Research article Special Issues

Transfer learning for robust urban network-wide traffic volume estimation with uncertain detector deployment scheme

  • Received: 06 September 2022 Revised: 06 October 2022 Accepted: 13 October 2022 Published: 28 October 2022
  • Real-time and accurate network-wide traffic volume estimation/detection is an essential part of urban transport system planning and management. As it is impractical to install detectors on every road segment of the city network, methods on the network-wide flow estimation based on limited detector data are of considerable significance. However, when the plan of detector deployment is uncertain, existing methods are unsuitable to be directly used. In this study, a transfer component analysis (TCA)-based network-wide volume estimation model, considering the different traffic volume distributions of road segments and transforming traffic features into common data space, is proposed. Moreover, this study applied taxi GPS (global positioning system) data and cellular signaling data with the same spatio-temporal coverage to improve feature extraction. In numerical experiments, the robustness and stability of the proposed network-wide estimation method outperformed other baselines in the two subnetworks selected from the urban centers and suburbs.

    Citation: Jiping Xing, Yunchi Wu, Di Huang, Xin Liu. Transfer learning for robust urban network-wide traffic volume estimation with uncertain detector deployment scheme[J]. Electronic Research Archive, 2023, 31(1): 207-228. doi: 10.3934/era.2023011

    Related Papers:

  • Real-time and accurate network-wide traffic volume estimation/detection is an essential part of urban transport system planning and management. As it is impractical to install detectors on every road segment of the city network, methods on the network-wide flow estimation based on limited detector data are of considerable significance. However, when the plan of detector deployment is uncertain, existing methods are unsuitable to be directly used. In this study, a transfer component analysis (TCA)-based network-wide volume estimation model, considering the different traffic volume distributions of road segments and transforming traffic features into common data space, is proposed. Moreover, this study applied taxi GPS (global positioning system) data and cellular signaling data with the same spatio-temporal coverage to improve feature extraction. In numerical experiments, the robustness and stability of the proposed network-wide estimation method outperformed other baselines in the two subnetworks selected from the urban centers and suburbs.



    加载中


    [1] Z. He, W. Zhang, N. Jia, Estimating carbon dioxide emissions of freeway traffic: a spatiotemporal cell-based model, IEEE Trans. Intell. Transp. Syst., 21 (2020), 1976–1986. https://doi.org/10.1109/tits.2019.2909316 doi: 10.1109/tits.2019.2909316
    [2] Q. Cheng, Z. Liu, Y. Lin, X. Zhou, An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship, Transp. Res. Part B Methodol., 153 (2021), 246–271. https://doi.org/10.1016/j.trb.2021.09.004 doi: 10.1016/j.trb.2021.09.004
    [3] Q. Cheng, Z. Liu, J. Guo, X. Wu, R. Pendyala, B. Belezamo, et al., Estimating key traffic state parameters through parsimonious spatial queue models, Transp. Res. Part C Emerging Technol., 137 (2022), 103596. https://doi.org/10.1016/j.trc.2022.103596 doi: 10.1016/j.trc.2022.103596
    [4] Z. Shan, D. Zhao, Y. Xia, Urban road traffic speed estimation for missing probe vehicle data based on multiple linear regression model, in 16th International IEEE Conference on Intelligent Transportation Systems, 1 (2013), 118–123. https://doi.org/10.1109/ITSC.2013.6728220
    [5] Z. Liu, Z. Li, M. Li, W. Xing, D. Lu, Mining road network correlation for traffic estimation via compressive sensing, IEEE Trans. Intell. Transp. Syst., 17 (2016), 1880–1893. https://doi.org/10.1109/tits.2016.2514519 doi: 10.1109/tits.2016.2514519
    [6] Z. He, G. Qi, L. Lu, Y. Chen, Network-wide identification of turn-level intersection congestion using only low-frequency probe vehicle data, Transp. Res. Part C Emerging Technol., 108 (2019), 320–339. https://doi.org/10.1016/j.trc.2019.10.001 doi: 10.1016/j.trc.2019.10.001
    [7] J. Aslam, S. Lim, X. Pan, D. Rus, City-scale traffic estimation from a roving sensor network, in Proceedings of the 10th ACM Conference on Embedded Network Sensor Systems, 2012 (2012), 141–154. https://doi.org/10.1145/2426656.2426671
    [8] Y. Song, X. Wang, G. Wright, D. Thatcher, P. Wu, P. Felix, Traffic volume prediction with segment-based regression kriging and its implementation in assessing the impact of heavy vehicles, IEEE Trans. Intell. Transp. Syst., 20 (2019), 232–243. https://doi.org/10.1109/tits.2018.2805817 doi: 10.1109/tits.2018.2805817
    [9] Z. Liu, Z. Wang, Q. Cheng, R. Yin, M. Wang, Estimation of urban network capacity with second-best constraints for multimodal transport systems, Transp. Res. Part B Methodol., 152 (2021), 276–294. https://doi.org/10.1016/j.trb.2021.08.011 doi: 10.1016/j.trb.2021.08.011
    [10] Z. Cheng, J. Lu, H. Zhou, Y. Zhang, L. Zhang, Short-Term traffic flow prediction: an integrated method of econometrics and hybrid deep learning, IEEE Trans. Intell. Transp. Syst., 23 (2022), 5231–5244. https://doi.org/10.1109/TITS.2021.3052796 doi: 10.1109/TITS.2021.3052796
    [11] L. Li, J. Zhang, Y. Wang, B. Ran, Missing value imputation for traffic-related time series data based on a multi-view learning method, IEEE Trans. Intell. Transp. Syst., 20 (2019), 2933–2943. https://doi.org/10.1109/tits.2018.2869768 doi: 10.1109/tits.2018.2869768
    [12] C. Meng, X. Yi, L. Su, J. Gao, Y. Zheng, City-wide traffic volume inference with loop detector data and taxi trajectories, in Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, 2 (2017), 1–10. https://doi.org/10.1145/3139958.3139984
    [13] Z. Yi, X. C. Liu, N. Markovic, J. Phillips, Inferencing hourly traffic volume using data-driven machine learning and graph theory, Comput. Environ. Urban Syst., 85 (2021), 101548. https://doi.org/10.1016/j.compenvurbsys.2020.101548 doi: 10.1016/j.compenvurbsys.2020.101548
    [14] Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, J. Zhang, Urban traffic prediction from spatio-temporal data using deep meta learning, in Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2019 (2019), 1720–1730. https://doi.org/10.1145/3292500.3330884
    [15] J. Li, N. Xie, K. Zhang, F. Guo, S. Hu, X. Chen, Network-scale traffic prediction via knowledge transfer and regional MFD analysis, Transp. Res. Part C Emerging Technol., 141 (2022), 12–34. https://doi.org/10.1016/j.trc.2022.103719 doi: 10.1016/j.trc.2022.103719
    [16] S. Luan, R. Ke, Z. Huang, X. Ma, Traffic congestion propagation inference using dynamic Bayesian graph convolution network, Transp. Res. Part C Emerging Technol., 135 (2022), 103526. https://doi.org/10.1016/j.trc.2021.103526 doi: 10.1016/j.trc.2021.103526
    [17] Z. Liu, Y. Liu, Q. Meng, Q. Cheng, A tailored machine learning approach for urban transport network flow estimation, Transp. Res. Part C Emerging Technol., 108 (2019), 130–150. https://doi.org/10.1016/j.trc.2019.09.006 doi: 10.1016/j.trc.2019.09.006
    [18] Q. Cheng, Z. Liu, W. Y. Szeto, A cell-based dynamic congestion pricing scheme considering travel distance and time delay, Transportmetrica B Transport Dyn., 7 (2019), 1286–1304 https://doi.org/10.1080/21680566.2019.1602487 doi: 10.1080/21680566.2019.1602487
    [19] Q. Cheng, S. Wang, Z. Liu, Y. Yuan, Surrogate-based simulation optimization approach for day-to-day dynamics model calibration with real data, Transp. Res. Part C Emerging Technol., 105 (2019), 422–438. https://doi.org/10.1016/j.trc.2019.06.009 doi: 10.1016/j.trc.2019.06.009
    [20] D. Huang, J. Xing, Z. Liu, Q. An, A multi-stage stochastic optimization approach to the stop-skipping and bus lane reservation schemes, Transportmetrica A Transport Sci., 17 (2021), 1272–1304. https://doi.org/10.1080/23249935.2020.1858206 doi: 10.1080/23249935.2020.1858206
    [21] D. Huang, Y. Wang, S. Jia, Z. Liu, S. Wang, A Lagrangian relaxation approach for the electric bus charging scheduling optimisation problem, Transportmetrica A Transport Sci., 202232 (2022). https://doi.org/10.1080/23249935.2021.2023690 doi: 10.1080/23249935.2021.2023690
    [22] Z. Liu, X. Chen, Q. Meng, I. Kim, Remote park-and-ride network equilibrium model and its applications, Transp. Res. Part B Methodol., 117 (2018), 37–62. https://doi.org/https://doi.org/10.1016/j.trb.2018.08.004 doi: 10.1016/j.trb.2018.08.004
    [23] J. Xing, W. Wu, Q. Cheng, R. Liu, Traffic state estimation of urban road networks by multi-source data fusion: review and new insights, Physica A Stat. Mech. Appl., 595 (2022), 127079. https://doi.org/https://doi.org/10.1016/j.physa.2022.127079 doi: 10.1016/j.physa.2022.127079
    [24] Z. Zhang, X. Lin, M. Li, Y. Wang, A customized deep learning approach to integrate network-scale online traffic data imputation and prediction, Transp. Res. Part C Emerging Technol., 132 (2021), 103372. https://doi.org/10.1016/j.trc.2021.103372 doi: 10.1016/j.trc.2021.103372
    [25] L. Li, R. Jiang, Z. He, X. Chen, X. Zhou, Trajectory data-based traffic flow studies: a revisit, Transp. Res. Part C Emerging Technol., 114 (2020), 225–240. https://doi.org/10.1016/j.trc.2020.02.016 doi: 10.1016/j.trc.2020.02.016
    [26] Z. Liu, P. Zhou, Z. Li, M. Li, Think like a graph: real-time traffic estimation at city-scale, IEEE Trans. Mobile Comput., 18 (2019), 2446–2459. https://doi.org/10.1109/tmc.2018.2873642 doi: 10.1109/tmc.2018.2873642
    [27] Q. Cao, G. Ren, D. Li, J. Ma, H. Li, Semi-supervised route choice modeling with sparse automatic vehicle identification data, Transp. Res. Part C Emerging Technol., 121 (2020). https://doi.org/10.1016/j.trc.2020.102857 doi: 10.1016/j.trc.2020.102857
    [28] Y. Yu, X. Tang, H. Yao, X. Yi, Z. Li, Citywide traffic volume inference with surveillance camera records, IEEE Trans. Big Data, 7 (2021), 900–912. https://doi.org/10.1109/tbdata.2019.2935057 doi: 10.1109/tbdata.2019.2935057
    [29] X. Zhan, Z. Yu, X. Yi, S. V. Ukkusuri, Citywide traffic volume estimation using trajectory data, IEEE Trans. Knowl. Data Eng., 29 (2017), 272–285. https://doi.org/10.1109/TKDE.2016.2621104 doi: 10.1109/TKDE.2016.2621104
    [30] P. Wang, Z. Huang, J. Lai, Z. Zheng, Y. Liu, T. Lin, Traffic speed estimation based on multi-source GPS data and mixture model, IEEE Trans. Intell. Transp. Syst., 23 (2021), 10708–10720. https://doi.org/10.1109/tits.2021.3095408 doi: 10.1109/tits.2021.3095408
    [31] M. Seppecher, L. Leclercq, A. Furno, D. Lejri, T. V. da Rocha, Estimation of urban zonal speed dynamics from user-activity-dependent positioning data and regional paths, Transp. Res. Part C Emerging Technol., 129 (2021), 103183. https://doi.org/10.1016/j.trc.2021.103183 doi: 10.1016/j.trc.2021.103183
    [32] E. Saffari, M. Yildirimoglu, M. Hickman, Data fusion for estimating Macroscopic Fundamental Diagram in large-scale urban networks, Transp. Res. Part C Emerging Technol., 137 (2022), 103555. https://doi.org/10.1016/j.trc.2022.103555 doi: 10.1016/j.trc.2022.103555
    [33] M. Rodriguez-Vega, C. Canudas-de-Wit, H. Fourati, Dynamic density and flow reconstruction in large-scale urban networks using heterogeneous data sources, Transp. Res. Part C Emerging Technol., 137 (2022), 103569. https://doi.org/10.1016/j.trc.2022.103569 doi: 10.1016/j.trc.2022.103569
    [34] M. Yun, W. Qin, Minimum sampling size of floating cars for urban link travel time distribution estimation, Transp. Res. Rec. J. Transp. Res. Board, 2673 (2019), 24–43. https://doi.org/10.1177/0361198119834297 doi: 10.1177/0361198119834297
    [35] Z. Huang, X. Ling, P. Wang, F. Zhang, Y. Mao, T. Lin, et al., Modeling real-time human mobility based on mobile phone and transportation data fusion, Transp. Res. Part C Emerging Technol., 96 (2018), 251–269. https://doi.org/10.1016/j.trc.2018.09.016 doi: 10.1016/j.trc.2018.09.016
    [36] C. Wu, I. Kim, H. Chung, The effects of built environment spatial variation on bike-sharing usage: a case study of Suzhou, China, Cities, 110 (2021), 103063. https://doi.org/10.1016/j.cities.2020.103063 doi: 10.1016/j.cities.2020.103063
    [37] C. Wu, H. Chung, Z. Liu, I. Kim, Examining the effects of the built environment on topological properties of the bike-sharing network in Suzhou, China, Int. J. Sustainable Transp., 15 (2021), 338–350. https://doi.org/10.1080/15568318.2020.1780652 doi: 10.1080/15568318.2020.1780652
    [38] S. J. Pan, I. W. Tsang, J. T. Kwok, Q. Yang, Domain adaptation via transfer component analysis, IEEE Trans. Neural Networks, 22 (2011), 199–210. https://doi.org/10.1109/TNN.2010.2091281 doi: 10.1109/TNN.2010.2091281
    [39] S. J. Pan, J. T. Kwok, Q. Yang, Transfer learning via dimensionality reduction, in Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, 2 (2008), 677–682. https://dl.acm.org/doi/abs/10.5555/1620163.1620177
    [40] J. Wang, Y. Chen, W. Feng, H. Yu, Q. Yang, Transfer learning with dynamic distribution adaptation, ACM Trans. Intell. Syst. Technol., 11 (2020), 1–25. https://doi.org/10.1145/3360309 doi: 10.1145/3360309
    [41] Z. Cheng, L. Zhang, Y. Zhang, S. Wang, W. Huang, A systematic approach for evaluating spatiotemporal characteristics of traffic violations and crashes at road intersections: an empirical study, Transportmetrica A Transp. Sci., 2022 (2022), 1–23. https://doi.org/10.1080/23249935.2022.2060368 doi: 10.1080/23249935.2022.2060368
    [42] Y. Gu, A. Chen, S. Kitthamkesorn, Accessibility-based vulnerability analysis of multi-modal transportation networks with weibit choice models, Multimodal Transp., 1 (2022), 100029. https://doi.org/10.1016/j.multra.2022.100029 doi: 10.1016/j.multra.2022.100029
    [43] Y. Zheng, W. Li, F. Qiu, A slack arrival strategy to promote flex-route transit services, Transp. Res. Part C Emerging Technol., 92 (2018), 442–455. https://doi.org/10.1016/j.trc.2018.05.015 doi: 10.1016/j.trc.2018.05.015
    [44] S. Wang, D. Yu, M. P. Kwan, L. Zheng, H. Miao, Y. Li, The impacts of road network density on motor vehicle travel: an empirical study of Chinese cities based on network theory, Transp. Res. Part A Policy Pract., 132 (2020), 144–156. https://doi.org/10.1016/j.tra.2019.11.012 doi: 10.1016/j.tra.2019.11.012
    [45] Z. Zhang, M. Li, X. Lin, Y. Wang, Network-wide traffic flow estimation with insufficient volume detection and crowdsourcing data, Transp. Res. Part C Emerging Technol., 121 (2020), 102870. https://doi.org/10.1016/j.trc.2020.102870 doi: 10.1016/j.trc.2020.102870
    [46] D. Huang, S. Wang, A two-stage stochastic programming model of coordinated electric bus charging scheduling for a hybrid charging scheme, Multimodal Transp., 1 (2022), 100006. https://doi.org/10.1016/j.multra.2022.100006 doi: 10.1016/j.multra.2022.100006
    [47] D. Xiao, I. Kim, N. Zheng, Recent advances in understanding the impact of built environment on traffic performance, Multimodal Transp., 1 (2022), 100034. https://doi.org/10.1016/j.multra.2022.100034 doi: 10.1016/j.multra.2022.100034
    [48] J. Xing, Z. Liu, C. Wu, S. Chen, Traffic volume estimation in multimodal urban networks using cellphone location data, IEEE Intell. Transp. Syst. Mag., 11 (2019), 93–104. https://doi.org/10.1109/mits.2019.2919593 doi: 10.1109/mits.2019.2919593
    [49] A. H. F. Chow, Z. C. Su, E. M. Liang, R. X. Zhong, Adaptive signal control for bus service reliability with connected vehicle technology via reinforcement learning, Transp. Res. Part C Emerging Technol., 129 (2021), 103264. https://doi.org/10.1016/j.trc.2021.103264 doi: 10.1016/j.trc.2021.103264
    [50] S. Wang, D. Yu, X. Ma, X. Xing, Analyzing urban traffic demand distribution and the correlation between traffic flow and the built environment based on detector data and POIs, Eur. Transport Res. Rev., 10 (2018). https://doi.org/10.1186/s12544-018-0325-5 doi: 10.1186/s12544-018-0325-5
    [51] R. Zhong, J. Luo, H. Cai, A. Sumalee, F. Yuan, A. Chow, Forecasting journey time distribution with consideration to abnormal traffic conditions, Transp. Res. Part C Emerging Technol., 85 (2017), 292–311. https://doi.org/https://doi.org/10.1016/j.trc.2017.08.021 doi: 10.1016/j.trc.2017.08.021
    [52] W. Qin, X. Ji, F. Liang, Estimation of urban arterial travel time distribution considering link correlations, Transportmetrica A Transport Sci., 16 (2020), 1429–1458. https://doi.org/10.1080/23249935.2020.1751341 doi: 10.1080/23249935.2020.1751341
    [53] S. Kullback, R. A. Leibler, On information and sufficiency, Ann. Math. Statist., 22 (1951), 79–86. https://doi.org/10.1214/aoms/1177729694 doi: 10.1214/aoms/1177729694
    [54] Y. Jiang, O. A. Nielsen, Urban multimodal traffic assignment, Multimodal Transp., 1 (2022), 100027. https://doi.org/10.1016/j.multra.2022.100027 doi: 10.1016/j.multra.2022.100027
    [55] R. Yan, S. Wang, Integrating prediction with optimization: models and applications in transportation management, Multimodal Transp., 1 (2022), 100018. https://doi.org/10.1016/j.multra.2022.100018 doi: 10.1016/j.multra.2022.100018
    [56] Y. Zheng, W. Li, F. Qiu, H. Wei, The benefits of introducing meeting points into flex-route transit services, Transp Res. Part C Emerging Technol., 106 (2019), 98–112. https://doi.org/10.1016/j.trc.2019.07.012 doi: 10.1016/j.trc.2019.07.012
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1727) PDF downloads(120) Cited by(3)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog