In this paper, a weak Galerkin (WG for short) finite element method is used to approximate nonlinear stochastic parabolic partial differential equations with spatiotemporal additive noises. We set up a semi-discrete WG scheme for the stochastic equations, and derive the optimal order for error estimates in the sense of strong convergence.
Citation: Hongze Zhu, Chenguang Zhou, Nana Sun. A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise[J]. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
In this paper, a weak Galerkin (WG for short) finite element method is used to approximate nonlinear stochastic parabolic partial differential equations with spatiotemporal additive noises. We set up a semi-discrete WG scheme for the stochastic equations, and derive the optimal order for error estimates in the sense of strong convergence.
[1] | L. Arnold, R. Lefever (eds.), Stochastic nonlinear systems in physics, chemistry, and biology, vol. 8 of Springer Series in Synergetics, Springer-Verlag, Berlin-New York, 1981. |
[2] | M. Baccouch, A finite difference method for stochastic nonlinear second-order boundary-value problems driven by additive noises, Int. J. Numer. Anal. Model., 17 (2020), 368–389. |
[3] | M. Cai, S. Gan, X. Wang, Weak convergence rates for an explicit full-discretization of stochastic Allen-Cahn equation with additive noise, J. Sci. Comput., 86 (2021), Paper No. 34, 30. https://doi.org/10.1007/s10915-020-01378-8 doi: 10.1007/s10915-020-01378-8 |
[4] | M. Baccouch, H. Temimi, M. Ben-Romdhane, The discontinuous Galerkin method for stochastic differential equations driven by additive noises, Appl. Numer. Math., 152 (2020), 285–309. https://doi.org/10.1016/j.apnum.2019.11.020 doi: 10.1016/j.apnum.2019.11.020 |
[5] | R. Qi, X. Wang, Optimal error estimates of Galerkin finite element methods for stochastic Allen-Cahn equation with additive noise, J. Sci. Comput., 80 (2019), 1171–1194. https://doi.org/10.1007/s10915-019-00973-8 doi: 10.1007/s10915-019-00973-8 |
[6] | M. Baccouch, A stochastic local discontinuous Galerkin method for stochastic two-point boundary-value problems driven by additive noises, Appl. Numer. Math., 128 (2018), 43–64. https://doi.org/10.1016/j.apnum.2018.01.023 doi: 10.1016/j.apnum.2018.01.023 |
[7] | S. Chai, Y. Cao, Y. Zou, W. Zhao, Conforming finite element methods for the stochastic Cahn-Hilliard-Cook equation, Appl. Numer. Math., 124 (2018), 44–56. https://doi.org/10.1016/j.apnum.2017.09.010 doi: 10.1016/j.apnum.2017.09.010 |
[8] | H. Zhu, Y. Zou, S. Chai, C. Zhou, Numerical approximation to a stochastic parabolic PDE with weak Galerkin method, Numer. Math. Theory Methods Appl., 11 (2018), 604–617. https://doi.org/10.4208/nmtma.2017-oa-0122 doi: 10.4208/nmtma.2017-oa-0122 |
[9] | H. Zhu, Y. Zou, S. Chai, C. Zhou, A weak Galerkin method with RT elements for a stochastic parabolic differential equation, East Asian J. Appl. Math., 9 (2019), 818–830. https://doi.org/10.4208/eajam.290518.020219 doi: 10.4208/eajam.290518.020219 |
[10] | J. Wang, X. Ye, A weak Galerkin finite element method for second-order elliptic problems, J. Comput. Appl. Math., 241 (2013), 103–115. https://doi.org/10.1016/j.cam.2012.10.003 doi: 10.1016/j.cam.2012.10.003 |
[11] | M. Cui, S. Zhang, On the uniform convergence of the weak Galerkin finite element method for a singularly-perturbed biharmonic equation, J. Sci. Comput., 82 (2020), Paper No. 5, 15. https://doi.org/10.1007/s10915-019-01120-z doi: 10.1007/s10915-019-01120-z |
[12] | Y. Yan, Semidiscrete Galerkin approximation for a linear stochastic parabolic partial differential equation driven by an additive noise, BIT, 44 (2004), 829–847. https://doi.org/10.1007/s10543-004-3755-5 doi: 10.1007/s10543-004-3755-5 |
[13] | X. Wang, Y. Zou, Q. Zhai, An effective implementation for Stokes equation by the weak Galerkin finite element method, J. Comput. Appl. Math., 370 (2020), 112586, 8. https://doi.org/10.1016/j.cam.2019.112586 doi: 10.1016/j.cam.2019.112586 |
[14] | J. Zhang, C. Zhou, Y. Cao, A. J. Meir, A locking free numerical approximation for quasilinear poroelasticity problems, Comput. Math. Appl., 80 (2020), 1538–1554. https://doi.org/10.1016/j.camwa.2020.07.011 doi: 10.1016/j.camwa.2020.07.011 |
[15] | S. Chai, Y. Zou, C. Zhou, W. Zhao, Weak Galerkin finite element methods for a fourth order parabolic equation, Numer. Methods Partial Differential Equations, 35 (2019), 1745–1755. https://doi.org/10.1002/num.22373 doi: 10.1002/num.22373 |
[16] | C. Zhou, Y. Zou, S. Chai, Q. Zhang, H. Zhu, Weak Galerkin mixed finite element method for heat equation, Appl. Numer. Math., 123 (2018), 180–199. https://doi.org/10.1016/j.apnum.2017.08.009 doi: 10.1016/j.apnum.2017.08.009 |
[17] | R. A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. |
[18] | G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, vol. 152 of Encyclopedia of Mathematics and its Applications, 2nd edition, Cambridge University Press, Cambridge, 2014. https://doi.org/10.1017/CBO9781107295513 |
[19] | V. Thomée, Galerkin finite element methods for parabolic problems, vol. 1054 of Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1984. |
[20] | R. Kruse, Optimal error estimates of Galerkin finite element methods for stochastic partial differential equations with multiplicative noise, IMA J. Numer. Anal., 34 (2014), 217–251. https://doi.org/10.1093/imanum/drs055 doi: 10.1093/imanum/drs055 |
[21] | L. Mu, J. Wang, X. Ye, Weak Galerkin finite element methods on polytopal meshes, Int. J. Numer. Anal. Model., 12 (2015), 31–53. https://doi.org/10.1007/s10915-014-9964-4 doi: 10.1007/s10915-014-9964-4 |
[22] | C. Wang, J. Wang, R. Wang, R. Zhang, A locking-free weak Galerkin finite element method for elasticity problems in the primal formulation, J. Comput. Appl. Math., 307 (2016), 346–366. https://doi.org/10.1016/j.cam.2015.12.015 doi: 10.1016/j.cam.2015.12.015 |