
A stabilizer free WG method is introduced for the Stokes equations with superconvergence on polytopal mesh in primary velocity-pressure formulation. Convergence rates two order higher than the optimal-order for velocity of the WG approximation is proved in both an energy norm and the L2 norm. Optimal order error estimate for pressure in the L2 norm is also established. The numerical examples cover low and high order approximations, and 2D and 3D cases.
Citation: Xiu Ye, Shangyou Zhang. A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh[J]. Electronic Research Archive, 2021, 29(6): 3609-3627. doi: 10.3934/era.2021053
[1] | Xiu Ye, Shangyou Zhang . A stabilizer free WG method for the Stokes equations with order two superconvergence on polytopal mesh. Electronic Research Archive, 2021, 29(6): 3609-3627. doi: 10.3934/era.2021053 |
[2] | Yan Yang, Xiu Ye, Shangyou Zhang . A pressure-robust stabilizer-free WG finite element method for the Stokes equations on simplicial grids. Electronic Research Archive, 2024, 32(5): 3413-3432. doi: 10.3934/era.2024158 |
[3] | Chunmei Wang . Simplified weak Galerkin finite element methods for biharmonic equations on non-convex polytopal meshes. Electronic Research Archive, 2025, 33(3): 1523-1540. doi: 10.3934/era.2025072 |
[4] | Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118 |
[5] | Shan Jiang, Li Liang, Meiling Sun, Fang Su . Uniform high-order convergence of multiscale finite element computation on a graded recursion for singular perturbation. Electronic Research Archive, 2020, 28(2): 935-949. doi: 10.3934/era.2020049 |
[6] | Derrick Jones, Xu Zhang . A conforming-nonconforming mixed immersed finite element method for unsteady Stokes equations with moving interfaces. Electronic Research Archive, 2021, 29(5): 3171-3191. doi: 10.3934/era.2021032 |
[7] | Jiwei Jia, Young-Ju Lee, Yue Feng, Zichan Wang, Zhongshu Zhao . Hybridized weak Galerkin finite element methods for Brinkman equations. Electronic Research Archive, 2021, 29(3): 2489-2516. doi: 10.3934/era.2020126 |
[8] | Xiu Ye, Shangyou Zhang, Peng Zhu . A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29(1): 1897-1923. doi: 10.3934/era.2020097 |
[9] | Suayip Toprakseven, Seza Dinibutun . A weak Galerkin finite element method for parabolic singularly perturbed convection-diffusion equations on layer-adapted meshes. Electronic Research Archive, 2024, 32(8): 5033-5066. doi: 10.3934/era.2024232 |
[10] | Jun Pan, Yuelong Tang . Two-grid $ H^1 $-Galerkin mixed finite elements combined with $ L1 $ scheme for nonlinear time fractional parabolic equations. Electronic Research Archive, 2023, 31(12): 7207-7223. doi: 10.3934/era.2023365 |
A stabilizer free WG method is introduced for the Stokes equations with superconvergence on polytopal mesh in primary velocity-pressure formulation. Convergence rates two order higher than the optimal-order for velocity of the WG approximation is proved in both an energy norm and the L2 norm. Optimal order error estimate for pressure in the L2 norm is also established. The numerical examples cover low and high order approximations, and 2D and 3D cases.
A stabilizing/penalty term is often used in finite element methods with discontinuous approximations to enforce connection of discontinuous functions across element boundaries. Development of stabilizer free discontinuous finite element method is desirable since it simplifies finite element formulation and reduces programming complexity. The stabilizer free WG method and the stabilizer DG method on polytopal mesh were first introduced in [11,12] for second order elliptic problems. The main idea in [11,12] is to raise the degree of polynomials used to compute weak gradient
In general, discontinuous finite element methods tend to have complex formulations which are often necessary to enforce weak continuity of discontinuous solutions across element boundaries. Most of discontinuous finite element methods have one or more stabilizing terms to guarantee stability and convergence of the methods. The stabilizer free WG method has a super clean finite element formulations as (4)-(5) compared to the weak Galerkin method and other DG methods, which reduces programming complexity.
One obvious disadvantage of discontinuous finite element methods is their rather complex formulations which are often necessary to enforce weak continuity of discontinuous solutions across element boundaries. Most of discontinuous finite element methods have one or more stabilizing terms to guarantee stability and convergence of the methods. Existing of stabilizing terms further complicates formulations.
In this paper, we introduce a new stabilizer free WG method of any order to solve the Stokes problem: find unknown functions
−Δu+∇p=finΩ, | (1) |
∇⋅u=0inΩ, | (2) |
u=0on∂Ω, | (3) |
where
(∇wuh,∇wv)−(∇w⋅v,ph)=(f,v), | (4) |
(∇w⋅uh,w)=0. | (5) |
Here
Comparing to other weak Galerkin finite element methods, the WG methods without stabilizers leads to a 2-order superconvergent solution with a carefully chose weak Galerkin. So far all weak Galerkin finite element methods with stabilizers do not have superconvergence in both an energy norm and the
Let
For
Vh={v={v0,vb}: v0|T∈[Pk(T)]d,vb|e∈[Pk+1(e)]d,e⊂∂T}, | (6) |
and for pressure
Wh={w∈L20(Ω): w|T∈Pk+1(T)}. | (7) |
Let
The space
H(div;Ω)={v∈[L2(Ω)]d:∇⋅v∈L2(Ω)}. |
For any
Λk(T)={ψ∈[H(div;T)]d : ψ|Ti∈[Pk+1(Ti)]d×d,∇⋅ψ∈[Pk(T)]d,ψ⋅n|e∈[Pk+1(e)]d,e⊂∂T}. |
For a function
(∇wv, τ)T=−(v0, ∇⋅τ)T+⟨vb, τ⋅n⟩∂T∀τ∈Λk(T). | (8) |
For a function
(∇w⋅v, w)T=−(v0, ∇w)T+⟨vb⋅n, w⟩∂T∀w∈Pk+1(T). | (9) |
The proof of the following lemma can be found in [14].
Lemma 2.1. For
(∇⋅τ,q)T=(∇⋅Πhτ,q)T∀q∈[Pk(T)]d, | (10) |
−(∇⋅τ,v0)=(Πhτ,∇wv)∀v={v0,vb}∈Vh, | (11) |
‖Πhτ−τ‖≤Chk+2|τ|k+2. | (12) |
We start this section by introducing the following WG finite element scheme without stabilizers.
Weak Galerkin Algorithm 3.1. A numerical approximation for (1)-(3) is finding
(∇wuh, ∇wv)−(∇w⋅v,ph)=(f,v), | (13) |
(∇w⋅uh,w)=0. | (14) |
Let
Lemma 3.1. Let
∇wQhϕ=Qh∇ϕ, | (15) |
∇w⋅Qhϕ=Qh∇⋅ϕ. | (16) |
Proof. Using (8) and integration by parts, we have that for any
(∇wQhϕ,τ)T=−(Q0ϕ,∇⋅τ)T+⟨Qbϕ,τ⋅n⟩∂T=−(ϕ,∇⋅τ)T+⟨ϕ,τ⋅n⟩∂T=(∇ϕ,τ)T=(Qh∇ϕ,τ)T, |
which implies the identity (15).
Using (9) and integration by parts, we have that for any
(∇w⋅Qhϕ,w)T=−(Q0ϕ,∇w)T+⟨Qbϕ⋅n,w⟩∂T=−(ϕ,∇w)T+⟨ϕ⋅n,w⟩∂T=(∇⋅ϕ,w)T=(Qh∇⋅ϕ,w)T, |
which proves (15).
For any function
‖φ‖2e≤C(h−1T‖φ‖2T+hT‖∇φ‖2T). | (17) |
We introduce two semi-norms
|||v|||2=∑T∈Th(∇wv,∇wv)T, | (18) |
‖v‖21,h=∑T∈Th‖∇v0‖2T+∑T∈Thh−1T‖v0−vb‖2∂T. | (19) |
It is easy to see that
The following norm equivalence has been proved in [14] for each component of
C1‖v‖1,h≤|||v|||≤C2‖v‖1,h∀v∈Vh. | (20) |
Unlike the traditional finite elements [5,8,9,16,17,18,19,20,21], the inf-sup condition for the weak Galerkin finite element is easily satisfied due to the large velocity space with independent element boundary degrees of freedom.
Lemma 3.2. There exists a positive constant
supv∈Vh(∇w⋅v,ρ)|||v|||≥β‖ρ‖. | (21) |
Proof. For any given
(∇⋅˜v,ρ)‖˜v‖1≥C‖ρ‖, | (22) |
where
|||v|||2≤C‖v‖21,h=C(∑T∈Th‖∇v0‖2T+∑T∈Thh−1T‖v0−vb‖2∂T)≤C(∑T∈Th‖∇Q0˜v‖2T+∑T∈Thh−1T‖Q0˜v−Qb˜v‖2∂T)≤C(∑T∈Th‖∇Q0˜v‖2T+∑T∈Thh−1T‖Q0˜v−˜v‖2∂T)≤C‖˜v‖21, |
which implies
|||v|||≤C‖˜v‖1. | (23) |
It follows from (9) that
(∇w⋅v,ρ)Th=−(v0,∇ρ)Th+⟨vb,ρn⟩∂Th=−(Q0˜v,∇ρ)Th+⟨Qb˜v,ρn⟩∂Th=−(˜v,∇ρ)Th+⟨˜v,ρn⟩∂Th=(∇⋅˜v,ρ)Th. | (24) |
Using (24), (23) and (22), we have
(∇w⋅v,ρ)|||v|||=(∇⋅˜v,ρ)|||v|||≥(∇⋅˜v,ρ)C‖˜v‖1≥β‖ρ‖, |
for a positive constant
Lemma 3.3. The weak Galerkin method (13)-(14) has a unique solution.
Proof. It suffices to show that zero is the only solution of (13)-(14) if
(∇wuh, ∇wuh)=0, |
which implies that
Since
In this section, we derive the equations that the errors satisfy. Let
Lemma 4.1. The following error equations hold true for any
(∇weh,∇wv)−(εh,∇w⋅v)=ℓ1(u,v)+ℓ2(p,v), | (25) |
(∇w⋅eh, w)=0, | (26) |
where
ℓ1(u, v)=(Qh∇u−Πh∇u,∇wv), | (27) |
ℓ2(p,v)=⟨Qhp−p,(v0−vb)⋅n⟩∂Th. | (28) |
Proof. First, we test (1) by
−(Δu,v0)+(∇p, v0)=(f,v0). | (29) |
It follows from (11) and (15)
−(∇⋅∇u,v0)=(Πh∇u,∇wv)=(∇wQhu,∇wv)−ℓ1(u,v). | (30) |
Using integration by parts and the fact
(∇p, v0)=−(p,∇⋅v0)Th+⟨p,v0⋅n⟩∂Th=−(Qhp,∇⋅v0)Th+⟨p,(v0−vb)⋅n⟩∂Th=(∇Qhp,v0)Th−⟨Qhp,v0⋅n⟩∂Th+⟨p,(v0−vb)⋅n⟩∂Th=−(Qhp,∇w⋅v)−⟨Qhp,(v0−vb)⋅n⟩∂Th+⟨p,(v0−vb)⋅n⟩∂Th=−(Qhp,∇w⋅v)−ℓ2(p,v), |
which implies
(∇p, v0)=−(Qhp,∇w⋅v)−ℓ2(p,v). | (31) |
Substituting (30) and (31) into (29) gives
(∇wQhu,∇wv)−(Qhp,∇w⋅v)=(f,v0)+ℓ1(u,v)+ℓ2(p,v). | (32) |
The difference of (32) and (13) implies
(∇weh,∇wv)−(εh,∇w⋅v)=ℓ1(u,v)+ℓ2(p,v)∀v∈V0h. | (33) |
Testing equation (2) by
(∇⋅u, w)=(Qh∇⋅u, w)=(∇w⋅Qhu, w)=0. | (34) |
The difference of (34) and (14) implies (26). We have proved the lemma.
In this section, we establish order two superconvergence for the velocity approximation
Lemma 5.1. Let
|ℓ1(u, v)|≤Chk+2|u|k+3|||v|||, | (35) |
|ℓ2(p, v)|≤Chk+2|p|k+2|||v|||. | (36) |
Proof. Using the Cauchy-Schwarz inequality and the definitions of
|ℓ1(u, v)|=|(Qh∇u−Πh∇u,∇wv)|=|(Qh∇u−∇u+∇u−Πh∇u,∇wv)|≤Chk+2|u|k+3|||v|||. |
It follows from (17) and (20)
|ℓ2(p,v)|=|⟨Qhp−p,(v0−vb)⋅n⟩∂Th|≤C∑T∈Th‖Qhp−p‖∂T‖v0−vb‖∂T≤C(∑T∈ThhT‖Qhp−p‖2∂T)12(∑e∈Ehh−1T‖v0−vb‖2e)12≤Chk+2|p|k+2|||v|||. |
We have proved the lemma.
Theorem 5.2. Let
|||Qhu−uh|||≤Chk+2(|u|k+3+|p|k+2), | (37) |
‖Qhp−ph‖≤Chk+2(|u|k+3+|p|k+2). | (38) |
Proof. By letting
|||eh|||2=|ℓ1(u,eh)+ℓ2(p,eh)|. | (39) |
It then follows from (35) and (36) that
|||eh|||2≤Chk+2(|u|k+3+|p|k+2)|||eh|||, | (40) |
which implies (37). To estimate
(εh,∇⋅v)=(∇weh,∇wv)−ℓ1(u,v)−ℓ2(p,v). |
Using (40), (35) and (36), we arrive at
|(εh,∇⋅v)|≤Chk+2(|u|k+3+|p|k+2)|||v|||. |
Combining the above estimate with the inf-sup condition (21) gives
‖εh‖≤Chk+2(|u|k+3+|p|k+2), |
which yields the desired estimate (38).
In this section, order two superconvergence for velocity in the
−Δψ+∇ξ=e0inΩ, | (41) |
∇⋅ψ=0inΩ, | (42) |
ψ=0on∂Ω. | (43) |
Assume that the dual problem (41)-(43) satisfy the following regularity assumption:
‖ψ‖2+‖ξ‖1≤C‖e0‖. | (44) |
We need the following lemma first.
Lemma 6.1. For any
(∇wQhψ,∇wv)−(Qhξ,∇w⋅v)=(e0,v0)+ℓ3(ψ,v)+ℓ2(ξ,v), | (45) |
(∇w⋅Qhψ, w)=0, | (46) |
where
ℓ3(ψ, v)=⟨(∇ψ−Qh∇ψ)⋅n,v0−vb⟩∂Th,ℓ2(ξ,v)=⟨Qhξ−ξ,(v0−vb)⋅n⟩∂Th. |
Proof. Testing (41) by
−(Δψ,v0)+(∇ξ, v0)=(e0,v0). | (47) |
It follows from integration by parts and the fact
−(Δψ,v0)=(∇ψ,∇v0)Th−⟨∇ψ⋅n,v0−vb⟩∂Th. | (48) |
By integration by parts, (8) and (15)
(∇ψ,∇v0)Th=(Qh∇ψ,∇v0)Th=−(v0,∇⋅(Qh∇ψ))Th+⟨v0,Qh∇ψ⋅n⟩∂Th=(Qh∇ψ,∇wv)+⟨v0−vb,Qh∇ψ⋅n⟩∂Th=(∇wQhψ,∇wv)+⟨v0−vb,Qh∇ψ⋅n⟩∂Th. | (49) |
Combining (48) and (49) gives
−(Δψ,v0)=(∇wQhψ,∇wv)−ℓ3(ψ,v). | (50) |
Similar to the derivation of (31), we obtain
(∇ξ, v0)=−(Qhξ,∇w⋅v)−ℓ2(ξ,v). | (51) |
Combining (50) and (51) with (47) yields (45). Testing equation (42) by
(∇⋅ψ, w)=(Qh∇⋅ψ, w)=(∇w⋅Qhψ, w)=0, | (52) |
which implies (46) and we have proved the lemma.
By the same argument as (50), (25) has another form as
(∇weh,∇wv)−(ϵh,∇w⋅v)=ℓ3(u,v)+ℓ2(p,v). | (53) |
Theorem 6.2. Let
‖Q0u−u0‖≤Chk+3(|u|k+3+|p|k+2). | (54) |
Proof. Letting
‖e0‖2=(∇wQhψ,∇weh)−(Qhξ,∇w⋅eh)−ℓ3(ψ,eh)−ℓ2(ξ,eh). | (55) |
Using the fact
‖eh‖2=(∇wQhψ,∇weh)−ℓ3(ψ,eh)−ℓ2(ξ,eh). | (56) |
With
(∇weh,∇wQhψ)−(ϵh,∇w⋅Qhψ)=ℓ3(u,Qhψ)+ℓ2(p,Qhψ). | (57) |
Using (46), we have
(∇weh,∇wQhψ)=ℓ3(u,Qhψ)+ℓ2(p,Qhψ). | (58) |
Combining (56) and (58), we have
‖eh‖2=ℓ3(u,Qhψ)+ℓ2(p,Qhψ)−ℓ3(ψ,eh)−ℓ2(ξ,eh). | (59) |
Using the Cauchy-Schwarz inequality, the trace inequality (17) and the definition of
|ℓ3(u,Qhψ)|≤|⟨(∇u−Qh∇u)⋅n,Q0ψ−Qbψ⟩∂Th|≤(∑T∈Th‖∇u−Qh∇u‖2∂T)1/2(∑T∈Th‖Q0ψ−ψ‖2∂T)1/2≤Chk+3|u|k+3|ψ|2. | (60) |
Similarly, we have
|ℓ2(p,Qhψ)|≤|⟨Qhp−p,(Q0ψ−Qbψ)⋅n⟩∂Th|≤C(∑T∈Th‖Qhp−p‖2∂T)1/2(∑T∈Th‖Q0ψ−ψ‖2∂T)1/2≤Chk+3|p|k+2|ψ|2. | (61) |
It follows from the Cauchy-Schwarz inequality, the trace inequality (20) and (37),
|ℓ3(ψ,eh)|≤|⟨(∇ψ−Qh∇ψ)⋅n,e0−eb⟩∂Th|≤(∑T∈ThhT‖∇ψ−Qh∇ψ‖2∂T)1/2(∑T∈Thh−1T‖e0−eb‖2∂T)1/2≤Ch|ψ|2|||eh|||≤Chk+3(|u|k+3+|p|k+2)|ψ|2. | (62) |
Similarly,
|ℓ2(ξ,eh)|≤|⟨Qhξ−ξ,(e0−eb)⋅n⟩∂Th|≤(∑T∈ThhT‖Qhξ−ξ‖2∂T)1/2(∑T∈Thh−1T‖e0−eb‖2∂T)1/2≤Chk+3(|u|k+3+|p|k+2)|ξ|1. | (63) |
Combining all the estimates above with (59) yields
‖eh‖2≤Chk+3(|u|k+3+|p|k+2)(‖ψ‖2+‖ξ‖1). |
The estimate (54) follows from the above inequality and the regularity assumption (44). We have completed the proof.
We solve the following 2D stationary Stokes equations with domain
−Δu+∇p=(192(−x2+x)2(−2y+1)−192(−2x+1)(−y2+y)2++128(−x2+x)(−2y+1)2(−2x+1)−−256(−x2+x))(−y2+y)(−2x+1))inΩ,∇⋅u=0inΩ,u=0on∂Ω. |
The exact solution is
u=(32(−x2+x)2(−y2+y)(−2y+1)−(32(−x2+x))(−y2+y)2(−2x+1)),p=64(−x2+x)(−y2+y)(−2x+1)(−2y+1). | (64) |
In this example, we use quadrilateral grids shown in Figure 1.
We test the newly constructed, two-order superconvergent weak Galerkin finite elements. We compare the results with that of the standard optimal order convergent (no superconvergence) weak Galerkin finite elements. The two-order superconvergent weak Galerkin finite element spaces are
Vh={v={v0,vb}: v0|T∈[Pk(T)]d,vb|e∈[Pk+1(e)]d,e⊂∂T},Wh={w∈L20(Ω): w|T∈Pk+1(T)}. | (65) |
The standard weak Galerkin finite element spaces are
Vsh={v={v0,vb}: v0|T∈[Pk(T)]d,vb|e∈[Pk(e)]d,e⊂∂T},Wsh={w∈L20(Ω): w|T∈Pk(T)}. | (66) |
In Table 1, we list the errors and the orders of convergence, for the two types
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.3051E-03 | 3.95 | 0.3440E-01 | 3.02 | 0.9223E-02 | 2.95 |
5 | 0.1964E-04 | 3.96 | 0.4313E-02 | 3.00 | 0.1209E-02 | 2.93 |
6 | 0.1248E-05 | 3.98 | 0.5421E-03 | 2.99 | 0.1555E-03 | 2.96 |
by the |
||||||
4 | 0.5450E-01 | 1.88 | 0.2828E+01 | 0.94 | 0.1912E+01 | 0.89 |
5 | 0.1390E-01 | 1.97 | 0.1430E+01 | 0.98 | 0.9708E+00 | 0.98 |
6 | 0.3492E-02 | 1.99 | 0.7171E+00 | 1.00 | 0.4873E+00 | 0.99 |
To see the superconvergence phenomenon, in Figure 2, we plot the first component of
In Figure 3, we plot the second component of
In Table 2, we compute the two-order superconvergent
Grid | rate | rate | rate | |||
by the |
||||||
3 | 0.8289E-03 | 5.12 | 0.8054E-01 | 4.12 | 0.5896E-02 | 4.32 |
4 | 0.2507E-04 | 5.05 | 0.4871E-02 | 4.05 | 0.3609E-03 | 4.03 |
5 | 0.7763E-06 | 5.01 | 0.3018E-03 | 4.01 | 0.2277E-04 | 3.99 |
by the |
||||||
3 | 0.8848E-02 | 3.06 | 0.4878E+00 | 2.30 | 0.3476E+00 | 1.79 |
4 | 0.1128E-02 | 2.97 | 0.1213E+00 | 2.01 | 0.8938E-01 | 1.96 |
5 | 0.1416E-03 | 2.99 | 0.3035E-01 | 2.00 | 0.2234E-01 | 2.00 |
Grid | rate | rate | rate | |||
by the |
||||||
2 | 0.6018E-02 | 6.29 | 0.3910E+00 | 5.28 | 0.1249E-01 | 5.72 |
3 | 0.8806E-04 | 6.09 | 0.1146E-01 | 5.09 | 0.2933E-03 | 5.41 |
4 | 0.1352E-05 | 6.03 | 0.3526E-03 | 5.02 | 0.8304E-05 | 5.14 |
by the |
||||||
3 | 0.1595E-03 | 5.24 | 0.1700E-01 | 4.52 | 0.1625E-01 | 0.46 |
4 | 0.8572E-05 | 4.22 | 0.1641E-02 | 3.37 | 0.2105E-02 | 2.95 |
5 | 0.5330E-06 | 4.01 | 0.2041E-03 | 3.01 | 0.2636E-03 | 3.00 |
We solve the problem (64) again, on polygonal grids, consisting of quadrilaterals, pentagons and hexagons, shown in Figure 5. We intentionally perturb the grids to show that the two-order superconvergence is grid independent, i.e., not necessarily on uniform grids. In Table 4, we list the errors and the orders of convergence. The computational results match the theoretic order of convergence, in all cases.
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.2202E-01 | 1.80 | 0.2885E+00 | 1.91 | 0.2138E+00 | 1.97 |
5 | 0.5715E-02 | 1.95 | 0.7374E-01 | 1.97 | 0.5376E-01 | 1.99 |
6 | 0.1442E-02 | 1.99 | 0.1861E-01 | 1.99 | 0.1351E-01 | 1.99 |
by the |
||||||
4 | 0.2512E-03 | 3.86 | 0.2922E-01 | 2.94 | 0.8673E-02 | 2.93 |
5 | 0.1661E-04 | 3.92 | 0.3737E-02 | 2.97 | 0.1147E-02 | 2.92 |
6 | 0.1066E-05 | 3.96 | 0.4735E-03 | 2.98 | 0.1481E-03 | 2.95 |
by the |
||||||
3 | 0.5373E-03 | 5.10 | 0.5945E-01 | 4.16 | 0.5018E-02 | 4.11 |
4 | 0.1639E-04 | 5.04 | 0.3567E-02 | 4.06 | 0.3219E-03 | 3.96 |
5 | 0.5101E-06 | 5.01 | 0.2208E-03 | 4.01 | 0.2063E-04 | 3.96 |
by the |
||||||
2 | 0.3384E-02 | 6.26 | 0.2770E+00 | 5.30 | 0.8473E-02 | 5.54 |
3 | 0.4985E-04 | 6.08 | 0.8069E-02 | 5.10 | 0.2273E-03 | 5.22 |
4 | 0.7855E-06 | 5.99 | 0.2525E-03 | 5.00 | 0.6876E-05 | 5.05 |
We compute the following 2D driven cavity flow on domain
−Δu+∇p=0inΩ,∇⋅u=0inΩ,u={(10)on[0,1]×{1},0on∂Ω∖{[0,1]×{1}}. |
The solution is not in
The computed velocity field is plotted in Figure 7.
The extra fine grid near the two top corners gives an accurate solution at these singularity points. The zoom-in plots at the two corners are displayed in Figures 8-9.
Because we use smaller square elements at the two bottom corners, we can compute the secondary flow at these two corners well. They are plotted in Figures 10-11.
We zoom-in further the solution at the lower-left corner. We can see in Figure 12 there is another secondary flow generated by the secondary flow in Figure 10. Nevertheless we can see such a computed flow is not mass conservative. We need to use
We compute a 3D problem (1)-(3) with
u=(−gygx+gz−gy), p=gyzwhere g=212(x−x2)2(y−y2)2(z−z2)2. | (67) |
We use tetrahedral meshes shown in Figure 13. The results of the 3D
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.8167E-01 | 1.59 | 0.1864E+01 | 1.83 | 0.5772E+00 | 1.78 |
5 | 0.2228E-01 | 1.87 | 0.4851E+00 | 1.94 | 0.1575E+00 | 1.87 |
6 | 0.5689E-02 | 1.97 | 0.1228E+00 | 1.98 | 0.3776E-01 | 2.06 |
by the |
||||||
3 | 0.6428E-01 | 3.50 | 0.4486E+01 | 2.52 | 0.6305E+00 | 3.23 |
4 | 0.4636E-02 | 3.79 | 0.6105E+00 | 2.88 | 0.8163E-01 | 2.95 |
5 | 0.2856E-03 | 4.02 | 0.7796E-01 | 2.97 | 0.9492E-02 | 3.10 |
by the |
||||||
2 | 0.7217E+00 | 3.28 | 0.3793E+02 | 1.89 | 0.2623E+01 | 5.54 |
3 | 0.2563E-01 | 4.82 | 0.2898E+01 | 3.71 | 0.2215E+00 | 3.57 |
4 | 0.8352E-03 | 4.94 | 0.1942E+00 | 3.90 | 0.1439E-01 | 3.94 |
[1] |
A note on the optimal degree of the weak gradient of the stabilizer free weak Galerkin finite element method. Appl. Numer. Math. (2020) 150: 444-451. ![]() |
[2] |
The lowest-order stabilizer free weak Galerkin finite element method. Appl. Numer. Math. (2020) 157: 434-445. ![]() |
[3] |
Superconvergence of numerical gradient for weak Galerkin finite element methods on nonuniform Cartesian partitions in three dimensions. Comput. Math. Appl. (2019) 78: 905-928. ![]() |
[4] |
Superconvergence of the gradient approximation for weak Galerkin finite element methods on rectangular partitions. Appl. Numer. Math. (2020) 150: 396-417. ![]() |
[5] |
New error estimates of nonconforming mixed finite element methods for the Stokes problem. Math. Methods Appl. Sci. (2014) 37: 937-951. ![]() |
[6] |
Lowest-order weak Galerkin finite element method for Darcy flow on convex polygonal meshes. SIAM J. Sci. Comput. (2018) 40: 1229-1252. ![]() |
[7] |
L. Mu, Pressure robust weak Galerkin finite element methods for Stokes problems, SIAM J. Sci. Comput., 42 (2020), B608-B629. doi: 10.1137/19M1266320
![]() |
[8] |
Stability and approximability of the P1-P0 element for Stokes equations. Internat. J. Numer. Methods Fluids (2007) 54: 497-515. ![]() |
[9] |
Stability of the finite elements 9/(4c+1) and 9/5c for stationary Stokes equations. Comput. & Structures (2005) 84: 70-77. ![]() |
[10] |
A Weak Galerkin mixed finite element method for second-order elliptic problems. Math. Comp. (2014) 83: 2101-2126. ![]() |
[11] |
X. Ye and S. Zhang, A stabilizer-free weak Galerkin finite element method on polytopal meshes, J. Comput. Appl. Math, 371 (2020), 112699. arXiv: 1906.06634. doi: 10.1016/j.cam.2019.112699
![]() |
[12] | X. Ye and S. Zhang, A conforming discontinuous Galerkin finite element method: Part Ⅱ, Int. J. Numer. Anal. Model., 17 (2020), 110-117. arXiv: 1904.03331. |
[13] |
X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part Ⅱ, J. Comput. Appl. Math., 394 (2021), 113525, 11 pp. arXiv: 2008.13631. doi: 10.1016/j.cam.2021.113525
![]() |
[14] |
X. Ye and S. Zhang, A stabilizer free weak Galerkin finite element method on polytopal mesh: Part Ⅲ, J. Comput. Appl. Math., 394 (2021), 113538, 9 pp. arXiv: 2009.08536. doi: 10.1016/j.cam.2021.113538
![]() |
[15] |
X. Ye and S. Zhang, A stabilizer-free pressure-robust finite element method for the Stokes equations, Adv. Comput. Math., 47 (2021), Paper No. 28, 17 pp. doi: 10.1007/s10444-021-09856-9
![]() |
[16] | A 3D conforming-nonconforming mixed finite element for solving symmetric stress Stokes equations. Int. J. Numer. Anal. Model. (2017) 14: 730-743. |
[17] |
A new family of stable mixed finite elements for the 3D Stokes equations. Math. Comp. (2005) 74: 543-554. ![]() |
[18] | On the P1 Powell-Sabin divergence-free finite element for the Stokes equations. J. Comput. Math. (2008) 26: 456-470. |
[19] |
Divergence-free finite elements on tetrahedral grids for k≥6. Math. Comp. (2011) 80: 669-695. ![]() |
[20] |
Quadratic divergence-free finite elements on Powell-Sabin tetrahedral grids. Calcolo (2011) 48: 211-244. ![]() |
[21] |
C0P2-P0 Stokes finite element pair on sub-hexahedron tetrahedral grids. Calcolo (2017) 54: 1403-1417. ![]() |
1. | Shenglan Xie, Peng Zhu, Superconvergence of a WG method for the Stokes equations with continuous pressure, 2022, 179, 01689274, 27, 10.1016/j.apnum.2022.04.012 | |
2. | Xiu Ye, Shangyou Zhang, A conforming discontinuous Galerkin finite element method for the Stokes problem on polytopal meshes, 2021, 93, 0271-2091, 1913, 10.1002/fld.4959 | |
3. | Naresh Kumar, Bhupen Deka, A stabilizer free weak Galerkin finite element method for second‐order Sobolev equation, 2022, 0749-159X, 10.1002/num.22960 | |
4. | Chunmei Wang, Shangyou Zhang, A weak Galerkin method for elasticity interface problems, 2023, 419, 03770427, 114726, 10.1016/j.cam.2022.114726 | |
5. | Naresh Kumar, Bhupen Deka, Developing Stabilizer Free Weak Galerkin finite element method for second-order wave equation, 2022, 415, 03770427, 114457, 10.1016/j.cam.2022.114457 | |
6. | Naresh Kumar, Supercloseness analysis of a stabilizer-free weak Galerkin finite element method for viscoelastic wave equations with variable coefficients, 2023, 49, 1019-7168, 10.1007/s10444-023-10010-w | |
7. | Xuejun Xu, Xiu Ye, Shangyou Zhang, A macro BDM H-div mixed finite element on polygonal and polyhedral meshes, 2024, 206, 01689274, 283, 10.1016/j.apnum.2024.08.013 | |
8. | Xiu Ye, Shangyou Zhang, Two-Order Superconvergent CDG Finite Element Method for the Heat Equation on Triangular and Tetrahedral Meshes, 2024, 2096-6385, 10.1007/s42967-024-00444-4 | |
9. | Rodolfo Araya, Cristian Cárcamo, Abner H. Poza, Eduardo Vino, An adaptive stabilized finite element method for the Stokes–Darcy coupled problem, 2024, 443, 03770427, 115753, 10.1016/j.cam.2024.115753 | |
10. | Xiu Ye, Shangyou Zhang, An H-div finite element method for the Stokes equations on polytopal meshes, 2024, 43, 2238-3603, 10.1007/s40314-024-02695-6 | |
11. | Yanping Lin, Xuejun Xu, Shangyou Zhang, Superconvergent P1 honeycomb virtual elements and lifted P3 solutions, 2024, 61, 0008-0624, 10.1007/s10092-024-00618-9 | |
12. | Xiu Ye, Shangyou Zhang, Constructing a CDG Finite Element with Order Two Superconvergence on Rectangular Meshes, 2023, 2096-6385, 10.1007/s42967-023-00330-5 | |
13. | Chunmei Wang, Xiu Ye, Shangyou Zhang, A modified weak Galerkin finite element method for the Maxwell equations on polyhedral meshes, 2024, 448, 03770427, 115918, 10.1016/j.cam.2024.115918 | |
14. | Shangyou Zhang, Peng Zhu, BDM H(div) weak Galerkin finite element methods for Stokes equations, 2024, 197, 01689274, 307, 10.1016/j.apnum.2023.11.021 | |
15. | Junping Wang, Xiaoshen Wang, Xiu Ye, Shangyou Zhang, Peng Zhu, On the superconvergence of a WG method for the elliptic problem with variable coefficients, 2024, 67, 1674-7283, 1899, 10.1007/s11425-022-2097-8 | |
16. | Yufeng Nie, Xiu Ye, Shangyou Zhang, A Potential-Robust WG Finite Element Method for the Maxwell Equations on Tetrahedral Meshes, 2025, 1609-4840, 10.1515/cmam-2024-0144 |
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.3051E-03 | 3.95 | 0.3440E-01 | 3.02 | 0.9223E-02 | 2.95 |
5 | 0.1964E-04 | 3.96 | 0.4313E-02 | 3.00 | 0.1209E-02 | 2.93 |
6 | 0.1248E-05 | 3.98 | 0.5421E-03 | 2.99 | 0.1555E-03 | 2.96 |
by the |
||||||
4 | 0.5450E-01 | 1.88 | 0.2828E+01 | 0.94 | 0.1912E+01 | 0.89 |
5 | 0.1390E-01 | 1.97 | 0.1430E+01 | 0.98 | 0.9708E+00 | 0.98 |
6 | 0.3492E-02 | 1.99 | 0.7171E+00 | 1.00 | 0.4873E+00 | 0.99 |
Grid | rate | rate | rate | |||
by the |
||||||
3 | 0.8289E-03 | 5.12 | 0.8054E-01 | 4.12 | 0.5896E-02 | 4.32 |
4 | 0.2507E-04 | 5.05 | 0.4871E-02 | 4.05 | 0.3609E-03 | 4.03 |
5 | 0.7763E-06 | 5.01 | 0.3018E-03 | 4.01 | 0.2277E-04 | 3.99 |
by the |
||||||
3 | 0.8848E-02 | 3.06 | 0.4878E+00 | 2.30 | 0.3476E+00 | 1.79 |
4 | 0.1128E-02 | 2.97 | 0.1213E+00 | 2.01 | 0.8938E-01 | 1.96 |
5 | 0.1416E-03 | 2.99 | 0.3035E-01 | 2.00 | 0.2234E-01 | 2.00 |
Grid | rate | rate | rate | |||
by the |
||||||
2 | 0.6018E-02 | 6.29 | 0.3910E+00 | 5.28 | 0.1249E-01 | 5.72 |
3 | 0.8806E-04 | 6.09 | 0.1146E-01 | 5.09 | 0.2933E-03 | 5.41 |
4 | 0.1352E-05 | 6.03 | 0.3526E-03 | 5.02 | 0.8304E-05 | 5.14 |
by the |
||||||
3 | 0.1595E-03 | 5.24 | 0.1700E-01 | 4.52 | 0.1625E-01 | 0.46 |
4 | 0.8572E-05 | 4.22 | 0.1641E-02 | 3.37 | 0.2105E-02 | 2.95 |
5 | 0.5330E-06 | 4.01 | 0.2041E-03 | 3.01 | 0.2636E-03 | 3.00 |
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.2202E-01 | 1.80 | 0.2885E+00 | 1.91 | 0.2138E+00 | 1.97 |
5 | 0.5715E-02 | 1.95 | 0.7374E-01 | 1.97 | 0.5376E-01 | 1.99 |
6 | 0.1442E-02 | 1.99 | 0.1861E-01 | 1.99 | 0.1351E-01 | 1.99 |
by the |
||||||
4 | 0.2512E-03 | 3.86 | 0.2922E-01 | 2.94 | 0.8673E-02 | 2.93 |
5 | 0.1661E-04 | 3.92 | 0.3737E-02 | 2.97 | 0.1147E-02 | 2.92 |
6 | 0.1066E-05 | 3.96 | 0.4735E-03 | 2.98 | 0.1481E-03 | 2.95 |
by the |
||||||
3 | 0.5373E-03 | 5.10 | 0.5945E-01 | 4.16 | 0.5018E-02 | 4.11 |
4 | 0.1639E-04 | 5.04 | 0.3567E-02 | 4.06 | 0.3219E-03 | 3.96 |
5 | 0.5101E-06 | 5.01 | 0.2208E-03 | 4.01 | 0.2063E-04 | 3.96 |
by the |
||||||
2 | 0.3384E-02 | 6.26 | 0.2770E+00 | 5.30 | 0.8473E-02 | 5.54 |
3 | 0.4985E-04 | 6.08 | 0.8069E-02 | 5.10 | 0.2273E-03 | 5.22 |
4 | 0.7855E-06 | 5.99 | 0.2525E-03 | 5.00 | 0.6876E-05 | 5.05 |
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.8167E-01 | 1.59 | 0.1864E+01 | 1.83 | 0.5772E+00 | 1.78 |
5 | 0.2228E-01 | 1.87 | 0.4851E+00 | 1.94 | 0.1575E+00 | 1.87 |
6 | 0.5689E-02 | 1.97 | 0.1228E+00 | 1.98 | 0.3776E-01 | 2.06 |
by the |
||||||
3 | 0.6428E-01 | 3.50 | 0.4486E+01 | 2.52 | 0.6305E+00 | 3.23 |
4 | 0.4636E-02 | 3.79 | 0.6105E+00 | 2.88 | 0.8163E-01 | 2.95 |
5 | 0.2856E-03 | 4.02 | 0.7796E-01 | 2.97 | 0.9492E-02 | 3.10 |
by the |
||||||
2 | 0.7217E+00 | 3.28 | 0.3793E+02 | 1.89 | 0.2623E+01 | 5.54 |
3 | 0.2563E-01 | 4.82 | 0.2898E+01 | 3.71 | 0.2215E+00 | 3.57 |
4 | 0.8352E-03 | 4.94 | 0.1942E+00 | 3.90 | 0.1439E-01 | 3.94 |
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.3051E-03 | 3.95 | 0.3440E-01 | 3.02 | 0.9223E-02 | 2.95 |
5 | 0.1964E-04 | 3.96 | 0.4313E-02 | 3.00 | 0.1209E-02 | 2.93 |
6 | 0.1248E-05 | 3.98 | 0.5421E-03 | 2.99 | 0.1555E-03 | 2.96 |
by the |
||||||
4 | 0.5450E-01 | 1.88 | 0.2828E+01 | 0.94 | 0.1912E+01 | 0.89 |
5 | 0.1390E-01 | 1.97 | 0.1430E+01 | 0.98 | 0.9708E+00 | 0.98 |
6 | 0.3492E-02 | 1.99 | 0.7171E+00 | 1.00 | 0.4873E+00 | 0.99 |
Grid | rate | rate | rate | |||
by the |
||||||
3 | 0.8289E-03 | 5.12 | 0.8054E-01 | 4.12 | 0.5896E-02 | 4.32 |
4 | 0.2507E-04 | 5.05 | 0.4871E-02 | 4.05 | 0.3609E-03 | 4.03 |
5 | 0.7763E-06 | 5.01 | 0.3018E-03 | 4.01 | 0.2277E-04 | 3.99 |
by the |
||||||
3 | 0.8848E-02 | 3.06 | 0.4878E+00 | 2.30 | 0.3476E+00 | 1.79 |
4 | 0.1128E-02 | 2.97 | 0.1213E+00 | 2.01 | 0.8938E-01 | 1.96 |
5 | 0.1416E-03 | 2.99 | 0.3035E-01 | 2.00 | 0.2234E-01 | 2.00 |
Grid | rate | rate | rate | |||
by the |
||||||
2 | 0.6018E-02 | 6.29 | 0.3910E+00 | 5.28 | 0.1249E-01 | 5.72 |
3 | 0.8806E-04 | 6.09 | 0.1146E-01 | 5.09 | 0.2933E-03 | 5.41 |
4 | 0.1352E-05 | 6.03 | 0.3526E-03 | 5.02 | 0.8304E-05 | 5.14 |
by the |
||||||
3 | 0.1595E-03 | 5.24 | 0.1700E-01 | 4.52 | 0.1625E-01 | 0.46 |
4 | 0.8572E-05 | 4.22 | 0.1641E-02 | 3.37 | 0.2105E-02 | 2.95 |
5 | 0.5330E-06 | 4.01 | 0.2041E-03 | 3.01 | 0.2636E-03 | 3.00 |
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.2202E-01 | 1.80 | 0.2885E+00 | 1.91 | 0.2138E+00 | 1.97 |
5 | 0.5715E-02 | 1.95 | 0.7374E-01 | 1.97 | 0.5376E-01 | 1.99 |
6 | 0.1442E-02 | 1.99 | 0.1861E-01 | 1.99 | 0.1351E-01 | 1.99 |
by the |
||||||
4 | 0.2512E-03 | 3.86 | 0.2922E-01 | 2.94 | 0.8673E-02 | 2.93 |
5 | 0.1661E-04 | 3.92 | 0.3737E-02 | 2.97 | 0.1147E-02 | 2.92 |
6 | 0.1066E-05 | 3.96 | 0.4735E-03 | 2.98 | 0.1481E-03 | 2.95 |
by the |
||||||
3 | 0.5373E-03 | 5.10 | 0.5945E-01 | 4.16 | 0.5018E-02 | 4.11 |
4 | 0.1639E-04 | 5.04 | 0.3567E-02 | 4.06 | 0.3219E-03 | 3.96 |
5 | 0.5101E-06 | 5.01 | 0.2208E-03 | 4.01 | 0.2063E-04 | 3.96 |
by the |
||||||
2 | 0.3384E-02 | 6.26 | 0.2770E+00 | 5.30 | 0.8473E-02 | 5.54 |
3 | 0.4985E-04 | 6.08 | 0.8069E-02 | 5.10 | 0.2273E-03 | 5.22 |
4 | 0.7855E-06 | 5.99 | 0.2525E-03 | 5.00 | 0.6876E-05 | 5.05 |
Grid | rate | rate | rate | |||
by the |
||||||
4 | 0.8167E-01 | 1.59 | 0.1864E+01 | 1.83 | 0.5772E+00 | 1.78 |
5 | 0.2228E-01 | 1.87 | 0.4851E+00 | 1.94 | 0.1575E+00 | 1.87 |
6 | 0.5689E-02 | 1.97 | 0.1228E+00 | 1.98 | 0.3776E-01 | 2.06 |
by the |
||||||
3 | 0.6428E-01 | 3.50 | 0.4486E+01 | 2.52 | 0.6305E+00 | 3.23 |
4 | 0.4636E-02 | 3.79 | 0.6105E+00 | 2.88 | 0.8163E-01 | 2.95 |
5 | 0.2856E-03 | 4.02 | 0.7796E-01 | 2.97 | 0.9492E-02 | 3.10 |
by the |
||||||
2 | 0.7217E+00 | 3.28 | 0.3793E+02 | 1.89 | 0.2623E+01 | 5.54 |
3 | 0.2563E-01 | 4.82 | 0.2898E+01 | 3.71 | 0.2215E+00 | 3.57 |
4 | 0.8352E-03 | 4.94 | 0.1942E+00 | 3.90 | 0.1439E-01 | 3.94 |