣∣∣∣2 · |L (1, χ) |2 +
∑

χ mod q
χ(−1)=1

|L (1, χλ3) |2

=
10
9
·

∑
χ mod q
χ(−1)=−1

|L(1, χ)|2 −
2
3
·

∑
χ mod q
χ(−1)=−1

χ(3) · |L(1, χ)|2 +
∑

χ mod q
χ(−1)=1

|L (1, χλ3) |2.

(3.11)

Then combining (3.8)–(3.11) we have

∑
χ mod q
χ(−1)=1

|L(1, χλ3)|2 =
π2

27
·
ϕ2(q)

q2

2q ·
∏
p|q

(
1 +

1
p

)
−

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 .
The proof of Theorem 2 is finished. □

Last, we will prove Theorem 3.
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Proof. Combining with the formula (1.1), Lemma 1 and the Möbius inversion formula, we have∑
χ mod q
χ(−1)=−1

χ(2) · |L(1, χ)|2 =
π2

24
·
ϕ2(q)

q2

q ·∏
p|q

(
1 +

1
p

)
− 6

 (3.12)

and ∑
χ mod 3q
χ(−1)=−1

χ(2) · |L(1, χ)|2 =
π2

27
·
ϕ2(q)

q2

2q ·
∏
p|q

(
1 +

1
p

)
− 3

 . (3.13)

For any positive integer q with (q, 6) = 1, note that the identity

S (q, 6) =
5

18
·

(q
3

)
.

We can calculate∑
χ mod q
χ(−1)=−1

χ(6) · |L(1, χ)|2 =
π2

72
·
ϕ2(q)

q2

q ·∏
p|q

(
1 +

1
p

)
− 18 − 20

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 . (3.14)

On the other hand, let χ0
q denote the principal character modulo q and ψ3 =

(
∗

3

)
. Then ψ3(2) = −1,

so we also obtain∑
χ mod 3q
χ(−1)=−1

χ(2) · |L(1, χ)|2 =
∑

ψ mod 3
ψ(−1)=1

∑
λ mod q
λ(−1)=−1

λ(2)ψ(2) · |L (1, λψ)|2

+
∑

ψ mod 3
ψ(−1)=−1

∑
λ mod q
λ(−1)=1

χ(2)ψ(2) · |L (1, λψ)|2

=
∑

λ mod q
λ(−1)=−1

χ(2) ·
∣∣∣∣L (

1, λχ0
3

)∣∣∣∣2 − ∑
λ mod q
λ(−1)=1

λ(2) |L (1, λψ3)|2

=
∑

λ mod q
λ(−1)=−1

λ(2) ·
∣∣∣∣∣1 − λ(3)

3

∣∣∣∣∣2 · |L (1, λ)|2 −
∑

λ mod q
λ(−1)=1

λ(2) · |L (1, λψ3)|2

=
10
9

∑
λ mod q
λ(−1)=−1

λ(2) · |L(1, λ)|2 −
1
3

∑
λ mod q
λ(−1)=−1

λ(6) · |L(1, λ)|2

−
1
3

∑
λ mod q
λ(−1)=−1

λ(2)λ(3) · |L(1, λ)|2 −
∑

λ mod q
λ(−1)=1

λ(2) |L (1, λψ3)|2 .

(3.15)

Now, combining Theorem 1 and (3.12)–(3.15), we have the identity∑
λ mod q
λ(−1)=1

λ(2) · |L(1, λψ3)|2 = −
π2

27
·
ϕ2(q)

q2

q ·∏
p|q

(
1 +

1
p

)
− 2

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 .
This completes the proof of Theorem 3. □
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4. Conclusions

Our main purpose of this paper is to give a new reciprocity theorem for Dedekind sums (see
Lemma 3). As an application of this result, we give a new calculating formula for one kind mean
square value of Dirichlet L-fuctions with the weight of the character sums. That is, we proved that for
any positive integer q > 1 and (q, 6) = 1, one has the identity

∑
χ mod q
χ(−1)=−1

χ(3) · χ(2) · |L(1, χ)|2 =
π2

18
·
ϕ2(q)

q2 ·

q
4
·
∏
p|q

(
1 +

1
p

)
−

9
2
+

(q
3

)
·
∏
p|q

p −
(

p
3

)
p − 1

 ,
where

(
∗

3

)
denote the Legendre symbol modulo 3.

In addition, according to the reciprocity formula (1.1) and the Lemma 1, we may immediately
deduce that for any two distinct odd primes p and q, one has the identity

q
q − 1

∑
χ mod q
χ(−1)=−1

χ(p) · |L(1, χ)|2 +
p

p − 1

∑
χ mod p
χ(−1)=−1

χ(q) · |L(1, χ)|2 =
π2

12
·

p2 + q2 − 3pq + 1
pq

. (4.1)

Whether there exists a direct proof of (4.1) (using only the properties of Dirichlet L-function, the
reciprocity formula (1.1) cannot be used) is an open problem. It is believed that the methods used in
this paper will contribute to further research in relevant fields.
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