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1. Introduction

Swelling soils are a significant environmental issue that has garnered considerable attention from
many researchers due to their potential to cause structural damage or destruction. These soils show a
tendency to swell in volume when exposed to moisture, primarily due to the presence of clay minerals
that naturally attract and absorb water molecules. Upon introducing water to swelling soils, the
molecules are drawn into gaps between the soil plates. As the amount of absorbed water increases,
the plates are forced further apart, leading to an increase in soil pore pressure. Consequently, swelling
soils pose substantial geotechnical and structural challenges to the environment and society. Swelling
soils are prevalent worldwide, and recent estimates from the American Society of Civil Engineers
suggests that one in four homes experience some form of damage caused by swelling soils. Typically,
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the financial losses incurred by property owners due to these soils exceed those caused by earthquakes,
floods, hurricanes, and tornadoes combined. Therefore, it is important to explore practical methods for
eliminating or minimizing the damages caused by swelling soils. Therefore, studying of the asymptotic
behavior of swelling porous elastic soils is important for architecture and civil engineering. For more
information in the continuum theory of material, we refer the reader to [1], [2], and [3].

In this paper, we consider the following nonlinear swelling soil system with nonlinear source terms
of logarithmic-type:

P2Zi — A1Zax — Qolhy + 2+ VIV 7?2 = azln |z, in Q X (0, c0),

Pully — A3l — A2Zxx + U +,B|ut|‘”('>‘2ut = aulnlu|, in Q X (0, ), 1
u(x,0) = up(x), 1y(x, 0) = 1, (x),  2(x.0) = 20(x). 2(x,0) = 51 (x), x € O, (1.1
z(0,1) = z(1,1) = u(0,¢) = u(1,t) =0, t>0,

where the constituents z and u represent the displacement of the fluid and the elastic solid material,
respectively. The positive constant coefficients p, and p, are the densities of each constituent. The
coeflicients a;, a,, and aj are positive constants satisfying specific conditions. zy, z, Ug, #; are given
data. y,B > 0, a is a small positive constant, and v(.) and w(.) are the variable functions that are
satisfying some specific conditions.

In the present work, our goals are to prove the existence and stability of the system (1.1). We begin
by using the Faedo-Galerkin method to prove the local existence of the weak solutions to system (1.1)
under suitable assumptions on the variable exponent functions and the logarithmic source terms. We
also prove the global existence using the well depth method. Finally, we establish several decay results
using the multiplier method and the logarithmic Sobolev inequality.

1.1. Importance and motivations

Model (1.1) describes swelling of soils with external forces given by nonlinear logarithmic
functions. We dissipate this model by the frictional damping mechanism acting on the domain.
These dampings of variable exponent-type employ variable exponents in this model, and significantly
enhance the ability to capture spatial variations in material properties, nonlinearity, anisotropy, and
other complex behaviors. This approach can lead to more accurate simulations and predictions,
thereby contributing to the stability, optimization, and design of some tools for a variety of engineering
applications [4-9].

The righthand sides of the system (1.1) represent nonlinear sources of logarithmic-type, which
models an external force that amplifies energy and drives the system to possible instability.

We add the logarithmic source terms because they occur in some phenomena; such phenomena
are common in nature such as in inflation cosmology, nuclear physics, geophysics, and optics (see
[10-23]).

1.2. The novelty of our results

In the system (1.1), it is evident that the the damping terms and the source terms are the two major
players in this model. Their interactions stimulate many interesting phenomena, which deserve careful
investigation. To control an object means to influence its behavior so as to achieve a desired goal. In
the system (1.1), the intrinsic frictional damping mechanism acting on the system is responsible for

AIMS Mathematics Volume 9, Issue 5, 12825-12851.



12827

dissipation of its energy. The purpose of this line of study is to find conditions on the initial state to
control the dissipations that are needed in order to obtain a decay rate of the energy. In other words,
the goal is to discover an adequate choice of the controls that can drive the system from a given initial
state to a final given state, in a given time.

The study of the interaction of nonlinear damping and source terms was initiated by Georgiev and
Todorova [24] in the wave equation. In this line of research, an important breakthrough was made by
Bociu and Lasiecka in a series of papers [25] and [26] where they provided a complete study of a wave
equation with damping and supercritical sources in the interior and on the boundary of the domain.
Indeed, a source term |u/"'u is called subcritical if 1 < m < 3, critical if m = 3, and supercritical if
m > 3, in three space dimensions.

The novelty of our results can be seen from the following aspects:

(1) The source term in our model (1.1) is logarithmic. Let us note here that though the logarithmic
nonlinearity is somehow weaker than polynomial nonlinearity, both the existence and stability result
are not obtained by straightforward application of the method used for polynomial nonlinearity. We
need to make some extra conditions on the nonlinearity coefficient.

(2) The frictional damping mechanismins are nonstandard. They are of variable exponent-type.
Variable exponents in the context of swelling soils are often associated with mathematical models used
to represent the relationship between soil moisture content and volume change.

(3) How to control the frictional damping mechanism to stabilize the system because the external
forces may lead to instability.

1.3. The originality of the model

The fundamental field equations for the linear theory of swelling porous elastic soils were
mathematically presented by Iesan [27] and later simplified by Quintanilla [28]. These basic equations
are given by

(1.2)

P2 = P1x — X1 + Y1,
Pully = Qox + X2 + Y2,

where z and u represent the displacements of the fluid and the elastic solid material, respectively.
The coefficients p,,p, > 0 and represent the densities of the constituents z and u, respectively. The
functions (¢, x1, Y1) represent the partial tension, internal body forces, and external forces acting on
the displacement, respectively. A similar definition holds for (¢,, 2, ¥2), but acts on the elastic solid.
Additionally, the constitutive equations of partial tensions are given by

¢1 _ a ap Tx
sl sl a
A

where ay,a; > 0 and a, # 0 is a real number. The coeflicient matrix A is positive definite, i.e.,
ayaz > as. After that, Quintanilla [28] investigated

(1.4)

P22 = Q1Zxx + QoUyy — {(2 — Uy) + Q32511
Pully = A2Zxx + A3y + {(z, — uy),
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where { is a positive constant, and he obtained an exponential stability result. Similarly, Wang and
Guo [29] considered

{pzztt = Q1Zxx T AUy — sz(X)Zt, (15)

Pullyy = AZxx + A3Uy,

where £(x) is an internal viscous damping function with a positive mean. The authors established their
exponential stability result by using the spectral method technique. Subsequently, a growing body of
new research has explored the stability of system (1.2) by employing various damping mechanisms
including viscoelastic damping and/ frictional damping (see, for example [30-33,33-40]). Recently,
Al-Mahdi et al. [41] established exponential and polynomial decay results for the following system
with variable exponent nonlinearity

Pzl — A1Zxx — AaUyy + |Zt|m(.)_2Zt = O’ in (O, 1) X (0’ Oo)a

Pullyy — A3Uxy — Aplxx = 0’ in (05 1) X (09 OO), (1 6)
u(x,0) = uo(x), u,(x, 0) = u1(x),  2(x,0) = zo(x), 2:(x,0) = z1(x), x€[0,1], '
2(0,1) = z(1,1) = u(0,1) = u(1,7) =0, t>0,

where the constituents z and u represent the displacement of the fluid and the elastic solid material,
respectively. The positive constant coeflicients p, and p, are the densities of each constituent. The
coeflicients a;, a,, and a; are positive constants satisfying specific conditions. zy, z;, Ug, u; are given
data, and m(.) is a variable function that satisfies some specific conditions.

1.4. Comparison results

Here, we compare our problem (1.1) with other problems involving source terms of logarithmic-
type and source terms of polynomial-type. Regarding swelling soils, many authors investigated the
stability analysis of swelling soils problems with different damping mechanism without external forces
(source terms). For example, Al-Mahdi et al. [42] and [43] proved the stability of the swelling soil
problem with memory damping terms. Kafini et al. [44] studied the stability of the swelling soils
problem with time delay and variable exponents without source terms.

Logarithmic sources terms have been added in the literature for some other models such as plate
equations [19], [45], and [46]. For the polynomial source terms, we refer to the works [47], [48],
and [49].

We notice that adding source terms does not improve the stability rate decay. In addition,
the logarithmic nonlinearity is weaker than the polynomial nonlinearity. However, we include the
logarithmic source terms because they occur in some phenomena. Such phenomena are common in
nature such as in inflation cosmology, nuclear physics, geophysics, and optics.

2. Preliminaries

In this section, we present some preliminaries necessary for proving the stability results.
Throughout the paper, Q2 denotes the interval (0, 1) and ¢ represents a generic positive constant.
Let p : Q — [1, 0] be a measurable function. The Lebesgue space with a variable exponent p(-) is
defined as:

L”(')(Q) = {v : Q — R; measurable in Q : 9,,)(1v) < oo, for some A > O},
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where

Op-r(V) = fg V()" Ydx.

Equipped with the following Luxembourg-type norm

: v(x)
VIl := inf {/1 >0: L'T

the space L”"(Q) is a Banach space (see [50]), separable if p(-) is bounded and reflexive if 1 < p; <
P2 < oo, where

p(x)
dx < oo},

p1 = essinfieop(x),  p2 1= esSSUP,qp(X).

The variable-exponent Sobolev space is defined as :
WOQ) = {v e L"V(Q) such that v, exists and v, € L"V(Q)}.

This is a Banach space with respect to the norm [|[v||w1.,0@) = [[Vll,¢) + [[V«llp) and it is separable if p(-) is
bounded and reflexive if 1 < p; < p, < co. Furthermore, we set Wé’p (')(Q) to be the closure of C'(€2)
in WhPO(Q).

The exponent p(-) : Q — [1, oo] is said to be satisfying for the log-Holder continuity condition; that
18, if there exists a constant A > 0 such that, for all 6 with 0 < 6 < 1,

Ip(x) — pOy)| < , for all x,y € Q, with |x —y| <é. 2.1)

“log|x -yl

Lemma 2.1. [50] (Poincaré’s inequality) Let Q be a bounded domain of R" and p(-) satisfies (2.2),
then

1,p(:
IVllpey < Collvillpys  forall ve WyPO(Q),

where the positive constant c, depends on py, p,, and Q only. In particular, the space Wé’p Q) has
an equivalent norm given by ||v||W1,,,(A>(Q) = villpc-
0

Lemma 2.2. [50] (Embedding property) Let Q be a bounded domain in R" with a smooth boundary
0Q. Assume that p,k € C(Q) such that

l<pi<p(X)<pr<+00, 1<k <k(x)<hk <+00, YxeQ,

and k(x) < p*(x) in Q with
np(x)

pr(x) = { iy 1P <

+o00, ifp, >n,

then we have continuous and compact embedding W'"O(Q) — L*)(Q). So, there exists c, > 0 such
that

IVl < colVllwon, Vv e WHOQ).

For more details about the Lebesgue and Sobolev spaces with variable exponents, [S0-52]. We
consider the following hypotheses:
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(A1) v,w : Q — [1, o) are measurable functions on Q that satisfy the following conditions
2<vi<v(x) vy <00, 2w £wx) < wy < oo,
where
vy = essinf,eqV(X), V2 1= esssup oV(X), w; = essinfcqw(X), wy := esssup,qw(x),

and they also satisfy the log-Holder continuity condition; that is, for any A4 with 0 < A4 < 1, there
exists a constant § > 0 such that,

5
) = fO) < —i——. forall x,y € Q. with [~ )| < A (2.2)

glx—yl
(A2) The coeflicients of the system a;, i = 1, ..., 3 satisfy aja; — a% > 0.

(A3) The constant  in (1.1) satisfies 0 < @ < a(, where « is the positive real number satisfying

7 _ o, (2.3)
Qo
where ¢ 1s a positive constant appearing in (3.7).
Lemma 2.3. [14, 53] (Logarithmic Sobolev inequality) Let v be any function in Hé (Q)and a > 0 be
any real number, then the following inequality holds:

1 a>
f v n|vldx < 5||v||§ In|vlj5 + 2—||vx||§ — (1 +Ina)|v|s. (2.4)
Q JT

Remark 2.1. The function f(s) = \/23z — ¢7375 is continuous and decreasing on (0, c0), with

[N[o%)

1ir(1)1+ f(s) =coand lim f(s) = —e 2.

Therefore, there exists a unique @y > 0 such that f(ay) = 0, that is,

[2T _ i 2.5)
(o4}
, 27C
e < ,/%, Vs € (0, ). (2.6)

Lemma 2.4. [54] (Logarithmic Gronwall inequality) Let ¢ > 0, u € LY(0, T;R"), and assume that the
function v : [0,T] — [1, o) satisfies

Moreover,

v(t) < c(l + f u(s)v(s)In v(s)ds) , 0<t<T, 2.7)
0

then

v(t) < cexp (cf u(s)ds), 0<t<T. (2.8)
0
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The energy functional associated with system (1.1) is defined by

1 a+?2
E(t) == f [Pzth +puut2 + a3u)2€ + alz)% + 2a2zxux] dx + [IIzII% + ||u||§]
Q

2 | . 4 (2.9)
-3 fg Zlnlzldx - 3 fg u? In |uldx.
Direct differentiation, using (1.1), gives
E'(f) = —y f lz"Vdx — B f |u,|“Vdx < 0. (2.10)
Q Q

Remark 2.2. The nonnegativity of the energy functional is obtained by (A2) and the following identity

a? 2
asu’ + ai 7> + 2a,7,U, = (a3 - —2) u> + (\/a_lzx + ux) . (2.11)
a \/a_l
Remark 2.3. The following inequality is needed for the proof of our main results:
There exist two positive constants ¢y and d, such that
co(A>+ B?) < (A+B)’ <dy(A* + B’), A.BER, suchthat A+ B # 0. (2.12)

. . . . . 2

In fact, ¢ is the largest positive constant, which satisfies ¢y < %,
(A+B)?
2 B

and d, is the smallest positive

constant, which satisfies d
3. Local existence

First, we multiply the first equation in (1.1) by ¢ € C(2) and the second equation by ¢ € C(£2),
integrate each result over Q, and use Green’s formula and the boundary conditions to obtain the
definition of the weak solution. Second, we provide a detailed proof of the local existence theorem
by using the Faedo-Galerkin approximations.

Definition 3.1. The pair of functions (z, «) is called a weak solution of (P), if it satisfies the following:

4 [, pzp)dx + ay [ 2:6(X)dx + a; [ u$(x)dx,

+ [ zdx +y [ " zp(x)dx = o [, zInlzlg(x)dx,

4 | putp(x)dx + a3 [ u (X)dx + a [ 2, (x)dx, 3.1)
+ fQ uy(x)dx + 3 fg |, up(x)dx = a fg uln |uly(x)dx,

2(0) = 20, 2(0) = z1, u(0) = uo, u,(0) = uy,

fora.e.t€[0,T],
(z,u) € L™([0,T), H)(Q), 1z, € L™(0,T), L*(Q)) N L"(Q x (0,T)),

u, € L=([0, T), L*(Q)) N L“(Q x (0, T)), and the test functions ¢, € Hé (€2). Note that C7(Q) is dense
in Hy(Q). Further, the spaces Hy(Q) c L"(Q) N L“Y(Q).
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Theorem 3.1. Assume that (A1)—(A3) hold and let (zy, z1), (ug, u;) € Hé (Q)XL2(Q), then problem (1.1)
has a unique local weak solution (z,u) on [0, T) in the sense of Definition 3.1.

Proof. The proof of the existence of a weak solution of (1.1) consists of four steps:
Step 1. Approximate problem: In this step, we consider {w 152, an orthogonal basis of H;(€2) and
define, for all k > 1, (z*,u¥) a sequence in the finite - dimensional subspace (Vi X V}), where V, =

span{wy, w, ..., wi} as follows:

k

k
2o =) aow, w0 = biow,
j=1

j=1
forall x € Qand t € (0,7), satisfying the following approximate problem:

k k k
PAZ Wiz + ailzy > W) D2 + axit, Wi )iz

V=2 k ke 1ok :
Z[,Wj>L2(Q) = <Q’Z 1n |Z |, Wj)LZ(Q), J= 1,2’ ooy k’

k k
+(2, Wj>L2(Q) + ¥(lz;|
k k k
Pulllys Wi 2y + a3y, Wi D2y + 422 Wi D2 3.2)
k ko w(x)-2
+ WU, wi ) + Blu;|

Zk(()) = Zl(;, Z;{(O) = lec’ uk(O) = ul(;’ uf(O) — I/lllc,

k k k .
U, Wi = (au Inu|,wiq), j=1,2,...k,

where (, ) is the inner product in L?(Q) and

k k k k

k k k k

2y = Z(Zo, wiw;, Uy = Z(uo, Wi>Wi,Zl = Z(Zlawi>wia u = Z(Ml,wi>wi,
i=1 i=1 i=1 =

such that
Z](; — 20 and ng — Uy in Hé(Q),
and (3.3)

Z¥ -z and uf — uyin LA(Q).

Based on standard existence theory for integro-differential equations, system (3.2) admits a unique
local solution (z*, #*) on a maximal time interval [0, T}), 0 < Ty < T, for each k € N.

Step 2. A priori estimates: In this step, we show, by priory estimates, that 7, = T for each k € N. We
multiply the first equation by a’(r) and the second equation by () in (3.2), sum over j = 1,2, ...k, and
add the two equations to obtain

1d k12 k12 k)2 kyp2 k_k
——[pZIIZ,IIZ +pullu; 1y + arllzill; + aslliclly + 2a2 | uizidx
Q

2dt
+ E[ 1 (1124153 + llet113] - Efg(z")2 In |z"|dx—§fg(u")21n |uk|dx] (3.4)

Q Q
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Integration of (3.4) over (0, ¢) leads to

1 2 2 2 2
3 (PZIIZfIIZ + pulliflly + arllZIl; + asllu]l; + 2a, fg u’;Z’;dX)
+2 1 1
. o L R T f (& Infefldx - 5 f (u")? In |ut|dx

+7f flz,(S)l()dxds +ﬁf flu,(s)l “dxds

k k k
2(pz||z1||2 + pullu ||2 +pz||Zox|| + pullug, I, +202fgz0xu0de)

2
f W% In |hldx + = f ) In ubjdx + == 4 (||z0||2 luglly) . for all £ < T
Using (2.11), Young’s inequality, and convergence (3.3), we have

1 2 2 a 2 2
E(Pz”Zsz + pulldfl; + ( as — a_)”u I, + f(\/_z + ?u ) dx)

a+2

el + ] - t[kz) In¢dx — + L[}u> In o ldx

!
+y f f 2X(s) Vdxds + B f f ik ()| dxds < Co, ¥t < Ty, k> 1.
0 Q 0 Q

Using (2.12) and applying the logarithmic Sobolev inequality for (3.6), we obtain

2

1 2 2 aa 2 a? Oza2 2

k k ~ k 2 ~ k k _k
ol § 3| V4 +p u +{c—— ||z +lay3——+Cc— — u +2612 Mde
2( z” ;”2 u” t||2 B ” x”z 3 1 ) ” x”z x$x

a+2 ! W. ! (.
( 5 +cx(1+lna)) [1l3 + N3] + f f 125(s)"dxdss + B f f k()| dxdss
0 JQ 0 JQ

<CO 3 2 (”Zk”z ln”Z ||2 + ||uk||2 1n||uk||2) vt < Tkak > 1’

where ¢ = min {coal, co } Co = cEX*(0). Now, we select

31 2nc
€2 e <a< A/—,
a
and use (A2) to obtain
2 2 2
@a a aa a+?2
¢t——>0,a3— —=+¢—— >0and +a(l+1na)>0.
2 a 2

Combining (3.7) and (3.9), we have
!
k2 k2 k2 k)2 k2 k2 k(2 k2, Y
llz: 11z + 1l <llzelly + leeglly + Nlzlly + leclly + 2715 + llell; + Zf flzt(S)l dxds
0 Ja

B (" k@O Co @ ;2 k2 k2 2
+= uf ()" dxds < ==+ o= (1124115 I 124115 + 1115 In[f]15)
cJo Ja c 2

Hence,

(3.5)

(3.6)

(3.7)

(3.8)

(3.9

(3.10)
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C a 2 2 2 2
k2 k2 0 k k k k
Iz 115 + [lf1l; < Py (IIZ Il In (1515 + [lee"|[; In |oe ||2)

) ) ) ) (3.11)
< e (1 + 1Ml In 124115 + 1y I [l
Let us note that
! a k ta k
X0 =20+ f (. 9)ds, and u“(1) = uh(,0) + f (. 9)ds.
0 6S 0 as
Thus, applying the Cauchy-Schwarz’ inequality, we get
' o7k 2 t
12 @5 < 21Ol +2 f ——(9)ds || <2/l O)3 +2Tf llz; (s)II3ds,
0 as 2 0
 ak 5 ) (3.12)
u
@15 < 20O + 2 H f g(S)ds < 2/ )II3 + 2Tf lluf (s)Il5ds.
0 2 0
The addition of the two estimates in (3.12) gives
f t
12O + DI < 215O)I13 + 2l O3 + 2Tf 1z (s)ll5ds + 2Tf lluf (s)Il5ds. (3.13)
0 0
Combining (3.11) and (3.13) leads to
2 2 2 2 ! !
14115 + 1lly < 2115, + 20l O)l; + 2¢T (1 + f 124115 In [|" 3 + f 1113 In ||uk||§dS)
0 0
t t
< 2C(1 + f 124115 In[|2¥13ds + f [l lnllukllidS)
° 0 (3.14)
2 2
< 201(1 + f (C1 +11°1) In (€1 + 112411, ds
0
' 2 2
+f (C1 + 1415) In (Cy + [dk]1y) s ),
0
where, without loss of generality, C; > 1. The logarithmic Gronwall inequality implies that
1A + ety < 2€1e297 2= O,
and hence, , ) ) ,
1205 In 11511 + Nl 115 In 1]l < C. (3.15)

After combining (3.10) and (3.15), we obtain
2 2 2 2
sup [l1zf1l; + lluefll; + 15115 + ledlly | < C.
(0.T%)

Therefore, the local solution (z¥,u*) of system (3.2) can be extended to (0,T), for all k > 1.

Furthermore, we have
ZF and u* are bounded in L™((0, T), Hy(Q)),
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() is bounded in L™((0, T), L*(Q)) N L"(Q x (0, T)),
(u¥) is bounded in L™((0, T), L*(Q)) N L“(Q x (0, T)).
Consequently, we have, up to two subsequences,
7 - zand u* - u weakly * in L¥((0,T), Hé(Q)),
Z¥ — z, weakly * in L¥((0, T), L*(Q)) and weakly in L"“(Q x (0, T)), (3.16)
u¥ — u, weakly * in L¥((0, T), L*(Q)) and weakly in L““(Q x (0, T)).
Step 3. The logarithmic terms: In this step, we show that the approximate solutions (¥, u*) satisfy for

allk > 1,

ZIn|Z" - zIn|z|? strongly in L*(0, T; L*(Q)), 3.17)
W In 1" — uln|u|® strongly in L*(0, T; L*(Q)). '

Making use of the arguments in (3.16) and applying the Aubin-Lions theorem, we find, up to
subsequences, that
> zandut - u strongly in L*(0,T; L*(Q))

and

= zand ¥ - wae. in Qx(0,7). (3.18)
Using (3.18), and the fact that the map s — sln|s|® is continuous on R, then we have the convergence
k|(l

ZIn|Z" - zIn|z|* a.e. in Q x (0, T).

Using the embedding of Hé (Q) in L*(Q) (since Q c R), it is clear that z“In |z¥|” is bounded in L*(Q X
(0, T)). Next, taking into account the Lebesgue bounded convergence theorem (€ is bounded), we get

ZIn|" — zIn|z|” strongly in L*(0, T; L*(Q)). (3.19)

Similarly, we can establish the second argument of (3.17).
Step 4. The nonlinear terms: In this step, we show that

. RN
| 2 P02 2F — | 7, Y72 7, weakly in Lo (Q x (0, T)),

. _w()
| uf |92 uk — | u, Y972 u, weakly in LeoT(Q x (0, T)),

and that (z, u) satisfies the partial differential equations of (1.1) on Q X (0, T').
Since (z¥) is bounded in L"V(Q x (0, T)), then (| IV(')_zzﬁ‘) is bounded in LT (Qx (0, T)). Hence, up
to a subsequence,

12"~y in LOT(Q x (0, T)). (3.20)
Similarly, we have
4 Uy, in LT (Q % (0, T)). (3.21)
We can show that
X1 = |Zt|V(.)_2Zt and y, = |ut|w(.)_2ut,
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by following the same steps as in [55,56]. Now, integrate (3.2) on (0, ) to obtain Vj < &,

lewj(x)dx le ,(x)dx+a1f fz w,x(x)dxds+a2f fu w; (x)dxds

ffz wj(x)dxds+7ff|z =2 z,wj(x)dxds— ffwjz In |Z*|dxds,
LM,WJ(x)dx Lulw}(x)dx+a3f fu Wi (x)dxds+a2f fz w; (x)dxds
+ fo t fg Ww (x)dxds + B j; t fQ i ubw (o)dxds = o f f wjult In [u¥ldxds.

Using all the above convergence and taking k — +oc0, we easily check that Vj < &,

fz,wj(x)dx fZ1w](x)dx+a1f fzijx(x)dxds+a2f fuxw]x(x)dxds
ffzwj(x)dxds+yf flztl"() zztwj(x)dxds_aff fw,z In |Z¥|dxds,

‘fgutwj(x)dx fule(x)dx+a3f fuij (x)dxds+a2f foW, (x)dxds
ffuwj(x)dxds +ﬁf flu |0 2utwj(x)cbcds— ffwju In |u¥|dxds.

Consequently, we have Yw € H(Q)

!

fz,w(x)dx—lew(x)dx+a1f fzxwx(x)dxds-i-azf fuxwx(x)dxds

ffzw(x)dxds+yf flz,l() 2zw(x)dxds = @ ffwz In |Z¥|dxds,
fu,w(x)dx fulw(x)dx+a3f fuxwx(x)dxds+a2f fzxwx(x)dxds

o) Q 0 Jo 0 Jo

! ! !
+f fuw(x)dxds +,8f flu,l“’(‘)_zu,w(x)dxds:af fwuklnlukldxds.
0 Jo 0 Jo 0 Ja

All terms define absolute continuous functions, so we get, for a.e. t € [0, T] and Yw € H(l) (Q),

f zew(X)dx + a f 2w (X)dx + a3 f uew(X)dx +y f 12”72z, w(x)dx
Q Q Q

Q
+fzw(x)dx:cyfwzkln 2" |dx,
Q Q

f uw(x)dx + as f uw(x)dx + a f Zw(x)dx + B f |ut|“’(')_2utw(x)dx
Q o) o)

Q
+fuw(x)dx:afwzklnlzkldx.
Q Q

This implies that
P2 — Q1Zxx — Qoltyy + 2+ Y|z %2 = azInlzl, in D'(Q % (0, 7)),
Pullyy — Q3Uyxy — A2Zxx T U +ﬁ|ut|w(.)_2ut =auln Iul’ in D/(Q X (0, T))
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This implies that (z, u) satisfies the two differential equations in (1.1), on Q x (0, 7).
Step 5. The initial conditions: We can handle the initial conditions like the one in [55]. Hence, we
deduce that (z, ) is the unique local solution of (1.1). This completes the proof of Theorem 3.1. O

4. Global existence

By using the potential wells, we prove the existence of the global solution to our problem. To this
end, we define the following functionals:

1 +2
Jzu) = f a3t + ai22 + 24y, dx + == Il + [lul]
2 Jao 4
1 | 4.1)
-3 fg 22 Inzldx - 3 fg u? In |uldx,
I(z,u) = f [a%% +azt+ 2a2zxux] dx + ||zI[5 + [lull; - f 22 In|zldx — f u? In uldx. (4.2)
Q Q Q
Remark 4.1. (1) From the above definitions, it is clear that
1 a
J@u) = 51 u) + 7 (Il + llel) (4.3)
1
E() = 5 (pllalh + pullul) + Iz, ). (4.4)
(2) According to the logarithmic Sobolev inequality, J(z, u) and I(z, u) are well-defined.
We define the potential well (stable set):
W = {(z, u) € Hy(Q) X Hy (), I(z,u) > 0} U{(0,0)}.
The potential well depth is defined by
0<d= %nf) {sup J(Az, ) : (z,u) € Hy(Q) X Hy(Q), |1z.ll» # 0 and |ju,|l» # 0}, 4.5)
LU 1>0
and the well-known Nehari manifold is
N = {(z,u) : (z,u) € Hy(Q) X Hy(Q)/1(z,u) = 0, ||zl # 0 and |lu|l, # 0}. (4.6)
Proceeding as in [57,58], one has
0<d= inf J(z,u). 4.7
<d= @ “.7)
Lemma 4.1. For any (z,u) € H}(Q) x H)(Q), |lzll, # 0, and |lull, # 0, let g(A) = J(Az, Au), then we
have
>0,0<A< A,
I(Az, Au) = Ag'(D)=0, 1 = A%,
<0, A" <A< 400,
where

AIMS Mathematics Volume 9, Issue 5, 12825-12851.



12838

A" =exp

2
2
ollull; + fQ ( Vaiz, + j—%ux) dx + |Izll3 + llull; - fQZZ In |z|%dx — fQ u? In ul®dx

a(llzll3 + llull) ’

2
where ay = (a3 - a—z) > 0.

ai

Proof.

2

2
e() = J(Az, du) :%/12 ((a3 _ Z—?) a2 + fg ( Az, + %u) dx)

1 N N a+2 «a
—~ Eaz (Lzzln |z dx+fgu2 In |u| dx)+/12( ya Elnl/ll) (||z||§+||u||§).

Since ||z|l, # 0 and ||u|, # 0, then g(0) = 0, g(+o0) = —o0, and

dJ(Az, Au) 2

2
/ a a
I(/lz, /lu) :/IT = /1g (/1) = /12 (((13 — a—?) ||th||§ + L(\/a_lzx + \/—a_ll/tx) dXJ

L ( f 2 Inlzl*dx + f e lnluladx) + 2 (1= aln ) (Il + 1)
Q Q

which implies that ﬁJ(/lz, Au)=p» = 0, J(Az, Au) is increasing on 0 < A < A%, decreasing on A" < A <
oo, and reaching its maximum value at 4 = A*. In other words, there exists a unique A* € (0, o) such
that /(1*z, A*u) = 0, which establishes the desired result. O

Lemma 4.2. Let (z,u) € H\(Q) x HA(Q) and By = |2Z2e'*5. [0 < |lzlly < Bo and O < |lull, < Bo, then
I(z,u) > 0.

Proof. Using the logarithmic Sobolev inequality (2.4), for any a > 0, we have
I(z,u) = f |asu? + @iz + 2arz,, | dx + 112113 + llull3 — f Zln|zldx - f u* In uldx
Q Q Q
. ad® ) . ad® , 1 10 ) ) 4.8
> (o= S el + (2 = S Jleali o+ 5 (1 @1+ 1na) = 5 o ) lul? (4.8)

1 l04
*+3 (1 +a(l+1Ina) - 3 1n||z||§)||z||§.

Taking a < min{ A /%, ,/%} in (4.8), we obtain

1 1
I(z,u) > 3 (% +a(l +1Ina) - %ln ||u||§) lJull3 + E(

01

S +a(l +Ina) - %1n||z||§)||z||§. (4.9)

If 0 < ||zl < Bo and O < ||ull, < By, then
% +a(l +1Ina) - %1n||u||§ > 0 and % +a(l +1Ina) - glnnzng >0,

which gives I(z,u) > 0. O
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Lemma 4.3. The potential well depth d satisfies
d>—e"a. (4.10)

Proof. The proof of this lemma is similar to the proof of Lemma 4.3. in [59].
m|

Lemma 4.4. Let (29, 21), (ug, u1) € Hé(Q) x L2(Q) such that 0 < E(0) < d and 1(zo, uy) > 0, then any
solution of (1.1) is (z,u) € W.

Proof. Let T be the maximal existence time of a weak solution of (¢, ¢). From (2.10) and (4.4), we
have

1 1
5 (PelladP + pullidP) + Jzw) < 5 (pdllall + pullan ) + I o, o) < d, forany 1 € [0.7),  (4.11)
then we claim that (z(7),u(t)) € W for all + € [0,T). If not, then there is a t, € (0,7) such that

1(z(ty), u(ty)) < 0. Using the continuity of 1(z(¢), u(¢)) in t, we deduce that there exists a z. € (0, T') such
that 7(z(z.), u(t.)) = 0. Using the definition of d in (4.5) gives

d < J(z(t.), u(t,)) < E(z(t.),u(t,)) < E0) < d,
which is a contradiction. O

5. Stability

In this section, we state and prove our main decay results. For this purpose, we present the following
lemmas.

Lemma 5.1. For any n > 0, we have the following:

-B f ulu,| O u,dx < cnp f uldx + 8 f cp(O)u|“Vdx, w, > 2, (5.1)
Q Q Q

and if 1 < w; < 2, we have

w1—1
—ﬁfulutl“’(')_zutdeCQBfuidx+c[ﬁf|u,l“’(x)dx+(fﬁlutl“’(”‘)dx) ] (5.2)
Q Q Q Q

Lemma 5.2. For any A > 0, we have the following:

-y f 2z zdx < cdy f Gdx +y f )z Vdx, vi =2, (5.3)
Q Q Q

and if 1 < vy < 2, we have

vi—1
—yleztl"(')_z(ptdxscﬁyfzidx+c[yfIztlv(")dx+(fylz,l"(x)dx) ] (5.4)
Q Q Q Q
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Proof. We prove Lemma 5.1, and the proof of Lemma 5.2 will be similar. We start by applying Young’s

inequality with &(x) = w‘("g_)l and &(x) = w(x). So, for a.e x € (0, 1) and any n > 0, we have

|w(x)—2

lu; e < nlul”™ + ¢, (0|,

where
C,](x) — nl—w(x)(w(x))—w(x)(w(x) _ l)w(x)—l.

Hence,

-B f ulu, | u,dx < B f lul“Pdx + B f cp(X)|u |*Vd-x. (5.5)
Q Q Q

Next, using (2.9), (2.10), (4.8), Poincaré’s inequality, and the embedding property, we get

f ul“Vdx = | |ul*Vdx + f |l dx
Q Q

Iulwzdx+f lu|“' dx

flul“’zdx+f|u|““dx

5.6
< e Iy + g2 lunlls? -0
< (el e Y
2 w1—2 2 0)2—2
S R
(C (27rc—oza2 © e 2n¢ — © el
< cillull3,
where c, 1s the embedding constant,
Q. ={xeO,L): |ulx,n) =1}, Q_={xe(0,L): |ulx,1)| < 1}
and ) X
2 wi= 2 w2
o = (c‘e‘“(~—7TE(O)) ; c$2(~—”15(0)) ) (5.7)
2cnt — aa? 2cné — aa?
Thus, from (5.5) and (5.6), we find that
-8 f O u,dx < e f Wrdx + 3 f () |u |V dx. (5.8)
Q o Q
Combining all the above estimations, estimate (5.1) is established. To prove (5.2), we set
Q={xe@O,L): wx) <2} and Q, ={x € (0,L) : w(x) > 2},
then, we have
—ﬂf ulu | u,dx = —ﬁf ulu | u,dx —Bf ulu, | u,dx. (5.9)
Q Qi Q
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We notice that on ;, we have
20(x) -2 < w(x), and 2w(x) —2 > 2w, — 2. (5.10)

Therefore, by using Young’s and Poincaré’s inequalities and (5.10), we find that

< enfllu} + B f s f 4]
- 1 Q

< enBllull; + ¢,8 || P dx + |u,|2‘”‘_2dx]
Q7 oh
] wi—1 (5.11D)
< cnBlludi2 + o, f lPdx+ ([ pubax) |
L Ja Qr
r wi—1
< enBllwl + ¢, f it + ([ dx) |
L Jao Qr
w1—1
< nfllusli + | B f it Vddx-+ 5 f BlulVdx) |,
Q Q
where
Qf ={xeQ :|u(x,nl>1} and Q] ={x € Q : |u,(x,0)| < 1}. (5.12)
Next, by the case of w(x) > 2, we have
-8 f ulu|“P " u,dx < enp f Wdx + 8 f Cp(O)|u“Vdx. (5.13)
Q) Q Q
Combining (5.11) and (5.13), the proof of (5.2) is completed. O
Remark 5.1. For the stability results, we assume that the coefficients a;, i = 1, ..., 3 satisfy
ayaz —4a; > 0. (5.14)

It is clear that (5.14) gives the condition in (A2).

Lemma 5.3. Assume that (A1 — A3) and (5.14) hold and let (zy, 21), (ug, 1) € H(l) (Q) x LX(Q). Assume
further that 0 < E(0) < {1 < d, where

s f
T= %e%%, 0<et |- <1 ,ap = min {a,, as}, (5.15)
ao

then the functional

1 1
L(t) = NE(t) + pufuu,dx+ pzfzz,dx+—fu2dx+—fz2dx
Q Q 2 Ja 2 Ja

satisfies, along with the solutions of (1.1) and for a suitable choice of N,

L~E (5.16)
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and
—OE(t) + ¢ [, 22dx + ¢ [ u?dx, Vi, wp 22,
L) < —9E(t) + cﬁ 2dx + cfQ jdx — cE:"'(t)E:(t), vy=0,8+#0,and 1 <vy,w, <2, 5.17)
—0E@) +c dx +c cdx—cETME'(), =0,y #0,and 1 <v,,w; <2,
—9E(t) + cf; 2dx + cjz w?dx — cE"(E'(t), y#0,8# 0,and 1 < vy, w; <2,
where a| = i) >0,a, = = = >0,a3 = I s 0, and m; = min{v;, w, }.

vi— mp—1

Proof. If we want to prove all cases, the proof will be very lengthy, so we prove (5.17), and the proofs
of the other cases are very similar with minor modifications. To prove (5.17),, we differentiate L(¢) and
use integrations by parts, to get

Lw=-p f O + f (oulusl® + pleil”) dx - f (aslusl® + a1z + 2a3u.z, ) dx
Q Q

Q

+ ozfuzlnluldx+ a/fzzlnlzldx— fuzdx— fzzdx
Q Q Q Q

(5.18)
- ﬁf M|’/lt|w(')_2”tdx + f(puuut +0:22,) dx
Q Q
wi—1
+lp f Vet + f Bl |
Q Q
Using Young’s inequality, we have for some positive constants A;,
)
2aoU,7, < /llu + /l—zzz (5.19)
Pulttty + p.22: < LU* + 2°) +7 (p ul +p27), (5.20)
and
P Jo
2 2 u 2 z 2
Pultity + P22 < Ay (u +z ) FETAYIE (5.21)
Using (5.2), (5.4), and (5.18)—(5.21), we have
L' <- N,Bf lu,|“Vdx + A4 f (uz + zz) dr+ < f (ut2 + zf) dx
Q Q /14 Q
2 9\ 2
_ f(a3 —cnB — A4 uydx — f(al - /l_) Zdx
o Q ! (5.22)

+ cxfuzlnluldx+ afzzlnlzldx— fuzdx— fzzdx
Q Q Q Q
w1—1
+c[,8 f |u,|w<x>dx+( f ﬁlutl“’(”)dx) ]
Q Q
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Using (2.10) and the logarithmic Sobolev inequality, (5.22) becomes
L'(t)<-B(N - c)f lu,|“Odx + < f (u,z + Z,z) dx
Q A4 Jo

2 2 2
- f(@—ﬂ—cnﬁ—/h)uidx— f(al—%——z)zidx
e 2n Q 2r /11 (523)

—(1—%hmm@—a4+aa+dnmymﬁ—(l—%hﬂmﬁ—ﬂ4+aﬂ+JHQMME

+{—E@f”.

2rag
a b

Now, we select N large enough so that N — ¢ > 0, then we select a <
which makes

where ay = min {a,, as},

2 2
aa aa
a;—— >0, anda; — — > 0.
2 2
(mz 2 ltaz
azy—=5- 26!2 a3— %=
After that, we choose n = B and —%5 < 4; < 5=, to get
ar—%-
a;a B, >0 aad? a% 0
a3———-cnB—-4,>0,a,———-—=>0.
0w ’ m A

This selection is possible thanks to (5.14). Using (2.9), (2.10), and the fact that u € W,

4 4 4 2eneta
lmmﬁ<h«—Em)<h«—Ewﬁ<h%—&)<h{—£EL—} (5.24)
@ o’ o o’
After taking a satisfying
1 [2€Crm 2may
e 4 <a< 4 ,
a @
and A4 is small enough, we guarantee the following:
1—%hﬂMﬁ—M+aﬂ+hu0>0mm1—%hmm§—h+aﬂ+hm)>Q
Then, (5.23) reduces to
L'(t) < —cE@) + ¢ fgztzdx +c fQ uldx + cB( - E'(1))"" (5.25)

Using Young’s inequality with { = ﬁ and {* = 2_+U1, for any &£ > 0, we estimate this term E*(r)( —
E'(1)”" as follows:
E“()( - E' ()" < eETo () + (- E'(1)).

2—wq
wi—1’

(= E'0)"" < sE@) + c.E(1)( - E'(1)).

Multiplying both sides of the last inequality by E7%, where @ = gives us

Inserting this estimate in the last term in (5.25), we find that
L'(t) < —(c = &)E(t) + ¢ [, Z2dx + ¢ [ u?dx + c.E™(1)( — E'(1)). (5.26)

By taking & small enough and using the nonincreasing property of E, (5.17) is established. On the
other hand, we can choose N even larger (if needed) so that L ~ E. O
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Lemma 5.4. Assume that (A1) holds, then
1
f z7dx < —cE'(t), ifv, =2,
0
1
f wrdx < —cE'(t), ifw, =2, (5.27)
0
and
1 2
f Zdx < —cE'() + c(=E'()7 , if vy > 2,
0
1
f ufdx < —cE'(t) + c(—E’(t))wlz , ifwy > 2. (5.28)
0

Proof. By recalling (2.10), it is easy to establish (5.27). To prove the first estimate in (5.28), we set the
following partitions

Q={xeQ:|z|>1} and Q,={xeQ:|z| <1} (5.29)

The use of Holder’s and Young’s inequalities and (2.9), give for Q,

Jo, dx < J |2l dx < —cE'(0), (5.30)
and for Q,, we get
2
2 "2
f zzdx < c(f |z dx)
(93 Q
2 2
< c( |7, dx) < c( f |z, dx) < c(—ED) . (5.31)
Q) Q

Combining (5.30) and (5.31), the first estimate in (5.28) is established, and we repeat the same steps to
establish the second estimate in (5.28). O

Theorem 5.1. Assume that (A1 — A3) hold and v, w; > 2, then the energy functional (2.9) satisfies,
for some positive constants A;, 0, 1u; > 0, i = 1,2,3, and for any t > 0,

E®) <me ™, if y=0, B#0, and w, = 2;
E(t) <we™, if y#0, B=0,and v, = 2; (5.32)
E(t)y <pse™, if y#0, B#0, and v, = w, =2,

and
E@) < (TLZ_z if y=0, B#0, and w, > 2;

E(t) < "%2,2), if vy#0, =0, and v, > 2; (5.33)
E(t)< —F—=, if y#0, B#0, and vy, w, > 2,

where m, = min{v,, w,}.
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Proof. To prove (5.32),, we impose Lemma (5.4) in (5.17), to obtain
L' (1) < —cL(t) + ¢(—E'(1)), (5.34)

which leads to
L (t) < —cL(1), (5.35)

where L; = L + cE ~ E. Integrating (5.35) over (0, ¢) and using the fact that L, L ~ E, the proof
of (5.32), is finished, and the remaining proofs of (5.32), and (5.32); can be achieved in the same way.
Now, it is enough to prove the estimate given in (5.33);, and the remaining can be achieved in the same
way. To this end, we also apply Lemma 5.4 in Eq (5.17), to have

L' (t) < —cL(t) + (~E' ()" + (=E'()% . (5.36)
By multiplying (5.36) by E®, where a = % > 0, we get

E°L' (f) < —cEL(1) + E* (~E'(1))% + E* (~E'(1))™ . (5.37)

Applying Young’s inequality twice in (5.37), we find that for & > 0,

ay

EL (f) < —cE®*'L (1) + eE™ + gE 2 + Co (~E'(1)). (5.38)

We discuss two cases:
Case 1. If v, < w,, we will have

2a(vp-wy)

E°L' (f) < —cE“'L (1) + eE + B 1 En505 + C, (~E'(1)) .
Using the fact that £’ < 0, we get
E°L' ()< —(c—e—ce)E"™'L(t) + C. (-E'(2)). (5.39)
Choosing & small enough, we see that (5.39) becomes
Ly(t) < —cE*"(1),  Vt>0, (5.40)
where L, = E“L + cE ~ E. By integrating (5.40) over (0, #) and using the fact that E ~ L,, we obtain

C
Ef)< —2— V>0, 5.41
() PENIE (5.41)

where o = VZT_Z

Case 2. If w, < v, in this case we get

C
El)y< —=—,V1t>0, 5.42

0 < i (5.42)

where o = ‘”22_2. So, the proof of (5.33); can be completed by taking m, = min{v,, w,}. O
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Theorem 5.2. Assume that (Al — A3) hold, 1 < vi,w, < 2 and, v, = w,; = 2, then the energy

functional (2.9) satisfies, for a positive constants C;, i = 1,2,3, and for any t > 0,

E(t)y< —S%—, if y=0 and B #0,

, if vy#0 and B=0,

E(t)y< —S—, if y#0 and #0,

where m; = min{v,, w; }.
Proof. To prove (5.43),, we impose Lemma (5.4) in (5.17), to get
L'(t)<—cE@)+ (=E'(1) + (=E'(2)) = cET""(0)E' (1),

where a; = i_—‘fi > (. By taking L; = L + cE ~ E, this becomes

i
L (t) < —cE(t) — cE""" (1)) E'(1).
Multiplying (5.44) by E*!, we have
E" (D)L, (1) < —cE**(1) — cE'(1).
By taking L, = E“L; + cE ~ E, this becomes
L, (1) < —cE“*(1).

Therefore, we obtain the following decay estimate

Co,
E(f) < ———,

Yit>0,
t+1)

(5.43)

(5.44)

(5.45)

where a; = 2. The proof of (5.43), is completed, and the proof of (5.43), and (5.43); can be
w]

1
achieved in the same way.

O

Theorem 5.3. Assume that (A1 — A3) hold, 1 < vi,w; < 2, and v,,w, > 2, then the energy

functional (2.9) satisfies, for a positive constants C;, i = 1,2,3, and for any t > 0,

Elt)< —S—, if y=0 and B #0,

E(t)< —2—, if y#0 and B =0,
Elt)y< —5—, if y#0 andB %0,

where my = min{v,, w,}

Proof. To prove (5.46),, we impose Lemma (5.4) in (5.17), to get

L' (1) < —E (1) + (=E'(1)" + (—E'(t))* — cE-"()E'(f),

(5.46)
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wy—2
2

where a; = i_l—‘fi > 0. Multiplying by E* where a =

inequality twice, we obtain, for &€ > 0,

> 0, and using @ — @; > 0 and Young’s

E*L' (1) < —cE™' () + sEn + gE + C, (—E'(1)).

Assuming that w; > v,

aw 2a(wpy-vp)

E°L/ (1) < —cE“ L (1) + eE7 + sEm Enn? + Cy (—E/(1)) .
Using the fact that E is nonincreasing, we obtain
EL'(H)<—(c—e—ce)E“''L(t) + C.(-E'(1)).
Taking € small enough, the above estimate becomes:
Ly(1) < —cE**'(1),  V1>0, (5.47)

where L, = E“L + cE ~ E. Integration (5.47) over (0, ¢) and using E ~ L,, we get

Cuw,
Et)y< ——, Vt>0, 5.48
O < i (5.48)

where a = “’22_2. So, the proof of (5.46), is completed and the proofs of (5.46), and (5.46); will be the

same. m]
6. Conclusions and open problems

In this paper, we proved the local existence result of solutions of the nonlinear swelling porous-
elastic system by using the Faedo-Galerkin method. Furthermore, we proved the global existence of
solutions by using the well-depth method. Finally, we established several decay results by employing
the multiplier method and the logarithmic Sobolev inequality. The problem will be very interesting if
we consider the damping condiments y and £ as functions of x and ¢, i.e, y = y(x, ¢) and 8 = B(x, ).
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