We considered a swelling porous-elastic system characterized by two nonlinear variable exponent damping and logarithmic source terms. Employing the Faedo-Galerkin method, we established the local existence of weak solutions under suitable assumptions on the variable exponents functions. Furthermore, we proved the global existence utilizing the well-depth method. Finally, we established several decay results by employing the multiplier method and the Logarithmic Sobolev inequality. To the best of our knowledge, this represents the first study addressing swelling systems with logarithmic source terms.
Citation: Mohammad Kafini, Mohammad M. Al-Gharabli, Adel M. Al-Mahdi. Existence and stability results of nonlinear swelling equations with logarithmic source terms[J]. AIMS Mathematics, 2024, 9(5): 12825-12851. doi: 10.3934/math.2024627
We considered a swelling porous-elastic system characterized by two nonlinear variable exponent damping and logarithmic source terms. Employing the Faedo-Galerkin method, we established the local existence of weak solutions under suitable assumptions on the variable exponents functions. Furthermore, we proved the global existence utilizing the well-depth method. Finally, we established several decay results by employing the multiplier method and the Logarithmic Sobolev inequality. To the best of our knowledge, this represents the first study addressing swelling systems with logarithmic source terms.
[1] | M. A. Goodman, S. C. Cowin, A continuum theory for granular materials, Arch. Rational Mech. Anal., 44 (1972), 249–266. https://doi.org/10.1007/BF00284326 doi: 10.1007/BF00284326 |
[2] | J. W. Nunziato, S. C. Cowin, A nonlinear theory of elastic materials with voids, Arch. Rational Mech. Anal., 72 (1979), 175–201. https://doi.org/10.1007/BF00249363 doi: 10.1007/BF00249363 |
[3] | A. C. Eringen, A continuum theory of swelling porous elastic soils, Internat. J. Engrg. Sci., 32 (1994), 1337–1349. https://doi.org/10.1016/0020-7225(94)90042-6 doi: 10.1016/0020-7225(94)90042-6 |
[4] | E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213–259. https://doi.org/10.1007/s00205-002-0208-7 doi: 10.1007/s00205-002-0208-7 |
[5] | M. R ǔžička, Electrorheological fluids: Modeling and mathematical theory, Springer, 2007. |
[6] | S. Antontsev, Wave equation with $p(x, t)$-laplacian and damping term: Existence and blow-up, Differ. Equ. Appl., 3 (2011), 503–525. |
[7] | S. Antontsev, Wave equation with $p (x, t)$-Laplacian and damping term: Blow-up of solutions, C. R. Mecanique, 339 (2011), 751–755. http://dx.doi.org/10.1016/j.crme.2011.09.001 doi: 10.1016/j.crme.2011.09.001 |
[8] | S. A. Messaoudi, A. A. Talahmeh, A blow-up result for a nonlinear wave equation with variable-exponent nonlinearities, Appl. Anal., 96 (2017), 1509–1515. https://doi.org/10.1080/00036811.2016.1276170 doi: 10.1080/00036811.2016.1276170 |
[9] | S. A. Messaoudi, A. A. Talahmeh, J. H. Al-Smail, Nonlinear damped wave equation: Existence and blow-up, Comput. Math. Appl., 74 (2017), 3024–3041. https://doi.org/10.1016/j.camwa.2017.07.048 doi: 10.1016/j.camwa.2017.07.048 |
[10] | I. Bialynicki-Birula, J. Mycielski, Wave equations with logarithmic nonlinearities, Bull. Acad. Pol. Sci. Cl, 3 (1975), 461–466. |
[11] | I. Bialynicki-Birula, J. Mycielski, Nonlinear wave mechanics, Ann. Phys., 100 (1976), 62–93. https://doi.org/10.1016/0003-4916(76)90057-9 doi: 10.1016/0003-4916(76)90057-9 |
[12] | P. Górka, Logarithmic klein-gordon equation, Acta Phys. Polon. B, 40 (2009), 59–66. |
[13] | X. Han, Global existence of weak solutions for a logarithmic wave equation arising from q-ball dynamics, Bull. Korean Math. Soc., 50 (2013), 275–283. |
[14] | H. Chen, P. Luo, G. Liu, Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity, J. Math. Anal. Appl., 422 (2015), 84–98. https://doi.org/10.1016/j.jmaa.2014.08.030 doi: 10.1016/j.jmaa.2014.08.030 |
[15] | M. M. Al-Gharabli, S. A. Messaoudi, Existence and a general decay result for a plate equation with nonlinear damping and a logarithmic source term, J. Evol. Equ., 18 (2018), 105–125. https://doi.org/10.1007/s00028-017-0392-4 doi: 10.1007/s00028-017-0392-4 |
[16] | M. M. Al-Gharabli, A. Guesmia, S. Messaoudi, Existence and a general decay results for a viscoelastic plate equation with a logarithmic nonlinearity, Commun. Pure Appl. Anal., 18 (2019), 159–180. http://dx.doi.org/10.3934/cpaa.2019009 doi: 10.3934/cpaa.2019009 |
[17] | X. Wang, Y. Chen, Y. Yang, J. Li, R. Xu, Kirchhoff-type system with linear weak damping and logarithmic nonlinearities, Nonlinear Anal., 188 (2019), 475–499. https://doi.org/10.1016/j.na.2019.06.019 doi: 10.1016/j.na.2019.06.019 |
[18] | W. Lian, R. Xu, Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term, Adv. Nonlinear Anal., 9 (2020), 613–632. https://doi.org/10.1515/anona-2020-0016 doi: 10.1515/anona-2020-0016 |
[19] | A. M. Al-Mahdi, Stability result of a viscoelastic plate equation with past history and a logarithmic nonlinearity, Bound. Value Probl., 2020 (2020), 84. https://doi.org/10.1186/s13661-020-01382-9 doi: 10.1186/s13661-020-01382-9 |
[20] | M. M. Al-Gharabli, A. M. Al-Mahdi, M. Kafini, Global existence and new decay results of a viscoelastic wave equation with variable exponent and logarithmic nonlinearities, AIMS Mathematics, 6 (2021), 10105–10129. http://dx.doi.org/10.3934/math.2021587 doi: 10.3934/math.2021587 |
[21] | E. Pişkin, S. Boulaaras, N. Irkil, Qualitative analysis of solutions for the p-laplacian hyperbolic equation with logarithmic nonlinearity, Math. Methods Appl. Sci., 44 (2021), 4654–4672. https://doi.org/10.1002/mma.7058 doi: 10.1002/mma.7058 |
[22] | H. Yüksekkaya, E. Piskin, Existence and exponential decay of a logarithmic wave equation with distributed delay, Miskolc Math. Notes, 24 (2023), 1057–1071. http://dx.doi.org/10.18514/MMN.2023.4155 doi: 10.18514/MMN.2023.4155 |
[23] | H. Yüksekkaya, E. Piskin, M. M. Kafini, A. M. Al-Mahdi, Well-posedness and exponential stability for the logarithmic lamé system with a time delay, Appl. Anal., 103 (2024), 506–518. https://doi.org/10.1080/00036811.2023.2196993 doi: 10.1080/00036811.2023.2196993 |
[24] | V. Georgiev, G. Todorova, Existence of a solution of the wave equation with nonlinear damping and source terms, J. Differ. Equ., 109 (1994), 295–308. https://doi.org/10.1006/jdeq.1994.1051 doi: 10.1006/jdeq.1994.1051 |
[25] | L. Bociu, I. Lasiecka, Blow-up of weak solutions for the semilinear wave equations with nonlinear boundary and interior sources and damping, Appl. Math., 35 (2008), 281–304. http://dx.doi.org/10.4064/am35-3-3 doi: 10.4064/am35-3-3 |
[26] | L. Bociu, I. Lasiecka, Local hadamard well-posedness for nonlinear wave equations with supercritical sources and damping, J. Differ. Equ., 249 (2010), 654–683. https://doi.org/10.1016/j.jde.2010.03.009 doi: 10.1016/j.jde.2010.03.009 |
[27] | D. Ieşan, On the theory of mixtures of thermoelastic solids, J. Thermal Stresses, 14 (1991), 389–408. https://doi.org/10.1080/01495739108927075 doi: 10.1080/01495739108927075 |
[28] | R. Quintanilla, Exponential stability for one-dimensional problem of swelling porous elastic soils with fluid saturation, J. Comput. Appl. Math., 145 (2002), 525–533. https://doi.org/10.1016/S0377-0427(02)00442-9 doi: 10.1016/S0377-0427(02)00442-9 |
[29] | J.-M. Wang, B.-Z. Guo, On the stability of swelling porous elastic soils with fluid saturation by one internal damping, IMA J. Appl. Math., 71 (2006), 565–582. https://doi.org/10.1093/imamat/hxl009 doi: 10.1093/imamat/hxl009 |
[30] | A. J. A. Ramos, M. M. Freitas, D. S. Almeida Jr, A. S. Noé, M. J. D. Santos, Stability results for elastic porous media swelling with nonlinear damping, J. Math. Phys., 61 (2020), 101505. https://doi.org/10.1063/5.0014121 doi: 10.1063/5.0014121 |
[31] | T. A. Apalara, General decay of solutions in one-dimensional porous-elastic system with memory, J. Math. Anal. Appl., 469 (2019), 457–471. https://doi.org/10.1016/j.jmaa.2017.08.007 doi: 10.1016/j.jmaa.2017.08.007 |
[32] | A. Youkana, A. M. Al-Mahdi, S. A. Messaoudi, General energy decay result for a viscoelastic swelling porous-elastic system, Z. Angew. Math. Phys., 73 (2022), 88. https://doi.org/10.1007/s00033-022-01696-x doi: 10.1007/s00033-022-01696-x |
[33] | A. M. Al-Mahdi, M. M. Al-Gharabli, T. A. Apalara, On the stability result of swelling porous-elastic soils with infinite memory, Appl. Anal., 102 (2023), 4501–4517. https://doi.org/10.1080/00036811.2022.2120865 doi: 10.1080/00036811.2022.2120865 |
[34] | A. M. Al-Mahdi, S. A. Messaoudi, M. M. Al-Gharabli, A stability result for a swelling porous system with nonlinear boundary dampings, J. Funct. Spaces, 2022 (2022), 8079707. https://doi.org/10.1155/2022/8079707 doi: 10.1155/2022/8079707 |
[35] | R. Quintanilla, On the linear problem of swelling porous elastic soils with incompressible fluid, Internat. J. Engrg. Sci., 40 (2002), 1485–1494. https://doi.org/10.1016/S0020-7225(02)00021-6 doi: 10.1016/S0020-7225(02)00021-6 |
[36] | R. Quintanilla, Exponential stability of solutions of swelling porous elastic soils, Meccanica, 39 (2004), 139–145. https://doi.org/10.1023/B:MECC.0000005105.45175.61 doi: 10.1023/B:MECC.0000005105.45175.61 |
[37] | T. A. A. Apalara, O. B. Almutairi, Well-posedness and exponential stability of swelling porous with Gurtin-Pipkin thermoelasticity, Mathematics, 10 (2022), 4498. https://doi.org/10.3390/math10234498 doi: 10.3390/math10234498 |
[38] | T. A. Apalara, A. Soufyane, Energy decay for a weakly nonlinear damped porous system with a nonlinear delay, Appl. Anal., 101 (2022), 6113–6135. https://doi.org/10.1080/00036811.2021.1919642 doi: 10.1080/00036811.2021.1919642 |
[39] | T. A. Apalara, M. O. Yusuf, B. A. Salami, On the control of viscoelastic damped swelling porous elastic soils with internal delay feedbacks, J. Math. Anal. Appl., 504 (2021), 125429. https://doi.org/10.1016/j.jmaa.2021.125429 doi: 10.1016/j.jmaa.2021.125429 |
[40] | T. A. Apalara, M. O. Yusuf, S. E. Mukiawa, O. B. Almutairi, Exponential stabilization of swelling porous systems with thermoelastic damping, J. King Saud Univ. Sci., 35 (2023), 102460. https://doi.org/10.1016/j.jksus.2022.102460 doi: 10.1016/j.jksus.2022.102460 |
[41] | A. M. AL-Mahdi, M. M. Al-Gharabli, I. Kissami, A. Soufyane, M. Zahri, Exponential and polynomial decay results for a swelling porous elastic system with a single nonlinear variable exponent damping: Theory and numerics, Z. Angew. Math. Phys., 74 (2023), 72. https://doi.org/10.1007/s00033-023-01962-6 doi: 10.1007/s00033-023-01962-6 |
[42] | A. M. Al-Mahdi, M. M. Al-Gharabli, T. A. Apalara, On the stability result of swelling porous-elastic soils with infinite memory, Appl. Anal., 102 (2023), 4501–4517. https://doi.org/10.1080/00036811.2022.2120865 doi: 10.1080/00036811.2022.2120865 |
[43] | A. M. Al-Mahdi, M. M. Al-Gharabli, M. Alahyane, Theoretical and computational results of a memory-type swelling porous-elastic system, Math. Comput. Appl., 27 (2022), 27. https://doi.org/10.3390/mca27020027 doi: 10.3390/mca27020027 |
[44] | M. M. Kafini, M. M. Al-Gharabli, A. M. Al-Mahdi, Asymptotic behavior of solutions to a nonlinear swelling soil system with time delay and variable exponents, Math. Comput. Appl., 28 (2023), 94. https://doi.org/10.3390/mca28050094 doi: 10.3390/mca28050094 |
[45] | M. M. Al-Gharabli, A. M. Al-Mahdi, S. A. Messaoudi, Decay results for a viscoelastic problem with nonlinear boundary feedback and logarithmic source term, J. Dyn. Control Syst., 28 (2020), 71–89. https://doi.org/10.1007/s10883-020-09522-1 doi: 10.1007/s10883-020-09522-1 |
[46] | A. M. Al-Mahdi, The coupling system of Kirchhoff and Euler-Bernoulli plates with logarithmic source terms: Strong damping versus weak damping of variable-exponent type, AIMS Mathematics, 8 (2023), 27439–27459. http://dx.doi.org/10.3934/math.20231404 doi: 10.3934/math.20231404 |
[47] | Y. Guo, M. A. Rammaha, S. Sakuntasathien, Energy decay of a viscoelastic wave equation with supercritical nonlinearities, Z. Angew. Math. Phys., 69 (2018), 65. https://doi.org/10.1007/s00033-018-0961-6 doi: 10.1007/s00033-018-0961-6 |
[48] | S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, On the decay of solutions of a viscoelastic wave equation with variable sources, Math. Methods Appl. Sci., 45 (2022), 8389–8411. https://doi.org/10.1002/mma.7141 doi: 10.1002/mma.7141 |
[49] | M. M. Al-Gharabli, A. M. Al-Mahdi, Existence and stability results of a plate equation with nonlinear damping and source term, Electron. Res. Arch., 30 (2022), 4038–4065. http://dx.doi.org/10.3934/era.2022205 doi: 10.3934/era.2022205 |
[50] | L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev spaces with variable exponents, Springer, 2011. |
[51] | S. Antontsev, S. Shmarev, Evolution PDEs with nonstandard growth conditions, Atlantis Press Paris, 2015. https://doi.org/10.2991/978-94-6239-112-3 |
[52] | V. D. Radulescu, D. D. Repovs, Partial differential equations with variable exponents: Variational methods and qualitative analysis, CRC press, 2015. |
[53] | L. Gross, Logarithmic sobolev inequalities, Amer. J. Math., 97 (1975), 1061–1083. https://doi.org/10.2307/2373688 doi: 10.2307/2373688 |
[54] | T. Cazenave, A. Haraux, Équations d'évolution avec non linéarité logarithmique, In: Annales de la Faculté des sciences de Toulouse: Mathématiques, 2 (1980), 21–51. |
[55] | S. Messoaudi, M. Al-Gharabli, A. Al-Mahdi, On the existence and decay of a viscoelastic system with variable-exponent nonlinearity, Discrete Contin. Dyn. Syst. Ser. S, 2022. http://dx.doi.org/10.3934/dcdss.2022183 doi: 10.3934/dcdss.2022183 |
[56] | S. A. Messaoudi, M. M. Al-Gharabli, A. M. Al-Mahdi, M. A. Al-Osta, A coupled system of Laplacian and bi-Laplacian equations with nonlinear dampings and source terms of variable-exponents nonlinearities: Existence, uniqueness, blow-up and a large-time asymptotic behavior, AIMS Mathematics, 8 (2023), 7933–7966. http://dx.doi.org/10.3934/math.2023400 doi: 10.3934/math.2023400 |
[57] | H. Chen, G. Liu, Global existence and nonexistence for semilinear parabolic equations with conical degeneration, J. Pseudo-Differ. Oper. Appl., 3 (2012), 329–349. https://doi.org/10.1007/s11868-012-0046-9 doi: 10.1007/s11868-012-0046-9 |
[58] | Y. Liu, J. Zhao, On potential wells and applications to semilinear hyperbolic equations and parabolic equations, Nonlinear Anal., 64 (2006), 2665–2687. https://doi.org/10.1016/j.na.2005.09.011 doi: 10.1016/j.na.2005.09.011 |
[59] | M. M. Al-Gharabli, S. A. Messaoudi, The existence and the asymptotic behavior of a plate equation with frictional damping and a logarithmic source term, J. Math. Anal. Appl., 454 (2017), 1114–1128. https://doi.org/10.1016/j.jmaa.2017.05.030 doi: 10.1016/j.jmaa.2017.05.030 |