Research article

Dynamic analysis of a Filippov blood glucose insulin model

  • Received: 03 February 2024 Revised: 29 April 2024 Accepted: 24 May 2024 Published: 31 May 2024
  • MSC : 34C60, 92C50, 92D25

  • This paper proposed a Filippov blood glucose insulin model with threshold control strategy and studied its dynamic properties. Using Filippov's convex method, we proved the global stability of its two subsystems, the existence and conditions of the sliding region of the system were also given, and different types of equilibrium states of the system were also addressed. The existence and stability of pseudo equilibrium points were thoroughly discussed. Through numerical simulations, we have demonstrated that it is possible to effectively control blood sugar concentrations to achieve more cost-effective treatment levels by selecting an appropriate threshold range for insulin injection.

    Citation: Qiongru Wu, Ling Yu, Xuezhi Li, Wei Li. Dynamic analysis of a Filippov blood glucose insulin model[J]. AIMS Mathematics, 2024, 9(7): 18356-18373. doi: 10.3934/math.2024895

    Related Papers:

  • This paper proposed a Filippov blood glucose insulin model with threshold control strategy and studied its dynamic properties. Using Filippov's convex method, we proved the global stability of its two subsystems, the existence and conditions of the sliding region of the system were also given, and different types of equilibrium states of the system were also addressed. The existence and stability of pseudo equilibrium points were thoroughly discussed. Through numerical simulations, we have demonstrated that it is possible to effectively control blood sugar concentrations to achieve more cost-effective treatment levels by selecting an appropriate threshold range for insulin injection.



    加载中


    [1] S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030, Diabetes Care, 27 (2004), 1047–1053. https://doi.org/10.2337/diacare.27.5.1047 doi: 10.2337/diacare.27.5.1047
    [2] W. S. Lv, Y. H. Dong, R. L. Qian, Diagnosis and classification of diabetes, Chinese J. Diabet., 35 (2000), 60–61.
    [3] M. J. Davies, J. J. Gagliardino, L. J. Gray, K. Khunti, V. Mohan, R. Hughes, Real-world factors affecting adherence to insulin therapy in patients with type or type 2 diabetes mellitus: A systematic review, Diabet. Med., 30 (2013), 512–524. https://doi.org/10.1111/dme.12128 doi: 10.1111/dme.12128
    [4] B. W. Bode, Insulin pump use in type 2 diabetes, Diabetes Technol. The., 12 (2010), S17–S21. https://doi.org/10.1089/dia.2009.0192 doi: 10.1089/dia.2009.0192
    [5] T. Didangelos, F. Iliadis, Insulin pump therapy in adults, Diabetes Res. Clin. Pr., 93 (2011), S109–S113. https://doi.org/10.1016/S0168-8227(11)70025-0 doi: 10.1016/S0168-8227(11)70025-0
    [6] L. A. Fox, L. M. Buckloh, S. D. Smith, T. Wysocki, N. Mauras, A randomized controlled trial of insulin pump therapy in young children with type 1 diabetes, Diabetes Care, 28 (2005), 1277–1281. https://doi.org/10.2337/diacare.28.6.1277 doi: 10.2337/diacare.28.6.1277
    [7] Y. Reznik, Continuous subcutaneous insulin infusion (CSII) using an external insulin pump for the treatment of type 2 diabetes, Diabetes Metab., 36 (2010), 415–421. https://doi.org/10.1016/j.diabet.2010.08.002 doi: 10.1016/j.diabet.2010.08.002
    [8] D. M. Maahs, L. A. Horton, H. P. Chase, The use of insulin pumps in youth with type 1 diabetes, Diabetes Technol. The., 12 (2010), S59–S65. https://doi.org/10.1089/dia.2009.0161 doi: 10.1089/dia.2009.0161
    [9] M. Z. Huang, J. X. Li, X. Y. Song, H. J. Guo, Modeling impulsive injections of insulin: Towards artificial pancreas, SIAM J. Appl. Math., 72 (2012), 1524–1548. https://doi.org/10.1137/110860306 doi: 10.1137/110860306
    [10] G. M. Steil, B. Hipszer, J. Reifman, Update on mathematical modeling research to support the development of automated insulin-delivery systems, J. Diabetes Sci. Technol., 4 (2010), 759–769. https://doi.org/10.1177/193229681000400334 doi: 10.1177/193229681000400334
    [11] I. S. Mughal, L. Patanè, R. Caponetto, A comprehensive review of models and nonlinear control strategies for blood glucose regulation in artificial pancreas, Annu. Rev. Control, 57 (2024), 100937. https://doi.org/10.1016/j.arcontrol.2024.100937 doi: 10.1016/j.arcontrol.2024.100937
    [12] C. Hao, Research on optimization strategy of insulin pump therapy based on swarm intelligence, D. Beijing Univ. Technol., 2015.
    [13] Y. S. Bu, J. Wu, Comparison of treatment of diabetes with insulin pump and routine hyodermic injection of insulin, Chinese J. Hosp. Pharm., 28 (2008), 910–911. https://doi.org/10.1097/IAE.0b013e31816d81c0 doi: 10.1097/IAE.0b013e31816d81c0
    [14] J. Li, Y. Kuang, Analysis of a glucose-insulin regulatory models with time delays, SIAM J. Appl. Math., 67 (2007), 757–776. https://doi.org/10.1137/050634001 doi: 10.1137/050634001
    [15] L. Magni, Model predictive control of type 1 diabetes, IFAC Proceed. Volumes, 45 (2012), 99–106. https://doi.org/10.3182/20120823-5-NL-3013.00071 doi: 10.3182/20120823-5-NL-3013.00071
    [16] V. W. Bolie, Coefficients of normal blood glucose regulation, J. Appl. Physiology, 16 (1961), 783–788. https://doi.org/10.1152/jappl.1961.16.5.783 doi: 10.1152/jappl.1961.16.5.783
    [17] A. B. A. Al-Hussein, F. Rahma, S. Jafari, Hopf bifurcation and chaos in time-delay model of glucose-insulin regulatory system, Chaos Soliton. Fract., 137 (2020), 109845. https://doi.org/10.1016/j.chaos.2020.109845 doi: 10.1016/j.chaos.2020.109845
    [18] A. B. A. Al-Hussein, F. Rahma, L. Fortuna, M. Bucolo, M. Frasca, A. Buscarino, A new time-delay model for chaotic glucose-insulin regulatory system, Int. J. Bifurcat. Chaos, 30 (2020), 11. https://doi.org/10.1142/S0218127420501783 doi: 10.1142/S0218127420501783
    [19] M. Farman, M. U. Saleem, A. Ahmad, S. Imtiaz, M. F. Tabassum, S. Akram, A control of glucose level in insulin therapies for the development of artificial pancreas by Atangana Baleanu derivative, Alex. Eng. J., 59 (2020), 2639–2648. https://doi.org/10.1016/j.aej.2020.04.027 doi: 10.1016/j.aej.2020.04.027
    [20] M. Angelova, G. Beliakov, A. Ivanov, S. Shelyag, Global stability and periodicity in a glucose-insulin regulation model with a single delay, Commun. Nonlinear Sci., 95 (2021). https://doi.org/10.1016/j.cnsns.2020.105659 doi: 10.1016/j.cnsns.2020.105659
    [21] I. S. Mughal, L. Patanè, M. G. Xibilia, R. Caponetto, Variable structure-based controllers applied to the modified Hovorka model for type 1 diabetes, Int. J. Dyn. Control, 11 (2023), 3159–3175. https://doi.org/10.1007/s40435-023-01150-4 doi: 10.1007/s40435-023-01150-4
    [22] J. Li, Y. Kuang, C. C. Mason, Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two explicit time delays, J. Theor. Biol., 242 (2006), 722–735. https://doi.org/10.1016/j.jtbi.2006.04.002 doi: 10.1016/j.jtbi.2006.04.002
    [23] C. Ling, Q. Song, M. Liu, Studies on stability of the glucose-insulin regulation system for T2DM, J. Xinyang Normal Univ. (Natural Science Edition), 30 (2017), 180–184. http://dx.doi.org/10.3969/j.issn.1003-0972.2017.02.002 doi: 10.3969/j.issn.1003-0972.2017.02.002
    [24] M. Ma, J. Li, Dynamics of a glucose-insulin model, J. Biol. Dynam., 16 (2022), 733–745. https://doi.org/10.1080/17513758.2022.2146769 doi: 10.1080/17513758.2022.2146769
    [25] F. Rao, Z. Zhang, J. Li, Dynamical analysis of a glucose-insulin regulatory system with insulin-degrading enzyme and multiple delays, J. Math. Biol., 87 (2023), 73. https://doi.org/10.1007/s00285-023-02003-6 doi: 10.1007/s00285-023-02003-6
    [26] X. Y. Shi, J. Y. Yao, M. Z. Huang, Analysis of the asymptotic properties of a stochastic glucose-insulin regulation system, J. Xinyang Normal Univ. (Natural Science Edition), 32 (2019), 357–361. https://doi.org/10.3969/j.issn.1003-0972.2019.03.003 doi: 10.3969/j.issn.1003-0972.2019.03.003
    [27] X. Y. Shi, X. W. Gao, Analysis of a slow-fast system for glucose-insulin regulatory with $\beta$ cell function, J. Xinyang Normal Univ. (Natural Science Edition), 33 (2020), 517–521. http://dx.doi.org/10.3969/j.issn.1003-0972.2020.04.001 doi: 10.3969/j.issn.1003-0972.2020.04.001
    [28] X. Y. Song, M. Z. Huang, J. X. Li, Modeling impulsive insulin delivery in insulin pump with time delays, SIAM J. Appl. Math., 74 (2014), 1763–1785. https://doi.org/10.1137/130933137 doi: 10.1137/130933137
    [29] M. Z. Huang, X. Y. Song, Modeling and qualitative analysis of diabetes therapies with state feedback control, Int. J. Biomath., 7 (2014), 1450035. https://doi.org/10.1142/S1793524514500351 doi: 10.1142/S1793524514500351
    [30] M. Z. Huang, S. Z. Liu, X. Y. Song, L. Yu, J. Y. Yao, Studies on a insulin therapy model with physiological delays and state feedback impulsive control, J. Xinyang Normal Univ. (Natural Science Edition), 31 (2018), 10–14. https://doi.org/10.3969/j.issn.1003-0972.2018.04.002 doi: 10.3969/j.issn.1003-0972.2018.04.002
    [31] A. A. Arafa, S. A. A. Hamdallah, S. Tang, Y. Xu, G. M. Mahmoud, Dynamics analysis of a Filippov pest control model with time delay, Commun. Nonlinear Sci., 101 (2021), 105865. https://doi.org/10.1016/j.cnsns.2021.105865 doi: 10.1016/j.cnsns.2021.105865
    [32] S. Qiao, C. H. Gao, X. L. An, Hidden dynamics and control of a Filippov memristive hybrid neuron model, J. Nonlin. Dyn., 111 (2023), 10529–10557. https://doi.org/10.1007/s11071-023-08393-y doi: 10.1007/s11071-023-08393-y
    [33] S. Qiao, C. H. Gao, Complex dynamics of a non-smooth temperature-sensitive memristive Wilson neuron model, Commun. Nonlinear Sci., 125 (2023), 107410. https://doi.org/10.1016/j.cnsns.2023.107410 doi: 10.1016/j.cnsns.2023.107410
    [34] Q. Xin, B. Liu, S. Y. Tang, Threshold policy control for the non-smooth stage-structured pest growth models, J. Biomath., 27 (2012), 589–599. https://doi.org/10.1080/09687599.2012.690599 doi: 10.1080/09687599.2012.690599
    [35] J. Yang, G. Y. Tang, S. Y. Tang, Modelling the regulatory system of a chemostat model with a threshold window, J. Math. Comput. Simul., 132 (2017), 220–235. https://doi.org/10.1016/j.matcom.2016.08.005 doi: 10.1016/j.matcom.2016.08.005
    [36] G. Tang, Branch analysis of Filippov non smooth ecosystem, D. Shaanxi Normal Univ., 2015.
    [37] Y. C. Wang, B. Liu, B. L. Kang, Study on a pest control Filippov model with Holling Ⅱ response, J. Biomath., 30 (2015), 63–68. https://doi.org/10.1152/physiol.00037.2014 doi: 10.1152/physiol.00037.2014
    [38] J. Shang, B. Liu, B. L. Kang, Study on dynamics of a two stage structured pest control Filippov model, J. Biomath., 28 (2013), 485–492. https://doi.org/10.1093/ndt/gft013 doi: 10.1093/ndt/gft013
    [39] J. Li, Y. Kuang, C. C. Mason, Modeling the glucose-insulin regulatory system and ultradian insulin secretory oscillations with two time delays, J. Theor. Biol., 242 (2006), 722–735. https://doi.org/10.1016/j.jtbi.2006.04.002 doi: 10.1016/j.jtbi.2006.04.002
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(466) PDF downloads(47) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog