Citation: M. Hamid, T. Zubair, M. Usman, R. U. Haq. Numerical investigation of fractional-order unsteady natural convective radiating flow of nanofluid in a vertical channel[J]. AIMS Mathematics, 2019, 4(5): 1416-1429. doi: 10.3934/math.2019.5.1416
[1] | T. Fujii, M. Takeuchi, M. Fujii, et al. Experiments on natural-convection heat transfer from the outer surface of a vertical cylinder to liquids, Int. J Heat Mass Tran., 13 (1970), 753-787. doi: 10.1016/0017-9310(70)90125-0 |
[2] | T. Fujii, H. Imura, Natural-convection heat transfers from a plate with arbitrary inclination, Int. J Heat Mass Tran., 15 (1972), 755-767. doi: 10.1016/0017-9310(72)90118-4 |
[3] | M. A. Ezzat, Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer, Physica B, 405 (2010), 4188-4194. doi: 10.1016/j.physb.2010.07.009 |
[4] | M. Arshad, M. H. Inayat, I. R. Chughtai, Experimental study of natural convection heat transfer from an enclosed assembly of thin vertical cylinders, Appl. Therm. Eng., 31 (2011), 20-27. doi: 10.1016/j.applthermaleng.2010.07.031 |
[5] | N. T. M. Eldabe, S. N. Sallam, M. Y. Abou-zeid, Numerical study of viscous dissipation effect on free convection heat and mass transfer of MHD non-Newtonian fluid flow through a porous medium, Journal of the Egyptian mathematical society, 20 (2012), 139-151. doi: 10.1016/j.joems.2012.08.013 |
[6] | Q. Rubbab, D. Vieru, C. Fetecau, et al. Natural convection flow near a vertical plate that applies a shear stress to a viscous fluid, PloS one, 8 (2013), e78352. |
[7] | R. Ellahi, The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions, Appl. Math. Model., 37 (2013): 1451-1467. |
[8] | M. M. Molla, A. Biswas, A. Al-Mamun, et al. Natural convection flow along an isothermal vertical flat plate with temperature dependent viscosity and heat generation, Journal of computational engineering, 2014 (2014), 1-13. |
[9] | M. A. Ezzat, A. A. El-Bary, A. S. Hatem, State space approach to unsteady magnetohydrodynamics natural convection heat and mass transfer through a porous medium saturated with a viscoelastic fluid, J. Appl. Mech. Tech. Phy., 55 (2014), 660-671. doi: 10.1134/S0021894414040129 |
[10] | S. R. Sheri, T. Thumma, Numerical study of heat transfer enhancement in MHD free convection flow over vertical plate utilizing nanofluids, Ain Shams Eng. J., 9 (2016), 1169-1180. |
[11] | S. Z. Alamri, A. A. Khan, M. Azeez, et al. Effects of mass transfer on MHD second grade fluid towards stretching cylinder: a novel perspective of Cattaneo-Christov heat flux model, Phys. Lett. A, 383 (2019), 276-281. doi: 10.1016/j.physleta.2018.10.035 |
[12] | F. Ali, M. Saqib, I. Khan, et al. Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model, Eur. Phys. J. Plus, 131 (2016), 377. |
[13] | M. Hamid, T. Zubair, M. Usman, et al. Natural convection effects on heat and mass transfer of slip flow of time-dependent Prandtl fluid, Journal of Computational Design and Engineering, 2019. |
[14] | M. A. Yousif, H. F. Ismael, T. Abbas, et al. Numerical study of momentum and heat transfer of MHD Carreau nanofluid over an exponentially stretched plate with internal heat source/sink and radiation, Heat Transf. Res., 50 (2019), 649-658. |
[15] | M. Hamid, M. Usman, R. U. Haq, Wavelets investigation of Soret and Dufour effects on stagnation point fluid flow in two-dimension with variable thermal conductivity and diffusivity, Phys. Scripta, 2019. |
[16] | S. U. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress & Exposition, 1995. |
[17] | S. U. S Choi, Z. G. Zhang, W. Yu, et al. Anomalous thermal conductivity enhancement in nanotube suspensions, Appl. Phys. Lett., 79 (2001), 2252-2254. doi: 10.1063/1.1408272 |
[18] | S. Dinarvand, R. Hosseini, M. Abulhasansari, et al. Buongiorno's model for double-diffusive mixed convective stagnation-point flow of a nanofluid considering diffusiophoresis effect of binary base fluid, Adv. Powder Technol., 26 (2015), 1423-1434. doi: 10.1016/j.apt.2015.07.017 |
[19] | M. Sheikholeslami, R. Ellahi, Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid, Int. J. Heat Mass Tran., 89 (2015), 799-808. doi: 10.1016/j.ijheatmasstransfer.2015.05.110 |
[20] | M. Sheikholeslami, D. D. Ganji, Nanofluid convective heat transfer using semi analytical and numerical approaches: a review, J. Taiwan Inst. Chem. E., 65 (2016), 43-77. doi: 10.1016/j.jtice.2016.05.014 |
[21] | M. Usman, M. Hamid, U. Khan, et al. Differential transform method for unsteady nanofluid flow and heat transfer, Alex. Eng. J., 57 (2018), 1867-1875. doi: 10.1016/j.aej.2017.03.052 |
[22] | M. Hassan, R. Ellahi, M. M. Bhatti, et al. A comparative study on magnetic and non-magnetic particles in nanofluid propagating over a wedge. Can. J. Phys., 97 (2019), 277-285. |
[23] | S. T. Mohyud-Din, M. Usman, K. Afaq, et al. Examination of carbon-water nanofluid flow with thermal radiation under the effect of Marangoni convection, Eng. Computations, 34 (2017), 2330-2343. doi: 10.1108/EC-04-2017-0135 |
[24] | M. Hamid, M. Usman, Z. H. Khan, et al. Numerical study of unsteady MHD flow of Williamson nanofluid in a permeable channel with heat source/sink and thermal radiation, Eur. Phys. J. Plus, 133 (2018), 527. |
[25] | N. A. Sheikh, F. Ali, M. Saqib, et al. Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys., 7 (2017), 789-800. doi: 10.1016/j.rinp.2017.01.025 |
[26] | M. A. Ezzat, A. A. El-Bary, MHD free convection flow with fractional heat conduction law, Magnetohydrodynamics, 48 (2012). |
[27] | F. Ali, N. A. Sheikh, I. Khan, et al. Magnetic field effect on blood flow of Casson fluid in axisymmetric cylindrical tube: A fractional model, J. Magn. Magn. Mater., 423 (2017), 327-336. doi: 10.1016/j.jmmm.2016.09.125 |
[28] | M. A. Imran, I. Khan, M. Ahmad, et al. Heat and mass transport of differential type fluid with non-integer order time-fractional Caputo derivatives, J. Mol. Liq., 229 (2017), 67-75. doi: 10.1016/j.molliq.2016.11.095 |
[29] | M. Hamid, M. Usman, R. U. Haq, et al. Wavelets Analysis of Stagnation Point Flow of non-Newtonian Nanofluid, Appl. Math. Mech.-Engl., 40 (2019), 1211-1226. doi: 10.1007/s10483-019-2508-6 |
[30] | I. Podlubny, Fractional differential equations, Academic press, San Diego, 1999. |
[31] | V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics. J. Fluids Eng.-T. Asme, 124 (2002), 803-806. |
[32] | J. A. T. Machado, M. F. Silva, R. S. Barbosa, et al. Some applications of fractional calculus in engineering, Math. Probl. Eng., 2010 (2010), 1-34. |
[33] | T. Pfitzenreiter, A physical basis for fractional derivatives in constitutive equations, ZAMM‐Zeitschrift für angewandte mathematik und mechanic, 84 (2004), 284-287. doi: 10.1002/zamm.200310112 |
[34] | Y. Kawada, H. Nagahama, H. Hara, Irreversible thermodynamic and viscoelastic model for power-law relaxation and attenuation of rocks, Tectonophysics, 427 (2006), 255-263. doi: 10.1016/j.tecto.2006.03.049 |
[35] | M. Usman, M. Hamid, T. Zubair, et al. Operational-matrix-based algorithm for differential equations of fractional order with Dirichlet boundary conditions, Eur. Phys. J. Plus, 134 (2019), 279. |
[36] | M. Hamid, M. Usman, T. Zubair, et al. An efficient analysis for N-soliton, Lump and lump-kink solutions of time-fractional (2+1)-Kadomtsev-Petviashvili equation, Physica A, 528 (2019), 121320. |
[37] | N. A. Shah, D. Vieru, C. Fetecau, Effects of the fractional order and magnetic field on the blood flow in cylindrical domains, J. Magn. Magn. Mater., 409 (2016), 10-19. doi: 10.1016/j.jmmm.2016.02.013 |
[38] | M. A. Ezzat, I. A. Abbas, A. A. El-Bary, et al. Numerical study of the Stokes' first problem for thermoelectric micropolar fluid with fractional derivative heat transfer, Magnetohydrodynamics, 50 (2014). |
[39] | I. Khan, N. A. Shah, Y. Mahsud, et al. Heat transfer analysis in a Maxwell fluid over an oscillating vertical plate using fractional Caputo-Fabrizio derivatives, Eur. Phys. J. Plus, 132 (2017), 194. |
[40] | B. Ahmad, S. I. Shah, S. U. Haq, et al. Analysis of unsteady natural convective radiating gas flow in a vertical channel by employing the Caputo time-fractional derivative, Eur. Phys. J. Plus, 132 (2017), 380. |
[41] | H. Sun, W. Chen, C. Li, et al. Finite difference schemes for variable-order time fractional diffusion equation, Int. J. Bifurcat. Chaos, 22 (2012), 1250085. |
[42] | C. Çelik, M. Duman, Crank-Nicolson method for the fractional diffusion equation with the Riesz fractional derivative, J. Comput. Phys., 231 (2012), 1743-1750. doi: 10.1016/j.jcp.2011.11.008 |
[43] | A. C. Cogley, W. G. Vincenti and S. E. Gilles, Differential Approximation for Radiative Transfer in a Non-Grey Gas near Equilibrium, AIAA J., 6 (1968), 551-553. doi: 10.2514/3.4538 |