Research article Special Issues

Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives

  • Received: 26 January 2024 Revised: 21 April 2024 Accepted: 23 April 2024 Published: 31 May 2024
  • MSC : 34A12, 34A34, 45G05

  • The main aim of this study was to apply an analytical method to solve a nonlinear system of fractional differential equations (FDEs). This method is the Adomian decomposition method (ADM), and a comparison between its results was made by using a numerical method: Runge-Kutta 4 (RK4). It is proven that there is a unique solution to the system. The convergence of the series solution is given, and the error estimate is also proven. After that, the susceptible-infected-recovered (SIR) model was taken as an real phenomenon with such systems. This system is discussed with three different fractional derivatives (FDs): the Caputo-Fabrizio derivative (CFD), the Atangana-Baleanu derivative (ABD), and the Caputo derivative (CD). A comparison between these three different derivatives is given. We aimed to see which one of the new definitions (ABD and CFD) is close to one of the most important classical definitions (CD).

    Citation: Eman A. A. Ziada, Salwa El-Morsy, Osama Moaaz, Sameh S. Askar, Ahmad M. Alshamrani, Monica Botros. Solution of the SIR epidemic model of arbitrary orders containing Caputo-Fabrizio, Atangana-Baleanu and Caputo derivatives[J]. AIMS Mathematics, 2024, 9(7): 18324-18355. doi: 10.3934/math.2024894

    Related Papers:

  • The main aim of this study was to apply an analytical method to solve a nonlinear system of fractional differential equations (FDEs). This method is the Adomian decomposition method (ADM), and a comparison between its results was made by using a numerical method: Runge-Kutta 4 (RK4). It is proven that there is a unique solution to the system. The convergence of the series solution is given, and the error estimate is also proven. After that, the susceptible-infected-recovered (SIR) model was taken as an real phenomenon with such systems. This system is discussed with three different fractional derivatives (FDs): the Caputo-Fabrizio derivative (CFD), the Atangana-Baleanu derivative (ABD), and the Caputo derivative (CD). A comparison between these three different derivatives is given. We aimed to see which one of the new definitions (ABD and CFD) is close to one of the most important classical definitions (CD).



    加载中


    [1] P. Kumar, N. A. Rangaig, H. Abboubakar, A. Kumar, A. Manickam, Prediction studies of the epidemic peak of coronavirus disease in Japan: from Caputo derivatives to Atangana-Baleanu derivatives, Int. J. Model. Simul. Sci. Comput., 13 (2022), 2250012. https://doi.org/10.1142/s179396232250012x doi: 10.1142/s179396232250012x
    [2] H. Abboubakar, R. K. Regonne, K. S. Nisar, Fractional dynamics of typhoid fever transmission models with mass vaccination perspectives, Fractal Fract., 5 (2021), 1–31. https://doi.org/10.3390/fractalfract5040149 doi: 10.3390/fractalfract5040149
    [3] J. G. Liu, X. J. Yang, Y. Y. Feng, L. L. Geng, Invariant analysis and conservation laws for the space-time fractional KdV-like equation, J. Appl. Anal. Comput., 14 (2024), 1–15. https://doi.org/10.11948/20220202 doi: 10.11948/20220202
    [4] J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos Solitons Fract., 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603
    [5] M. Dehghan, J. Manafian, A. Saadatmandi, Solving nonlinear fractional partial differential equations using the homotopy analysis method, Numer. Methods Partial Differ. Equ., 26 (2010), 448–479. https://doi.org/10.1002/num.20460 doi: 10.1002/num.20460
    [6] S. A. Abd El-Salam, A. M. A. El-Sayed, On the stability of some fractional-order non-autonomous systems, Electron. J. Qual. Theory Differ. Equ., 2007, 1–14. https://doi.org/10.14232/ejqtde.2007.1.6 doi: 10.14232/ejqtde.2007.1.6
    [7] A. M. A. El-Sayed, S. A. Abd El-Salam, On the stability of a fractional-order differential equation with nonlocal initial condition, Electron. J. Qual. Theory Differ. Equ., 2008, 1–8. https://doi.org/10.14232/ejqtde.2008.1.29 doi: 10.14232/ejqtde.2008.1.29
    [8] N. T. Shawagfeh, Analytical approximate solutions for nonlinear fractional differential equations, Appl. Math. Comput., 131 (2002), 517–529. https://doi.org/10.1016/s0096-3003(01)00167-9 doi: 10.1016/s0096-3003(01)00167-9
    [9] M. Alesemi, Numerical analysis of fractional-order parabolic equation involving Atangana-Baleanu derivative, Symmetry, 15 (2023), 1–19. https://doi.org/10.3390/sym15010237 doi: 10.3390/sym15010237
    [10] A. M. A. El-Sayed, I. L. El-Kalla, E. A. A. Ziada, Analytical and numerical solutions of multi-term nonlinear fractional orders differential equations, Appl. Numer. Math., 60 (2010), 788–797. https://doi.org/10.1016/j.apnum.2010.02.007 doi: 10.1016/j.apnum.2010.02.007
    [11] M. Botros, E. A. A. Ziada, I. L. EL-Kalla, Semi-analytic solutions of nonlinear multidimensional fractional differential equations, Math. Biosci. Eng., 19 (2022), 13306–13320. https://doi.org/10.3934/mbe.2022623 doi: 10.3934/mbe.2022623
    [12] A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian decomposition methods for a quadratic integral equation of fractional order, Comput. Appl. Math., 33 (2014), 95–109. https://doi.org/10.1007/s40314-013-0045-3 doi: 10.1007/s40314-013-0045-3
    [13] A. M. A. El-Sayed, H. H. G. Hashem, E. A. A. Ziada, Picard and Adomian methods for quadratic integral equation, Comput. Appl. Math., 29 (2010), 447–463.
    [14] A. A. M. Arafa, S. Z. Rida, M. Khalil, Solutions of fractional order model of childhood diseases with constant vaccination strategy, Math. Sci. Lett., 1 (2012), 17–23. https://doi.org/10.12785/msl/010103 doi: 10.12785/msl/010103
    [15] A. Ahmad, M. Farman, M. O. Ahmad, N. Raza, M. Abdullah, Dynamical behavior of SIR epidemic model with non-integer time fractional derivatives: a mathematical analysis, Int. J. Adv. Appl. Sci., 5 (2018), 123–129. https://doi.org/10.21833/ijaas.2018.01.016 doi: 10.21833/ijaas.2018.01.016
    [16] E. Okyere, F. T. Oduro, S. K. Amponsah, I. K. Dontwi, N. K. Frempong, Fractional order SIR model with constant population, British J. Math. Comput. Sci., 14 (2016), 1–12. https://doi.org/10.9734/bjmcs/2016/23017 doi: 10.9734/bjmcs/2016/23017
    [17] H. M. Srivastava, H. Günerhan, Analytical and approximate solutions of fractional-order susceptible-infected-recovered epidemic model of childhood disease, Math. Methods Appl. Sci., 42 (2019), 935–941. https://doi.org/10.1002/mma.5396 doi: 10.1002/mma.5396
    [18] M. Hassouna, A. Ouhadan, E. H. El Kinani, On the solution of fractional order SIS epidemic model, Chaos Solitons Fract., 117 (2018), 168–174. https://doi.org/10.1016/j.chaos.2018.10.023 doi: 10.1016/j.chaos.2018.10.023
    [19] I. Ameen, P. Novati, The solution of fractional order epidemic model by implicit Adams methods, Appl. Math. Model., 43 (2017), 78–84. https://doi.org/10.1016/j.apm.2016.10.054 doi: 10.1016/j.apm.2016.10.054
    [20] M. A. Balci, Fractional virus epidemic model on financial networks, Open Math., 14 (2016), 1074–1086. https://doi.org/10.1515/math-2016-0098 doi: 10.1515/math-2016-0098
    [21] S. Hasan, A. Al-Zoubi, A. Freihet, M. Al-Smad, S. Momani, Solution of fractional SIR epidemic model using residual power series method, Appl. Math. Inform. Sci., 13 (2019), 153–161. https://doi.org/10.18576/amis/130202 doi: 10.18576/amis/130202
    [22] N. Sene, SIR epidemic model with Mittag-Leffler fractional derivative, Chaos Solitons Fract., 137 (2020), 109833. https://doi.org/10.1016/j.chaos.2020.109833 doi: 10.1016/j.chaos.2020.109833
    [23] N. Sene, Fractional SIRI model with delay in context of the generalized Liouville-Caputo fractional derivative, In: Mathematical modeling and soft computing in epidemiology, CRC Press, 2020,107–125. https://doi.org/10.1201/9781003038399-6
    [24] H. A. A. El-Saka, E. Ahmed, A fractional order network model for ZIKA, BioRxiv, 2016, 039917. https://doi.org/10.1101/039917 doi: 10.1101/039917
    [25] H. S. Flayyih, S. L. Khalaf, Stability analysis of fractional SIR model related to delay in state and control variables, Basrah J. Sci., 39 (2021), 204–220. https://doi.org/10.29072/basjs.202123 doi: 10.29072/basjs.202123
    [26] J. P. C. dos Santos, E. Monteiro, G. B. Vieira, Global stability of fractional SIR epidemic model, Proc. Ser. Braz. Soc. Comput. Appl. Math., 5 (2017), 1–7. https://doi.org/10.5540/03.2017.005.01.0019 doi: 10.5540/03.2017.005.01.0019
    [27] M. Mukherjee, B. Mondal, An integer-order SIS epidemic model having variable population and fear effect: comparing the stability with fractional order, J. Egyptian Math. Soc., 30 (2022), 19. https://doi.org/10.1186/s42787-022-00153-y doi: 10.1186/s42787-022-00153-y
    [28] A. M. Yousef, S. Z. Rida, Y. Gh. Gouda, A. S. Zaki, On dynamics of a fractional-order SIRS epidemic model with standard incidence rate and its discretization, Progr. Fract. Differ. Appl., 5 (2019), 297–306.
    [29] S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Solitons Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
    [30] N. Djeddi, S. Hasan, M. Al-Smadi, S. Momani, Modified analytical approach for generalized quadratic and cubic logistic models with Caputo-Fabrizio fractional derivative, Alex. Eng. J., 59 (2020), 5111–5122. https://doi.org/10.1016/j.aej.2020.09.041 doi: 10.1016/j.aej.2020.09.041
    [31] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [32] M. I. Syam, M. Al-Refai, Fractional differential equations with Atangana-Baleanu fractional derivative: analysis and applications, Chaos Solitons Fract., 2 (2019), 100013. https://doi.org/10.1016/j.csfx.2019.100013 doi: 10.1016/j.csfx.2019.100013
    [33] P. King, Mathematical models in population biology and epidemiology [Book Reviews], IEEE Eng. Med. Biol. Mag., 20 (2001), 101. https://doi.org/10.1109/memb.2001.940057 doi: 10.1109/memb.2001.940057
    [34] E. F. D. Goufo, R. Maritz, J. Munganga, Some properties of the Kermack-McKendrick epidemic model with fractional derivative and nonlinear incidence, Adv. Differ. Equ., 2014 (2014), 1–9. https://doi.org/10.1186/1687-1847-2014-278 doi: 10.1186/1687-1847-2014-278
    [35] A. Atangana, B. S. T. Alkahtani, Analysis of the Keller-Segel model with a fractional derivative without singular kernel, Entropy, 17 (2015), 4439–4453. https://doi.org/10.3390/e17064439 doi: 10.3390/e17064439
    [36] D. Baleanu, S. M. Aydogn, H. Mohammadi, S. Rezapour, On modelling of epidemic childhood diseases with the Caputo-Fabrizio derivative by using the Laplace Adomian decomposition method, Alex. Eng. J., 59 (2020), 3029–3039. https://doi.org/10.1016/j.aej.2020.05.007 doi: 10.1016/j.aej.2020.05.007
    [37] M. Al-Towaiq, A. A. Ababnah, S. Al-Dalahmeh, Solution of the fractional epidemic model by a modified approach of the fractional variation iterative method using a radial basis functions, Int. J. Model. Optim., 9 (2019), 150–154. https://doi.org/10.7763/ijmo.2019.v9.701 doi: 10.7763/ijmo.2019.v9.701
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(603) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(23)  /  Tables(9)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog