The semi-linear problem of a fractional diffusion equation with the Caputo-like counterpart of a hyper-Bessel differential is considered. The results on existence, uniqueness and regularity estimates (local well-posedness) of the solutions are established in the case of linear source and the source functions that satisfy the globally Lipschitz conditions. Moreover, we prove that the problem exists a unique positive solution. In addition, the unique continuation of solutions and a finite-time blow-up are proposed with the reaction terms are logarithmic functions.
Citation: Vo Van Au, Jagdev Singh, Anh Tuan Nguyen. Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients[J]. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052
[1] | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052 |
[2] | Yaning Li, Mengjun Wang . Well-posedness and blow-up results for a time-space fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162 |
[3] | Xu Liu, Jun Zhou . Initial-boundary value problem for a fourth-order plate equation with Hardy-Hénon potential and polynomial nonlinearity. Electronic Research Archive, 2020, 28(2): 599-625. doi: 10.3934/era.2020032 |
[4] | Yong Zhou, Jia Wei He, Ahmed Alsaedi, Bashir Ahmad . The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $. Electronic Research Archive, 2022, 30(8): 2981-3003. doi: 10.3934/era.2022151 |
[5] | Yuchen Zhu . Blow-up of solutions for a time fractional biharmonic equation with exponentional nonlinear memory. Electronic Research Archive, 2024, 32(11): 5988-6007. doi: 10.3934/era.2024278 |
[6] | Begüm Çalışkan Desova, Mustafa Polat . Existence, uniqueness, and blow-up analysis of a quasi-linear bi-hyperbolic equation with dynamic boundary conditions. Electronic Research Archive, 2024, 32(5): 3363-3376. doi: 10.3934/era.2024155 |
[7] | Xiao Su, Hongwei Zhang . On the global existence and blow-up for the double dispersion equation with exponential term. Electronic Research Archive, 2023, 31(1): 467-491. doi: 10.3934/era.2023023 |
[8] | Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129 |
[9] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[10] | Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057 |
The semi-linear problem of a fractional diffusion equation with the Caputo-like counterpart of a hyper-Bessel differential is considered. The results on existence, uniqueness and regularity estimates (local well-posedness) of the solutions are established in the case of linear source and the source functions that satisfy the globally Lipschitz conditions. Moreover, we prove that the problem exists a unique positive solution. In addition, the unique continuation of solutions and a finite-time blow-up are proposed with the reaction terms are logarithmic functions.
In this paper, we consider a semi-linear time-fractional diffusion equation with time-varying coefficients:
{C(tσ∂∂t)αu+Lu=f(u),x∈Ω,t>0,u(x,t)=0,x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω,(P) |
where
Fractional calculus is a subject of a long history and has gained great interest in different fields of applied science: mathematics [1-3,9,21,26,31], physics [18,28,30], including stochastic processes [6,25,29], mechanics [13], chemistry and biology [16] and some references therein. It is well known that the original definition of the H-BO differential of higher (integer) order
B=tα0ddttα1ddt⋯tαm−1ddttαm, |
where
For the general case, Garra et al. [12] consider fractional differential equation with time-varying coefficient of the form
(tσddt)αu(t)=−λu(t),α∈(0,1),σ∈R,λ>0,t≥0. | (1) |
The authors provided the solutions of the relaxation-type equation (1) obtained by the operator
(tσddt)αg(t)={(1−σ)αt−(1−σ)αI0,−α1−σg(t),ifσ<1,(σ−1)αI−1,−α1−σt(1−σ)αg(t),ifσ>1,"consideredseparately",ifσ=1. | (2) |
Note that as
C(tσ∂∂t)αg(t):=(1−σ)αt−α(1−σ)I0,−α1−σ(g(t)−g(0))=(tσddt)αg(t)−g(0)(1−σ)−αt−α(1−σ)Γ(1−σ). | (3) |
Recently, Al-Musalhi et al. [5] used the C-LC of H-BO (3) to study both a direct problem and an inverse source problem:
C(tσ∂∂t)αu(x,t)−uxx(x,t)=f(x,t),x∈(0,π),t∈(0,T). |
Basing on the appropriate eigenfunction expansions the authors have constructed the solutions and the properties for existence and uniqueness are also presented. In [34], Tuan et al consider a problem of recovering the initial data for a time-fractional diffusion equation with a regularized hyper-Bessel differential. The solution to this problem exists but isn't stable, so, the authors use the fractional Tikhonov method to construct a regularized solution. Also, they also provide the error estimates between the regularized solution and the exact solution. Some recent studies on the behavior of solutions can be listed as [22-24,32,35,36,39,40] and the references therein. All works mentioned above give us a great motivation to study the well-posed behavior of mild solutions to Problem
In this paper, for Problem
● the linear source functions;
● the nonlinear source functions.
For the linear case,
The rest of the paper is organized as follows. Section 2, we first present some relevant notations, and secondly, the definition of the Mittag-Leffler functions is given and its useful properties for use throughout the paper. In Section 3, we consider the linear problem, some regularity estimates of weak solutions are obtained. In Section 4, we consider the semi-linear Problem
Let us recall that the spectral problem
{Lep(x)=λpep(x),x∈Ω,ep(x)=0,x∈∂Ω, |
admits a family of eigenvalues
0<λ1≤λ2≤λ3≤...≤λp≤...↗∞. |
The notation
‖v‖Lq(0,T;B)=(∫T0‖v(t)‖qBdt)1q<∞,for1≤q<∞, |
‖v‖Lq(0,T;B)=esssupt∈(0,T)‖v(t)‖B<∞,forq=∞. |
The norm of the function space
‖v‖Ck([0,T];B)=k∑i=0supt∈[0,T]‖v(i)(t)‖B<∞. |
For any
D(Lζ)={v=∞∑p=1(v,ep)ep(x)∈L2(Ω):∞∑p=1(v,ep)2λ2ζp<∞}, |
is equipped with norm
‖v‖D(Lζ)=(∞∑p=1(v,ep)2λ2ζp)12. |
Obviously, we have
‖v‖D(L−ζ)=(∞∑p=1(v,ep)2−ζ,ζλ−2ζp)12, |
for
(v1,v2)−ζ,ζ=(v1,v2),forv1∈L2(Ω),v2∈D(Lζ). |
Remark 1. From the definitions of the spaces
‖v‖D(L−ζ)≤Cζ‖v‖L2,and‖v‖L2≤Cζ‖v‖D(Lζ),forCζ>0. |
Given a Banach space
Xμ((0,T];B)={v∈C((0,T];B):supt∈(0,T]tμ‖v(t)‖B<∞}, |
with the norm
The Mittag-Leffler function is defined by (see [14,15])
Eα,β(y)=∞∑m=0ymΓ(αm+β),y∈C, |
where
Next, we give some properties of the Mittag-Leffler function. Let
|Eα,β(−y)|≤C1+|y|,μ≤arg(y)≤π, |
where
Lemma 2.1. For
a)
b)
Lemma 2.2. Let
dndtn[Eα,1(−λtα)]=−λtα−nEα,α−n+1(−λtα); | (4) |
ddt[tα−1Eα,α(−λtα)]=tα−2Eα,α−1(−λtα). | (5) |
Lemma 2.3. The following equality holds (for proof, see [44])
Eα,1(−y)=∫∞0Wα(z)e−yzdz,fory∈C, |
where we recall the definition of the Wright type function (see [15], Formula (28))
Wα(z):=∞∑n=0(z)nΓ(−αn+1−α),0<α<1. |
Moreover,
Wα(z)≥0,forz>0;and∫∞0Wα(z)dz=1. |
Lemma 2.4 (Weakly singular Grönwall's inequalities). Let
u(t)≤At−σ1+B∫t0(t−τ)−σ2u(τ)dτ,forallt∈[0,T]. |
Then, there exists a positive constant
u(t)≤C(B,σ2,T)1−σ1At−σ1,fora.e.t∈(0,T]. |
Proof. See [38], Theorem 1.2, page 2.
The main result of the paper is based on two main goals, that is, consider problem
For the source function to be linear, we consider the properties of existence, uniqueness and new regularity estimates. Indeed, we consider the linear problem
{C(tσ∂∂t)αu(x,t)+(Lu)(x,t)=f(x,t),x∈Ω,t>0,u(x,t)=0,x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω. | (6) |
The function
u(t)=Eα,1(−Ltαssα)u0+1sα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)f(τ)d(τs), | (7) |
where
Theorem 3.1. For
f∈C([0,T];D(L−ζ))∩L2m(0,T;L2(Ω)∩D(Lζ)∩D(L−ζ)), |
‖u(t)‖D(Lζ)+‖∂tu(t)‖D(L−ζ)≤C(‖u0‖D(Lζ)+tαs−1‖u0‖D(L1−ζ))+C(ts(α−1)+s2n+12‖f‖L2m(0,T;D(Lζ))+tαs−2s+1‖f‖L∞(0,T;D(L1−ζ))). |
We also have
‖C(tσ∂∂t)αu(t)‖D(L−ζ)≤C(‖u0‖D(L1−ζ)+ts(α−1)+s2n+12‖f‖L2m(0,T;D(L1−ζ)))+‖f‖C([0,T];D(L−ζ)). |
In addition, we have
limt→0+‖u(t)−u0‖D(Lν)=0,forsome0≤ν<ζ=1α. | (8) |
Proof. The proof is divided into four steps.
Step 1.
‖u(t)‖D(Lζ)≤‖I1(t)u0‖D(Lζ)+‖I2(t)f‖D(Lζ), | (9) |
where, we set
I1(t)u0:=Eα,1(−Ltαssα)u0, | (10) |
I2(t)f:=1sα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)f(τ)d(τs). | (11) |
Using Lemma 2.1b), we imply that there exists the constant
‖I1(t)u0‖2D(Lζ)=‖Eα,1(−Ltαssα)u0‖2D(Lζ)=∞∑p=1(u0,ep)2E2α,1(−tαssαλp)λ2ζp≤∞∑p=1(u0,ep)2(C+1+tαssαλp)2λ2ζp≤C‖u0‖2D(Lζ). | (12) |
Using Lemma 2.1b) and Höder inequality, we infer that there exists the constant
‖I2(t)f‖2D(Lζ)=∞∑p=1[1sα∫t0(f(τ),ep)(ts−τs)α−1Eα,α(−(ts−τs)αsαλp)d(τs)]2λ2ζp≤ts2α∞∑p=1∫t0(f(τ),ep)2(ts−τs)2α−2E2α,α(−(ts−τs)αsαλp)d(τs)λ2ζp≤(ˉC)2ts2α∫t0(ts−τs)2α−2∞∑p=1(f(τ),ep)2λ2ζpd(τs)≤(ˉC)2ts2α∫t0(ts−τs)2α−2‖f(τ)‖2D(Lζ)d(τs)≤(ˉC)2ts2α(∫t0(ts−τs)2(α−1)nd(τs))1n(∫T0‖f(η)‖2mD(Lζ)dη)1m,ts≤T≤Ct2s(α−1)+sn+1‖f‖2L2m(0,T;D(Lζ)), | (13) |
where
‖u(t)‖D(Lζ)≤C(‖u0‖D(Lζ)+ts(α−1)+s2n+12‖f‖L2m(0,T;D(Lζ))),∀t∈[0,T]. |
Step 2.
∂tu(t)=∞∑p=1[(u0,ep)λptαs−1Eα,α(−tαssαλp)]ep+∞∑p=1[1sα∫t0(f(τ),ep)λp(ts−τs)α−2Eα,α−1(−(ts−τs)αsαλp)d(τs)]ep:=I3(t)u0+I4(t)f,(respectively). | (14) |
We proceed as in Step 1, from Lemma 2.1b) and Parseval's relation, one obtains
‖I3(t)u0‖2D(L−ζ)=∞∑p=1[(u0,ep)λ1−ζptαs−1Eα,α(−tαssαλp)]2≤Ct2αs−2‖u0‖2D(L1−ζ),∀t∈(0,T], |
and we have
‖I4(t)f‖2D(L−ζ)=∞∑p=11λ−2ζp|1sα∫t0(f(⋅,τ),ep)λp(ts−τs)α−2Eα,α−1(−(ts−τs)αsαλp)d(τs)|2≤C∞∑p=1sup0≤τ≤T|(f(⋅,τ),ep)λ1−ζp|2|∫t0(τs)α−2Eα,α−1(−(τs)αsαλp)d(τs)|2≤Ct2αs−4s+2‖f‖2L∞(0,T;D(L1−ζ)),forα>2s−1s∀t∈[0,T]. | (15) |
It follows readily from these estimates that there exists the constant
‖∂tu(⋅,t)‖D(L−ζ)≤C(tαs−1‖u0‖D(L1−ζ)+tαs−2s+1‖f‖L∞(0,T;D(L1−ζ))), |
this implies
Step 3.
‖C(tσ∂∂t)αu(t)‖D(L−ζ)≤‖Lu(⋅,t)‖D(L−ζ)+‖f(⋅,t)‖D(L−ζ). |
From (7), we get the following estimates
‖Lu(⋅,t)‖2D(L−ζ)=2∞∑p=1[(u0,ep)Eα,1(−tαssαλp)]2λ2−2ζp+2∞∑p=1[1sα∫t0(f(⋅,τ),ep)(ts−τs)α−1Eα,α(−(ts−τs)αsαλp)d(τs)]2λ2−2ζp≤C‖u0‖2D(L1−ζ)+Ct2s(α−1)+sn+1‖f‖2L2m(0,T;D(L1−ζ)). |
By an argument analogous to the previous one. We get for every
‖C(tσ∂∂t)αu(t)‖D(L−ζ)≤C‖u0‖D(L1−ζ)+‖f‖C([0,T];D(L−ζ))+Cts(α−1)+s2n+12‖f‖L2m(0,T;D(L1−ζ)). |
From
Step 4.
‖u(t)−u0‖D(Lν)≤‖(Eα,1(−Ltαssα)−1)u0‖D(Lν)+‖I2(t)f‖D(Lν). | (16) |
For
‖I2(t)f‖D(Lν)≤‖I2(t)f‖D(Lζ)≤Cts(α−1)+s2n+1/2‖f‖L2m(0,T;D(Lζ))→0,ast→0+. |
Using Lemma 2.1b), we also have
‖(Eα,1(−Ltαssα)−1)u0‖2D(Lν)=∞∑p=1(u0,ep)2(Eα,1(−tαssαλp)−1)2λ2νp≤(C++1)2∞∑p=1(u0,ep)2λ2νp≤(C++1)2‖u0‖2D(Lν)<∞,∀t∈[0,T]. |
From the properties of function
limt→0+(Eα,1(−tαssαλp)−1)=0,∀p∈N∗. |
We invoke the Lebesgue's Dominated Convergence Theorem that
limt→0+‖(Eα,1(−Ltαssα)−1)u0‖D(Lν)=0. | (17) |
From (16)-(17) that (8) is satisfied. The proof of the theorem is complete.
To get the next interesting result, we need to build a complementary lemma. From the properties of Mittag-Leffler functions, we have the following lemma:
Lemma 3.2. For
a)‖Eα,1(−Ltαssα)v‖L2(Ω)≤C+sαt−αs‖v‖D(L−1). | (18a) |
b)‖Eα,1(−Ltαssα)v‖D(Lρ)≤C+sαt−αs‖v‖D(Lρ−1). | (18b) |
c)‖Eα,α(−L(ts−τs)αsα)v‖L2(Ω)≤ˉCsα(ts−τs)−α‖v‖D(L−1). | (18c) |
d)‖Eα,α(−L(ts−τs)αsα)v‖D(Lρ)≤ˉCsα(ts−τs)−α‖v‖D(Lρ−1). | (18d) |
Proof. a) For
‖Eα,1(−Ltαssα)v‖2L2(Ω)=∞∑p=1E2α,1(−tαssαλp)(v,ep)2≤∞∑p=1(C+1+tαssαλp)2(v,ep)2≤(C+)2s2αt−2αs∞∑p=1(v,ep)2λ−2p≤(C+)2s2αt−2αs‖v‖2D(L−1). |
Taking the square root, we imply (18a).
b) For
‖Eα,1(−Ltαssα)v‖2D(Lρ)=∞∑p=1E2α,1(−tαssαλp)(v,ep)2λ2ρp≤∞∑p=1(C+1+tαssαλp)2(v,ep)2λ2ρp≤(C+)2s2αt−2αs∞∑p=1(v,ep)2λ2ρ−2p≤(C+)2s2αt−2αs‖v‖2D(Lρ−1), |
which implies (18b).
c) For
‖Eα,α(−L(ts−τs)αsα)v‖L2(Ω)=∞∑p=1E2α,α(−L(ts−τs)αsα)(v,ep)2≤∞∑p=1(ˉC1+(ts−τs)αsαλp)2(v,ep)2≤(ˉC)2s2α(ts−τs)−2α∞∑p=1(v,ep)2λ−2p≤(ˉC)2s2α(ts−τs)−2α‖v‖2D(L−1), |
taking the square root, we obtain (18c). In the same way as in the one above, we obtain (18d). The proof of the lemma is complete.
Based on the Lemma above, we proceed now to establish the next results.
Theorem 3.3. For the constants
● If
‖u‖Xαs((0,T];L2(Ω))≤C(‖u0‖D(L−1)+Ts+αs−ns‖f‖Lm(0,T;D(L−1))). |
● If
‖∂tu‖X1((0,T];D(Lζ))≤C(‖u0‖D(Lζ−1)+Ts(α−2)+s2n+32‖f‖L2m(0,T;L2(Ω))). |
Proof. The proof is divided into two steps.
Step 1.
‖u(t)‖L2(Ω)≤‖I1(t)u0‖L2(Ω)+‖I2(t)f‖L2(Ω), |
where, we set
‖I1(t)u0‖L2(Ω)=‖Eα,1(−Ltαssα)u0‖L2(Ω)≤Ct−αs‖u0‖D(L−1). |
Using Lemma 2.1b) and Höder's inequality, we infer that there is a constant
‖I2(t)f‖L2(Ω)≤1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)f(τ)‖L2(Ω)d(τs)≤C∫t0(ts−τs)α−1‖f(τ)‖L2(Ω)d(τs)≤C(∫t0(ts−τs)(α−1)(m−1)d(τs))1m−1(∫T0‖f(η)‖m−1m−2L2(Ω)dη)m−2m−1≤Cts(α−1)(m−1)+sm−1‖f‖Lm−1m−2(0,T;L2(Ω)), |
where
tαs‖u(t)‖L2(Ω)≤C(‖u0‖D(L−1)+Ts[(m−1)(2α−1)+1]m−1‖f‖Lm−1m−2(0,T;L2(Ω))), |
so we get
‖u‖Xαs((0,T];L2(Ω))≤C(‖u0‖D(L−1)+Ts[(m−1)(2α−1)+1]m−1‖f‖Lm−1m−2(0,T;L2(Ω))). | (19) |
Thus, we have shown that
Step 2.
‖I3(t)u0‖D(Lζ)=‖∞∑p=1[(u0,ep)tαs−1Eα,α(−tαssαλp)]ep‖D(Lζ)≤Ct−1‖u0‖D(Lζ−1),∀t∈(0,T], |
and the same way as in (15), one obtains
‖I4(t)f‖D(Lζ)≤Cts(α−2)+s2n+12‖f‖L2m(0,T;D(Lζ)),∀t∈[0,T]. |
By choosing of
t‖∂tu(t)‖D(Lζ)≤C(‖u0‖D(Lζ−1)+Ts(α−2)+s2n+32‖f‖L2m(0,T;L2(Ω))). |
This implies that
For the nonlinear source function
●
●
We consider the semi-linear problem
{C(tσ∂∂t)αu(x,t)+(Lu)(x,t)=f(u),x∈Ω,t>0,u(x,t)=0,x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω. | (20) |
The mild solution of Problem (20) is represented by the following integral equation
u(t)=Eα,1(−Ltαssα)u0+1sα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)f(u)d(τs), | (21) |
where
In this subsection, we prove that the Problem (20) is a local well-posed. First, prove that for the Problem (20) exists a unique mild solution, then the regularity of the solution is established. Moreover, we prove that the problem exists a unique positive solution.
We shall begin with introducing the following two standing hypotheses for the globally Lispchitz source term:
● Assume that
‖f(v1)−f(v2)‖L2(Ω)≤K‖v1−v2‖L2(Ω),(Hyp1) |
with
● Suppose that
‖f(v)‖L2(Ω)≤K‖v‖L2(Ω).(Hyp2) |
For
‖v‖E,B=max0≤t≤T‖exp(−Et)v(t)‖B,w∈C([0,T];B). |
The main results of this section are the following theorems.
Theorem 4.1 (Existence). Assume that
Proof. For
Jv(t)=Eα,1(−Ltαssα)u0+1sα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)f(v(τ))d(τs), | (22) |
for
‖exp(−Ets)(Jv1(t)−Jv2(t))‖L2(Ω)=‖1sα∫t0exp(−Ets)(ts−τs)1−αEα,α(−L(ts−τs)αsα)(f(v1(τ))−f(v2(τ)))d(τs)‖L2(Ω)≤1sα∫t0exp(−Ets)(ts−τs)1−α‖Eα,α(−L(ts−τs)αsα)(f(v1(τ))−f(v2(τ)))‖L2(Ω)d(τs)≤ˉCsα∫t0exp(−Ets)(ts−τs)1−α‖f(v1(τ))−f(v2(τ))‖L2(Ω)d(τs)≤KC∫t0exp(−E(ts−τs))(ts−τs)1−α‖exp(−Eτs)(v1(⋅,τ)−v2(⋅,τ))‖L2(Ω)d(τs)≤KC∫t0(ts−τs)α−1exp(−E(ts−τs))d(τs)‖v1(⋅,τ)−v2(⋅,τ)‖E,L2(Ω). | (23) |
Since the right hand side of (23), we can see that when
∫t0(ts−τs)α−1exp(−E(ts−τs))d(τs)≤(∫t0(ts−τs)m(α−1)m−1d(τs))m−1m(∫t0exp(−mE(ts−τs))d(τs))1m≤(m−1mα−1)m−1mtsmα−sm(1mE)1m(1−exp(−mEts))1m≤C(E)1m. |
Then we get that
‖Jv1−Jv2‖E,L2(Ω)≤C(E)1m‖v1−v2‖E,L2(Ω),form>1α. |
By choosing the constant
Theorem 4.2 (Regularity). For
a) If
‖u‖Xαs((0,T];L2(Ω))≲‖u0‖D(L−1). | (24) |
b) If
‖u‖Xαs((0,T];D(Lζ))≲‖u0‖D(Lζ−1). | (25) |
Proof.
‖u(⋅,t)‖L2(Ω)≤‖Eα,1(−Ltαssα)u0‖L2(Ω)+1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)f(u)‖L2(Ω)d(τs). | (26) |
From (18a), we infer that
‖Eα,1(−Ltαssα)u0‖L2(Ω)≤C+sαt−αs‖u0‖D(L−1)≤Ct−αs‖u0‖D(L−1). | (27) |
Estimating the second term of (26). Based on (18c), (Hyp2), and Hölder inequality, we get that
1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)f(u)‖L2(Ω)d(τs)≤C∫t0(ts−τs)−1‖f(u)‖D(L−1)d(τs)≤C∫t0(ts−τs)−1‖f(u)‖L2(Ω)d(τs)≤KC∫t0(ts−τs)−1‖u(⋅,τ)‖L2(Ω)d(τs). | (28) |
From (26), (27) and (28), we deduce that
‖u(⋅,t)‖L2(Ω)≤Ct−αs‖u0‖D(L−1)+KC∫ts0(ts−η)−1‖u(⋅,η)‖L2(Ω)dη. |
Thanks to Lemma 2.4 gives
‖u(⋅,t)‖L2(Ω)≤C(K,T)1−αst−αs‖u0‖D(L−1)≤Ct−αs‖u0‖D(L−1). | (29) |
Multiplying by
tαs‖u(⋅,t)‖L2≤C‖u0‖D(L−1), |
which implies (24).
‖Eα,1(−Ltαssα)u0‖D(Lζ)≤C+sαt−αs‖u0‖D(Lζ−1)≤Ct−αs‖u0‖D(Lζ−1). | (30) |
Using (18d), Remark 1 and hypothesis (Hyp2), we get that for
1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)f(u)‖D(Lζ)d(τs)≤C∫t0(ts−τs)−1‖f(u)‖D(Lζ−1)d(τs)≤CCζ∫t0(ts−τs)−1‖f(u)‖L2(Ω)d(τs)≤KCCζ∫t0(ts−τs)−1‖u(⋅,τ)‖L2(Ω)d(τs)≤KCC2ζ∫t0(ts−τs)−1‖u(⋅,τ)‖D(Lζ)d(τs). | (31) |
From (30) and (31), there exists the positive constant
‖u(⋅,t)‖D(Lζ)≤Ct−αs‖u0‖D(Lζ−1)+KC∫t0(ts−τs)−1‖u(⋅,τ)‖D(Lζ)d(τs). |
From Lemma 2.4 (Grönwall's inequality), one obtains
‖u(⋅,t)‖D(Lζ)≤Ct−αs‖u0‖D(Lζ−1). |
An argument analogous to the previous one yields (25). This complete the proof of the theorem.
Theorem 4.3 (Stability). For
Proof. Let
u0,j→u0,asj→∞. |
For
‖u(⋅,t)−uj(⋅,t)‖D(Lζ)≤‖Eα,1(−Ltαssα)(u0−u0,j)‖D(Lζ)+1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)(f(u)−f(uj))‖D(Lζ)d(τs). | (32) |
Using (18b), we get
‖Eα,1(−Ltαssα)(u0−u0,j)‖D(Lζ)≤Ct−αs‖u0−u0,j‖D(Lζ−1),∀t∈(0,T]. |
From (18d), (Hyp1) and Remark 1, we have
1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)(f(u)−f(uj))‖D(Lζ)d(τs)≤ˉC∫t0(ts−τs)−1‖f(u)−f(uj)‖D(Lζ−1)d(τs)≤ˉCCζ∫t0(ts−τs)−1‖f(u)−f(uj)‖L2(Ω)d(τs)≤KˉCC2ζ∫t0(ts−τs)−1‖u(⋅,τ)−uj(⋅,τ)‖D(Lζ)d(τs). | (33) |
Combining (32)-(33), we deduce that
‖u(⋅,t)−uj(⋅,t)‖D(Lζ)≤Ct−αs‖u0−u0,j‖D(Lζ−1)+KC∫t0(ts−τs)−1‖u(⋅,τ)−uj(⋅,τ)‖D(Lζ)d(τs), |
for all
tαs‖u(⋅,t)−uj(⋅,t)‖D(Lζ)≤C‖u0−u0,j‖D(Lζ−1). |
Let
Remark 2. If
Lemma 4.4. (see [4]) Let
(i) The map
(ii) there are
Theorem 4.5 (Existence-uniqueness a positive solution). Assume that nonnegative and continuous function
Proof. Step 1.
Q={v∈C([0,T];L2(Ω))|u(⋅,t)≥B,a.e(x,t)∈Ω×[0,T],forT∈(0,∞)}. |
Consider the operator
Mv(t)=Eα,1(−Ltαssα)u0+1sα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)f(v(τ))d(τs). | (34) |
From Remark 2, since
V:={u:[0,T]→L2(Ω)|⋄u(x,0)=u0(x)⋄uiscontinouson(0,T]⋄‖u(⋅,t)‖L2(Ω)≤t−αs‖u0‖D(L−1),∀t>0}. |
Then, we can show that
u(t)=ξMu(t)+(1−ξ)Eα,1(−Ltαssα)u0=Eα,1(−Ltαssα)u0+ξsα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)f(v(τ))d(τs). |
By an argument analogous to that used for the proof of Theorem 4.2a, one obtains
‖u(⋅,t)‖L2(Ω)≤Ct−αs‖u0‖D(L−1). |
We invoke Lemma 4.4 to deduce that
Step 2.
‖u(⋅,t)−v(⋅,t)‖L2(Ω)≤1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)(f(u)−f(v))‖L2(Ω)d(τs)≤KC∫t0(ts−τs)−1‖u(τ)−v(τ)‖L2(Ω)d(τs). |
Applying Lemma 2.4 (Grönwall inequality), we derive
In this subsection, we consider the source term
Lemma 4.6. For every
h(y)=|y|alog|y|,fora≥0, |
satisfies
h(y)≤A+|y|a+ε. |
Proof. Since
log|y||y|ε<1,forall|y|>y0. |
So,
h(y)≤|y|a+ε,forall|y|>y0. |
Since
h(y)≤A+|y|a+ε. |
The proof is complete.
Lemma 4.7. (See [17]) For
{Lq(Ω)↪D(Lζ),if−d4<ζ≤0,q≥2dd−4ζ,D(Lζ)↪Lq(Ω),if0≤ζ<d4,q≤2dd−4ζ. |
Then, we have more next results on local existence.
Theorem 4.8 (Local-in-time existence). Let
Proof. Let
S:={u∈Xαs((0,T];L2(Ω)):‖u‖Xαs((0,T];L2(Ω))≤M}, |
for
Hu(t)=Eα,1(−Ltαssα)u0+=:H(u)(t)⏞1sα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)fq(u)d(τs). | (35) |
We show that
Claim 1.
‖Eα,1(−Ltαssα)u0‖Xαs(0,T;L2(Ω))≤C‖u0‖D(L−1),∀t∈(0,T]. | (36) |
Using Lemma 2.1b) we have for
‖H(u)(t)‖L2(Ω)=‖1sα∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)fq(u)d(τs)‖L2(Ω)≤1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)fq(u)‖L2(Ω)d(τs)≤ˉCsα∫t0(ts−τs)α−1‖fq(u)‖L2(Ω)d(τs). | (37) |
From Lemma 4.6, for the constants
∫Ω|fq(u)|2dx=∫Ω(|u(x,t)|q−1log|u(x,t)|q)2dx≤2q∫Ω(A2+|u|2q−2+2ε)dx≤2q(A2|Ω|+‖u(⋅,t)‖2(q−1+ε)L2(q−1+ε)(Ω)). | (38) |
From (37) and (38) and Hölder's inequality for
‖H(u)(t)‖L2(Ω)≤C∫t0(ts−τs)α−1(A|Ω|12+‖u(⋅,τ)‖q∗L2q∗(Ω))d(τs)≤C(∫t0(ts−τs)q(α−1)q−1d(τs))q−1q[∫t0(A|Ω|12+‖u(⋅,τ)‖q∗L2q∗(Ω))qd(τs)]1q≤C(∫t0(ts−τs)q(α−1)q−1d(τs))q−1q[∫t0(A|Ω|12+‖u(⋅,τ)‖q∗L2(Ω))qd(τs)]1q≤C(∫t0(ts−τs)q(α−1)q−1d(τs))q−1q[∫t0(A|Ω|12+τ−αsq∗‖u‖q∗Xαs(0,T;L2(Ω)))qd(τs)]1q≤C(∫t0(ts−τs)q(α−1)q−1d(τs))q−1q[∫t0(A|Ω|12+τ−αsq∗Mq∗)qd(τs)]1q≤Ctsα−s+s(q−1)q(tsqA|Ω|12+tsq−αsq∗Mq∗), | (39) |
where by choosing a positive number
‖H(u)‖Xαs(0,T;L2(Ω))≤CT2sα−s+s(q−1)q(TsqA|Ω|12+Tsq−αsq∗Mq∗). | (40) |
Hence, from (36) and (40), for every
‖Hu‖Xαs(0,T;L2(Ω))≤‖Eα,1(−Ltαssα)u0‖Xαs(0,T;L2(Ω))+‖H(u)‖Xαs(0,T;L2(Ω))≤C(‖u0‖D(L−1)+T2sα−s+s(q−1)q(TsqA|Ω|12+Tsq−αsq∗Mq∗)). |
Therefore we see that if
M≥2CT2sα−s+s(q−1)q(TsqA|Ω|12+Tsq−αsq∗Mq∗), |
then
Claim 2.
‖Hu(t)−Hv(t)‖L2(Ω)≤1sα∫t0(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)fq(u)−fq(v)‖L2(Ω)d(τs)≤ˉCsα∫t0(ts−τs)α−1‖fq(u)−fq(v)‖L2(Ω)d(τs). | (41) |
As a consequence of the mean value theorem, we have, for
|fq(u)−fq(v)|=|f′(θu+(1−θ)v)(u−v)|≤q[1+(q−1)log|θu+(1−θ)v|]|θu+(1−θ)v|q−2|u−v|≤q|θu+(1−θ)v|q−2|u−v|+q(q−1)log|θu+(1−θ)v||θu+(1−θ)v|q−2|u−v|, |
where for
|fq(u)−fq(v)|≤q|θu+(1−θ)v|q−2|u−v|+q(q−1)(A+|θu+(1−θ)v|q−2+ε)|u−v|≤q|u+v|q−2|u−v|+q(q−1)A|u−v|+q(q−1)|u+v|q−2+ε|u−v|. | (42) |
We then use Hölder's inequality to get
∫Ω[|u+v|q−2|u−v|]2dx=∫Ω|u+v|2(q−2)|u−v|2dx≤(∫Ω|u+v|2(q−1)dx)q−2q−1(∫Ω|u−v|2(q−1)dx)1q−1≤C[‖u‖2(q−1)L2(q−1)+‖v‖2(q−1)L2(q−1)]q−2q−1‖u−v‖2L2(q−1)(Ω). |
Similarly, we estimate
∫Ω[|u+v|q−2+ε|u−v|]2dx=∫Ω|u+v|2(q−2+ε)|u−v|2dx≤(∫Ω|u+v|2(q−2+ε)(q−1)q−2dx)q−2q−1(∫Ω|u−v|2(q−1)dx)1q−1≤C[‖u‖2q∗∗L2q∗∗(Ω)+‖v‖2q∗∗L2q∗∗(Ω)]q−2q−1‖u−v‖2L2(q−1)(Ω), | (43) |
for putting
‖fq(u)−fq(v)‖L2(Ω)≤CA‖u−v‖2L2(q−1)(Ω)+C[‖u‖q−1L2(q−1)(Ω)+‖v‖q−1L2(q−1)(Ω)]q−2q−1‖u−v‖L2(q−1)(Ω)+C[‖u‖q∗∗L2q∗∗(Ω)+‖v‖q∗∗L2q∗∗(Ω)]q−2q−1‖u−v‖L2(q−1)(Ω). |
Since,
{L2(Ω)↪L2(q−1)(Ω),since1≤2(q−1)≤2,L2(Ω)↪L2q∗∗(Ω),since1≤2q∗∗≤2. |
By choosing
‖fq(u)−fq(v)‖L2(Ω)≤Cq,ε(M)‖u−v‖L2(Ω), | (44) |
whereupon
‖Hu(t)−Hv(t)‖L2(Ω)≤Cq,ε(M)∫t0(ts−τs)α−1‖u−v‖L2(Ω)d(τs)≤Cq,ε(M)(∫t0(ts−τs)(α−1)qq−1d(τs))q−1q(∫t0τ−αsqd(τs))1q‖u−v‖Xαs(0,T;L2(Ω))≤Cq,ε(M)(q−1αq−1)q−1qtαsq−sq−1(11−αsq)1qt1−αsq‖u−v‖Xαs(0,T;L2(Ω)), |
for some constant
‖Hu−Hv‖Xαs(0,T;L2(Ω))≤Cq,ε(M)Tαsq−sq−1+1−αsq+αs‖u−v‖Xαs(0,T;L2(Ω)). | (45) |
Choosing
Since we already know that the mild solution of
Definition 4.9 (Continuation, see [8,37]) Given a mild solution
{u⋆∈Xαs((0,T];L2(Ω))isamildsolutionof(P)forallt∈(0,T⋆],u⋆(x,t)=u(x,t)whenevert∈[0,T⋆],x∈Ω. |
Theorem 4.10. Suppose that the assumptions of the Theorem 4.8 are satisfied. Then, the solution (unique the weak solution) on the interval
Proof. Let
P1:=T−αs(T⋆)2αs‖u0‖L2(Ω)≤M3, | (46) |
P2:=C(T⋆)2sα−s+s(q−1)q((T⋆)sqA|Ω|12+(T⋆)sq−αsq∗Mq∗)≤M3, | (47) |
P3:=Cq,ε(M)(T⋆)αsq−sq−1+1−αsq+αs≤M3, | (48) |
where
For
S⋆:={u⋆∈Xαs((0,T⋆];L2(Ω)):|u⋆(⋅,t)=u(⋅,t),∀t∈(0,T],‖u⋆−u(⋅,T)‖Xαs([T,T⋆];L2(Ω))≤M,∀t∈[T,T⋆].} |
Step 1.
u⋆(⋅,t)=u(⋅,t),andwehaveH(u⋆)=H(u)=u. |
Thus
‖Hu⋆(t)−u(⋅,T)‖L2(Ω)≤‖(Eα,1(−Ltαssα)−Eα,1(−LTαssα))u0‖L2(Ω)+1sα‖∫t0(ts−τs)α−1Eα,α(−L(ts−τs)αsα)fq(u⋆)d(τs)−∫T0(Ts−τs)α−1Eα,α(−L(Ts−τs)αsα)fq(u⋆)d(τs)‖L2(Ω)≤‖(Eα,1(−Ltαssα)−Eα,1(−LTαssα))u0‖L2(Ω)+1sα‖∫tT(ts−τs)α−1Eα,α(−L(ts−τs)αsα)fq(u⋆)d(τs)‖L2(Ω)+1sα‖∫T0[(ts−τs)α−1Eα,α(−L(ts−τs)αsα)−(Ts−τs)α−1Eα,α(−L(Ts−τs)αsα)]fq(u⋆)d(τs)‖L2(Ω)=:3∑i=1‖Hi(⋅,t)‖L2(Ω),(respectively). |
Estimating the term
‖H1(⋅,t)‖2L2(Ω)=‖(Eα,1(−Ltαssα)−Eα,1(−LTαssα))u0‖2L2(Ω)=∞∑p=1[Eα,1(−tαssαλp)−Eα,1(−Tαssαλp)]2(u0,ep)2=∞∑p=1[∫∞0Wα(z)|exp(−ztαssαλp)−exp(−zTαssαλp)|dz]2(u0,ep)2≤∞∑p=1[∫∞0Wα(z)exp(−zTαssαλp)|exp(−z(tαs−Tαs)sαλp)−1|dz]2(u0,ep)2≤∞∑p=1[tαs−Tαssαλp∫∞0Wα(z)(zTαssαλp)−1zdz]2(u0,ep)2≤[(tαs−Tαs)T−αs∫∞0Wα(z)dz]2∞∑p=1(u0,ep)2≤(t−T)2αsT−2αs‖u0‖2L2(Ω), | (49) |
where, we have use the inequalities
ac−bc≤(a−b)c,fora>b>0,c∈(0,1), |
and for
1−e−z≤z,andze−z≤1. |
Hence, we get that
tαs‖H1(⋅,t)‖L2(Ω)≤(t−T)αsT−αs(T⋆)αs‖u0‖L2(Ω)≤T−αs(T⋆)2αs‖u0‖L2(Ω). |
From (46), this implies that the following estimate holds
‖H1‖Xαs((0,T⋆];L2(Ω))≤T−αs(T⋆)2αs‖u0‖L2(Ω)=P1≤M4. | (50) |
Similar to (39), we have the following estimate for all
‖H2(⋅,t)‖L2(Ω)≤C(t−T)sα−s+s(q−1)q((t−T)sqA|Ω|12+(t−T)sq−αsq∗Mq∗)≤Ct−αs(T⋆)2sα−s+s(q−1)q((T⋆)sqA|Ω|12+(T⋆)sq−αsq∗Mq∗), |
where, we have used the fact that
‖H2‖Xαs((0,T⋆];L2(Ω))≤C(T⋆)2sα−s+s(q−1)q((T⋆)sqA|Ω|12+(T⋆)sq−αsq∗Mq∗)=P2≤M4. | (51) |
We continue with the estimate of the third norm, using (5) and Lemma 2.1, for all
|(ts−τs)α−1Eα,α(−(ts−τs)αsαλp)−(Ts−τs)α−1Eα,α(−(Ts−τs)αsαλp)|=|∫ts−τsTs−τszα−2Eα,α−1(−zαsαλp)dz|≤ˉC∫ts−τsTs−τszα−2dz≤C((Ts−τs)α−1−(ts−τs)α−1)≤C(Ts−τs)α−1. |
Hence, we deduce that
‖H3(⋅,t)‖L2(Ω)=1sα‖∫T0[(ts−τs)α−1Eα,α(−L(ts−τs)αsα)−(Ts−τs)α−1Eα,α(−L(Ts−τs)αsα)]fq(u⋆)d(τs)‖L2(Ω)≤Tsα∫T0(∞∑p=1|(ts−τs)α−1Eα,α(−(ts−τs)αsαλp)−(Ts−τs)α−1Eα,α(−(Ts−τs)αsαλp)|2(fq(u⋆),ep)2)12d(τs)≤C∫T0(∞∑p=1(Ts−τs)2α−2(fq(u⋆),ep)2)12d(τs)=C∫T0(Ts−τs)α−1‖fq(u⋆)‖L2(Ω)d(τs). |
In the same way as in (39), using Hölder's inequality and using the embedding
tαs‖H3(⋅,t)‖L2(Ω)≤C(T⋆)2sα−s+s(q−1)q((T⋆)sqA|Ω|12+(T⋆)sq−αsq∗Mq∗). |
From (47), we get
‖H3‖Xαs((0,T⋆];L2(Ω))≤C(T⋆)2sα−s+s(q−1)q((T⋆)sqA|Ω|12+(T⋆)sq−αsq∗Mq∗)=P2<M3. | (52) |
It follows from (50), (51), (52) that, for every
‖Hu⋆−u(⋅,T)‖Xαs((0,T⋆];L2(Ω))<M3+M3+M3<M. |
We have shown that
Step 2.
Hu(t)−Hv(t)=1sα∫tT(ts−τs)α−1Eα,α(−L(ts−τs)αsα)(fq(u)−fq(v))d(τs), |
where we note that
‖Hu(t)−Hv(t)‖L2(Ω)≤∫tT(ts−τs)α−1‖Eα,α(−L(ts−τs)αsα)(fq(u)−fq(v))‖L2(Ω)d(τs)≤Cq,ε(M)(T⋆)αsq−sq−1+1−αsq+αs‖u−v‖Xαs(0,T;L2(Ω)). |
Hence, from (48) we deduce that
‖Hu−Hv‖Xαs((0,T⋆];L2(Ω))≤Cq,ε(M)(T⋆)αsq−sq−1+1−αsq+αs‖u−v‖Xαs((0,T];L2(Ω))=P3‖u−v‖Xαs((0,T];L2(Ω)). |
Thus, for all
‖Hu−Hv‖Xαs((0,T⋆];L2(Ω))≤M3‖u−v‖Xαs((0,T];L2(Ω)). |
This implies that
The next results are on global existence or non-continuation by a blow-up and depend continuously on the initial data.
Definition 4.11 (Maximal existence time, see [8,37]) Let
(i) If
(ii) If there exists
Definition 4.12 (Finite time blow-up, see [8,37]) Let
limt→T−max‖u(⋅,t)‖L2(Ω)=∞. |
Theorem 4.13. Assume the conditions of Theorem 4.8 holds. For
Remark 3. As an immediate consequence of Theorem 4.10, we guarantee the existence of a maximal time.
Proof. Let
Tmax:=sup{T>0:thereexitsasolutionon(0,T]}. |
Assume that
‖u(⋅,tj)−u(⋅,tn)‖L2(Ω)≤‖(Eα,1(−Ltαsjsα)−Eα,1(−Ltαsnsα))un‖L2(Ω)+1sα∫tjtn(tsj−τs)α−1‖Eα,α(−L(tsj−τs)αsα)fq(u⋆)‖L2(Ω)d(τs)+1sα‖∫tn0[(tsn−τs)α−1Eα,α(−L(tsn−τs)αsα)−(Tsmax−τs)α−1Eα,α(−L(Tsmax−τs)αsα)]fq(u⋆)d(τs)‖L2(Ω)+1sα‖∫tj0[(Tsmax−τs)α−1Eα,α(−L(Tsmax−τs)αsα)−(tsj−τs)α−1Eα,α(−L(tsj−τs)αsα)]fq(u⋆)d(τs)‖L2(Ω)=:4∑i=1Yi. |
Similarly to (49), we have that
Y1:=‖(Eα,1(−Ltαsjsα)−Eα,1(−Ltαsnsα))un‖L2(Ω)≤|tj−tn|αstn−αs‖un‖L2(Ω). |
In the same way as (51), we get
Y2=1sα∫tjtn(tsj−τs)α−1‖Eα,α(−L(tsj−τs)αsα)fq(u⋆)‖L2(Ω)d(τs)≤C|tj−tn|sα−s+s(q−1)q(|tj−tn|sqA|Ω|12+|tj−tn|sq−αsq∗Mq∗). |
Similar to (52), we have
Y3+Y4≤C((Tmax)sqA|Ω|12+(Tmax)sq−αsq∗Mq∗)×(|Tmax−tn|sα−s+s(q−1)q+|Tmax−tj|sα−s+s(q−1)q). |
Thus, since
∙|tj−tn|αstn−αs‖un‖L2(Ω)<ε3, |
∙C|tj−tn|sα−s+s(q−1)q(|tj−tn|sqA|Ω|12+|tj−tn|sq−αsq∗Mq∗)<ε3, |
∙C((Tmax)sqA|Ω|12+(Tmax)sq−αsq∗Mq∗)×(|Tmax−tn|sα−s+s(q−1)q+|Tmax−tj|sα−s+s(q−1)q)<ε3. |
Hence, given
‖u(⋅,tj)−u(⋅,tn)‖L2(Ω)<ε,forj,n≥N. |
It follows that
limt→T−max‖u(⋅,t)‖L2(Ω)<∞. |
We invoke Theorem 4.10 to deduce that the solution can extend to some larger interval (
We have achieved the blow-up result for the diffusion equation
This research was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.02-2019.09.
[1] | R. S. Adiguzel, U. Aksoy, E. Karapinar and I. M. Erhan, On the solution of a boundary value problem associated with a fractional differential equation, Math. Methods Appl. Sci, (2020). |
[2] | H. Afshari, S. Kalantari and E. Karapinar, Solution of fractional differential equations via coupled fixed point, Electronic Journal of Differential Equations, 2015 (2015), 12 pp. |
[3] |
H. Afshari and E. Karapinar, A discussion on the existence of positive solutions of the boundary value problems via ψ-Hilfer fractional derivative on b-metric spaces, Adv. Difference Equ., (2020), Paper No. 616, 11 pp. doi: 10.1186/s13662-020-03076-z
![]() |
[4] |
(2001) Fixed Point Theory and Applications. Cambridge: Cambridge University Press. ![]() |
[5] |
Initial boundary value problems for a fractional differential equation with hyper-Bessel operator. Fract. Calc. Appl. Anal. (2018) 21: 200-219. ![]() |
[6] |
Brownian-time processes: The PDE connection and the half-derivative generator. Ann. Probab. (2001) 29: 1780-1795. ![]() |
[7] |
Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. (2019) 181: 24-61. ![]() |
[8] |
B. de Andrade, V. Van Au, D. O'Regan and N. H. Tuan, Well-posedness results for a class of semilinear time fractional diffusion equations, Z. Angew. Math. Phys., 71 (2020), Paper No. 161, 24 pp. doi: 10.1007/s00033-020-01348-y
![]() |
[9] | ψ-Caputo Fractional Differential Equations with Multi-point Boundary Conditions by Topological Degree Theory. Results in Nonlinear Analysis (2020) 3: 167-178. |
[10] | On an operational calculus for a differential operator. C.R. Acad. Bulg. Sci. (1968) 21: 513-516. |
[11] | Operational calculus for a class of differential operators. C. R. Acad. Bulgare Sci. (1966) 19: 1111-1114. |
[12] |
Fractional relaxation with time-varying coefficient. Fract. Calc. Appl. Anal. (2014) 17: 424-439. ![]() |
[13] |
Fractional diffusion equation and relaxation in complex viscoelastic materials. Phys. A, Stat. Mech. Appl. (1992) 191: 449-453. ![]() |
[14] |
R. Gorenflo, A. A. Kilbas, F. Mainardi and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, Berlin, 2014. doi: 10.1007/978-3-662-43930-2
![]() |
[15] | Analytical properties and applications of the Wright function. Fract. Calc. Appl. Anal. (1999) 2: 383-414. |
[16] |
Dispersive transport of ions in column experiments: an explanation of long-tailed profiles. Water Resources Res. (1998) 34: 1027-1033. ![]() |
[17] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Mathematics, Vol. 840. Springer, 1981. |
[18] |
R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific Publ. Co., Singapore, 2000. doi: 10.1142/9789812817747
![]() |
[19] |
From the hyper-Bessel operators of Dimovski to the generalized fractional calculus. Fract. Calc. Appl. Anal. (2014) 17: 977-1000. ![]() |
[20] |
Explicit solutions to hyper-Bessel integral equations of second kind. Comput. Math. Appl. (1999) 37: 75-86. ![]() |
[21] |
On relating two approaches to fractional calculus. J. Math. Anal. Appl. (1988) 132: 590-610. ![]() |
[22] |
Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. J. Differential Equations (2020) 269: 4914-4959. ![]() |
[23] |
Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv. Nonlinear Anal. (2020) 9: 613-632. ![]() |
[24] |
The existence, general decay and blow-up for a plate equation with nonlinear damping and a logarithmic source term. Electron. Res. Arch. (2020) 28: 263-289. ![]() |
[25] |
Fractional Brownian motions, fractional noises and applications. SIAM Rev. (1968) 10: 422-437. ![]() |
[26] |
A theory of fractional integration for generalized functions. SIAM J. Math. Anal. (1975) 6: 583-599. ![]() |
[27] | (2000) Strongly Elliptic Systems and Boundary Integral Equations. Cambridge: Cambridge University Press. |
[28] |
Non-Markovian diffusion equations and processes: Analysis and simulations. Phys. A (2008) 387: 5033-5064. ![]() |
[29] |
Fractional diffusion equations and processes with randomly varying time. Ann. Probab. (2009) 37: 206-249. ![]() |
[30] | I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, Methods of Their Solution and Some of Their Applications, 198 1999, Elsevier, Amsterdam. |
[31] | A. Salim, M. Benchohra, J. E. Lazreg and J. Henderson, Nonlinear implicit generalized Hilfer-Type fractional differential equations with non-instantaneous impulses in banach spaces, Adv. Theory Nonlinear Anal. Appl., 4, 332–348. |
[32] |
The well-posedness and regularity of a rotating blades equation. Electron. Res. Arch. (2020) 28: 691-719. ![]() |
[33] |
Continuity of solutions of a class of fractional equations. Potential Anal. (2018) 49: 423-478. ![]() |
[34] |
On a terminal value problem for a generalization of the fractional diffusion equation with hyper-Bessel operator. Math. Methods Appl. Sci. (2020) 43: 2858-2882. ![]() |
[35] |
N. H. Tuan, V. V. Au, V. V. Tri and D. O'Regan, On the well-posedness of a nonlinear pseudo-parabolic equation, J. Fix. Point Theory Appl., 22 (2020), Paper No. 77, 21 pp. doi: 10.1007/s11784-020-00813-5
![]() |
[36] |
Semilinear Caputo time-fractional pseudo-parabolic equations. Comm. Pure Appl. Anal. (2021) 20: 583-621. ![]() |
[37] |
N. H. Tuan, V. V. Au, R. Xu and R. Wang, On the initial and terminal value problem for a class of semilinear strongly material damped plate equations, J. Math. Anal. Appl., 492 (2020), 124481, 38 pp. doi: 10.1016/j.jmaa.2020.124481
![]() |
[38] |
Weakly singular Gronwall inequalities and applications to fractional differential equations. J. Math. Anal. Appl. (2019) 471: 692-711. ![]() |
[39] |
Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Functional Analysis (2013) 264: 2732-2763. ![]() |
[40] |
Blowup and blowup time for a class of semilinear pseudo-parabolic equations with high initial energy. Appl. Math. Lett. (2018) 83: 176-181. ![]() |
[41] |
X.-J. Yang, D. Baleanu and J. A. Tenreiro Machado, Systems of Navier-Stokes equations on Cantor sets, Math. Probl. Eng., 2013 (2013), Art. ID 769724, 8 pp. doi: 10.1155/2013/769724
![]() |
[42] |
K. Zhang, Nonexistence of global weak solutions of nonlinear Keldysh type equation with one derivative term, Adv. Math. Phys., 2018 (2018), Art. ID 3931297, 7 pp. doi: 10.1155/2018/3931297
![]() |
[43] |
The Cauchy problem for semilinear hyperbolic equation with characteristic degeneration on the initial hyperplane. Math. Methods Appl. Sci. (2018) 41: 2429-2441. ![]() |
[44] |
Y. Zhou, Basic Theory of Fractional Differential Equations, World Scientific, Singapore, 2014. doi: 10.1142/9069
![]() |
1. | Vo Van Au, Yong Zhou, Donal O’Regan, On the Well-Posedness and Blow-Up for a Semilinear Biparabolic Equation, 2022, 19, 1660-5446, 10.1007/s00009-021-01970-8 | |
2. | Dumitru Baleanu, Ho Duy Binh, Anh Tuan Nguyen, On a Fractional Parabolic Equation with Regularized Hyper-Bessel Operator and Exponential Nonlinearities, 2022, 14, 2073-8994, 1419, 10.3390/sym14071419 | |
3. | Nguyen Hoang Luc, Donal O’Regan, Anh Tuan Nguyen, Solutions of a Nonlinear Diffusion Equation with a Regularized Hyper-Bessel Operator, 2022, 6, 2504-3110, 530, 10.3390/fractalfract6090530 | |
4. | Vo Van Au, Tomás Caraballo, A mixed nonlinear time-fractional Rayleigh-Stokes equation, 2022, 0, 1937-1632, 0, 10.3934/dcdss.2022182 | |
5. | Nguyen Huy Tuan, Existence and limit problem for fractional fourth order subdiffusion equation and Cahn-Hilliard equation, 2021, 14, 1937-1632, 4551, 10.3934/dcdss.2021113 | |
6. | Au Vo Van, Recovering the initial distribution for a logarithmic nonlinear biparabolic equation, 2022, 45, 0170-4214, 1805, 10.1002/mma.7851 | |
7. | Andrés Martín, Ernesto Estrada, Fractional-Modified Bessel Function of the First Kind of Integer Order, 2023, 11, 2227-7390, 1630, 10.3390/math11071630 | |
8. | ANH TUAN NGUYEN, BUI DAI NGHIA, VAN THINH NGUYEN, GLOBAL WELL-POSEDNESS OF A CAUCHY PROBLEM FOR A NONLINEAR PARABOLIC EQUATION WITH MEMORY, 2023, 31, 0218-348X, 10.1142/S0218348X23400133 | |
9. | Vo Van Au, Analysis of large time asymptotics of the fourth‐order parabolic system involving variable coefficients and mixed nonlinearities, 2023, 46, 0170-4214, 15305, 10.1002/mma.9380 | |
10. | Wei Fan, Kangqun Zhang, Local well-posedness results for the nonlinear fractional diffusion equation involving a Erdélyi-Kober operator, 2024, 9, 2473-6988, 25494, 10.3934/math.20241245 |