
The deterministic Degasperis-Procesi equation admits weak multi-shockpeakon solutions of the form
u(x,t)=n∑i=1mi(t)e−|x−xi(t)|−n∑i=1si(t)sgn(x−xi(t))e−|x−xi(t)|,
where sgn(x) denotes the signum function with sgn(0)=0, if and only if the time-dependent parameters xi(t) (positions), mi(t) (momenta) and si(t) (shock strengths) satisfy a system of 3n ordinary differential equations. We prove that a stochastic perturbation of the Degasperis-Procesi equation also has weak multi-shockpeakon solutions if and only if the positions, momenta and shock strengths obey a system of 3n stochastic differential equations.
Citation: Lynnyngs K. Arruda. Multi-shockpeakons for the stochastic Degasperis-Procesi equation[J]. Electronic Research Archive, 2022, 30(6): 2303-2320. doi: 10.3934/era.2022117
[1] | Guenbo Hwang, Byungsoo Moon . Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28(1): 15-25. doi: 10.3934/era.2020002 |
[2] | Jun Meng, Shaoyong Lai . $ L^1 $ local stability to a nonlinear shallow water wave model. Electronic Research Archive, 2024, 32(9): 5409-5423. doi: 10.3934/era.2024251 |
[3] | Sahar Albosaily, Wael Mohammed, Mahmoud El-Morshedy . The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication. Electronic Research Archive, 2023, 31(6): 3552-3567. doi: 10.3934/era.2023180 |
[4] | Seda IGRET ARAZ, Mehmet Akif CETIN, Abdon ATANGANA . Existence, uniqueness and numerical solution of stochastic fractional differential equations with integer and non-integer orders. Electronic Research Archive, 2024, 32(2): 733-761. doi: 10.3934/era.2024035 |
[5] | Yanjiao Li, Yue Zhang . Dynamic behavior on a multi-time scale eco-epidemic model with stochastic disturbances. Electronic Research Archive, 2025, 33(3): 1667-1692. doi: 10.3934/era.2025078 |
[6] | Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118 |
[7] | Youngjin Hwang, Ildoo Kim, Soobin Kwak, Seokjun Ham, Sangkwon Kim, Junseok Kim . Unconditionally stable monte carlo simulation for solving the multi-dimensional Allen–Cahn equation. Electronic Research Archive, 2023, 31(8): 5104-5123. doi: 10.3934/era.2023261 |
[8] |
Guifen Liu, Wenqiang Zhao .
Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on |
[9] | Jiaqi Chang, Xiangxin Yin, Caoyuan Ma, Donghua Zhao, Yongzheng Sun . Estimation of the time cost with pinning control for stochastic complex networks. Electronic Research Archive, 2022, 30(9): 3509-3526. doi: 10.3934/era.2022179 |
[10] | Wenhui Niu, Xinhong Zhang, Daqing Jiang . Dynamics and numerical simulations of a generalized mosquito-borne epidemic model using the Ornstein-Uhlenbeck process: Stability, stationary distribution, and probability density function. Electronic Research Archive, 2024, 32(6): 3777-3818. doi: 10.3934/era.2024172 |
The deterministic Degasperis-Procesi equation admits weak multi-shockpeakon solutions of the form
u(x,t)=n∑i=1mi(t)e−|x−xi(t)|−n∑i=1si(t)sgn(x−xi(t))e−|x−xi(t)|,
where sgn(x) denotes the signum function with sgn(0)=0, if and only if the time-dependent parameters xi(t) (positions), mi(t) (momenta) and si(t) (shock strengths) satisfy a system of 3n ordinary differential equations. We prove that a stochastic perturbation of the Degasperis-Procesi equation also has weak multi-shockpeakon solutions if and only if the positions, momenta and shock strengths obey a system of 3n stochastic differential equations.
Consider the ab-family of Equations [1]
∂tu−∂xxtu+∂x(a(u,∂xu))=∂x(b′(u)(∂xu)22+b(u)∂xxu). | (1.1) |
The family (1.1) contains interesting deterministic equations, such as those studied by [2].
The first celebrated member of (1.1) is the well-known deterministic Camassa-Holm (CH) equation [3,4] (b(u)=u and a(u,ux)=32u2). The existence and classification of weak travelling wave solutions of the CH equation were considered in [5]. Stochastic perturbations of the CH equation were studied in [6,7,8,9,10].
If b(u)=u and a(u,ux)=u3, Eq (1.1) becomes the deterministic modified Camassa-Holm (mCH) equation
∂tu−∂xxtu=u∂xxxu+2∂xu∂xxu−3u2∂xu. | (1.2) |
Observe that the transformation u(x,t)=˜u(ξ,t), ξ=x+ct, c∈R, reduces (1.2) to the following modified Dullin-Gottwald-Holm (mDGH) equation
∂t˜u−∂ξξt˜u−˜u∂ξξξ˜u−2∂ξ˜u∂ξξ˜u+3˜u2∂ξ˜u=−c∂ξ˜u+c∂ξξξ˜u. |
Travelling waves for Eq (1.2) were found via computational methods by [11]. Wave breaking, classification of traveling waves and explicit elliptic peakons for the mCH equation (1.2) were analysed in [12]. An stochastic perturbation of the Dullin-Gottwald-Holm equation [13] was studied in [14].
The particular case of (1.1), where b(u)=u and a(u,ux)=2u2−(∂xu)22, corresponds to the deterministic Degasperis-Procesi (DP) equation [15]
∂tu−∂xxtu=u∂xxxu+3∂xu∂xxu−4u∂xu | (1.3) |
or, alternatively, to the hyperbolic-elliptic formulation
{∂tu+∂x(u22)+∂xp=0,(1−∂xx)p=32u2, | (1.4) |
which is used to define the weak solutions of the DP equation [16]. In fact, inverting
m=(1−∂xx)u |
as u=g∗m where
g(x)=12e−|x|, | (1.5) |
(1.4) can be expressed as a conservation law [17]:
∂tu+∂x[12u2+g∗(32u2)]=0. | (1.6) |
Weak solutions are functions which satisfy (1.6) in the usual distributional sense.
The DP equation (1.6) admits weak solutions representing a wave train of discontinuous solitons called shockpeakons [18], given by
u(x,t)=2n∑i=1mi(t)g(x−xi(t))+2n∑i=1si(t)g′(x−xi(t)), | (1.7) |
where g(x−y)=12e−|x−y|, and
g′(x)=−12sgn(x)e−|x|, | (1.8) |
with the convention g′(0)=0.
The n-shockpeakon (1.7) is a weak solution of the nonlocal DP equation (1.6) if and only if the time-dependent parameters xi (positions), mi (momenta), and si (shock strengths), i=1,...,n, satisfy the following dynamical system of 3n ODEs [18]:
dxidt=u(xi), dmidt=2siu(xi)−2mi{∂xu(xi)}, dsidt=−si{∂xu(xi)}, | (1.9) |
where
u(xi):=u(xi(t),t)=2n∑k=1mkg(xi−xk)+2n∑k=1skg′(xi−xk) | (1.10) |
and
{∂xu(xi)}={ux(xi)}:=2n∑k=1mkg′(xi−xk)+2n∑k=1skg(xi−xk). | (1.11) |
Remark 1.1. Of course, if si=0, for all i=1,2,...,n, then the n-shockpeakon ansatz (1.7) reduces to the ordinary n-peakon of the DP equation [19,20]
u(x,t)=2n∑i=1mi(t)g(x−xi(t)), | (1.12) |
where g is given by (1.5). The 2n DP multipeakon ODEs are understood in the case where the mi,i=1,..,n, are positive.
The DP equation is also completely integrable, possesses a Lax pair, a bi-Hamiltonian structure, and an infinite hierarchy of symmetries and conservation laws [21]. A method for the classification of all traveling wave solutions for some dispersive nonlinear wave equations that encompasses the DP equation (1.3) was presented in [5]. Global existence, L1-stability and uniqueness results for weak solutions in L1(R)∩BV(R) and in L2(R)∩L4(R) with an additional entropy condition were obtained in [22]. Here, BV(R) is the space of functions with bounded variation. The peakon-antipeakon interactions and shock waves in the DP equation were studied in [18,23,24]. In [18], the author showed that a jump discontinuity forms when a peakon collides with an antipeakon, and that the entropy weak solution in this case is described by a shockpeakon. Stochastic perturbations of the DP equation were studied in [1,25]. In [1], the authors considered the Cauchy problem for a stochastic (additive) perturbation of the DP equation (1.3) with the initial conditions in the class L2(R)∩L2+ϵ(R), for any small ϵ>0, and established the existence of a global pathwise solution, via kinetic theory [26]. In [25], the authors studied the global well-posedness of a stochastic dynamic driven by a linear and multiplicative noise, in the space of sample paths C([0,∞),Hs(R)), s>3/2.
This work is concerned with the existence of multi-shockpeakons of the stochastic Degasperis-Procesi (SDP) equation, in the one-dimensional domain R, with a multiplicative noise.
The stochastic evolution differential equations are given by
du=−(u∂xu+∂xp) dt−3n∑j=1ξj(t)(∂xu)∘dWjt, | (1.13) |
(1−∂xx)p=32u2, | (1.14) |
where x∈R. Here u=u(x,t) denotes the velocity of the fluid, {ξj}3nj=1 is a set of prescribed functions depending only on the time variable, the symbol ∘ denotes a Stratonovich stochastic process and {Wjt}3nj=1 is a set of Brownian motions.
Equations (1.13) and (1.14) can be reformulated into the following form:
du=−∂x[12u2+g∗(32u2)]dt−3n∑j=1ξj(∂xu)∘dWjt. | (1.15) |
We say that u is a weak solution to (1.15) if it satisfies the following integral equation
∬ϕdudx=∬∂xϕ[12u2+g∗(32u2)]dtdx−3n∑j=1∬ϕ[ξj(∂xu)]∘dWjtdx, | (1.16) |
for any test function ϕ(⋅,t)∈C∞0(R).
We seek weak solutions of the SDP equation (1.15) of the form
u(x,t)=n∑i=1ui(x,t)=2n∑i=1mi(t)g(x−xi(t))+2n∑i=1si(t)g′(x−xi(t)). | (1.17) |
Here we define ui to be the contribution from a single shockpeakon, xi(t),mi(t) and si(t), i=1,2,...,n, are the positions, momenta and shock strengths, respectively, g and g′ are given by (1.5) and (1.8), respectively, and we take g′(0)=0.
Remark 1.2. Of course, if si=0 for all i=1,2,...,n, then the multi-shockpeakon (1.17) reduces to the n-peakon
u(x,t)=2n∑i=1mi(t)g(x−xi(t)), | (1.18) |
where g is given by (1.5).
Let us state here the main result of this paper:
Theorem 2.1. The shockpeakon (1.17) is a weak solution of the SDP equation (1.15) if and only if the stochastic process for (x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t)) is given by the following system of 3n stochastic differential equations (SDEs)
dxi(t)=u(xi)dt+3n∑j=1ξj(t)∘dWjt | (2.1) |
dmi(t)=[2siu(xi)−2mi{∂xu(xi)}]dt, | (2.2) |
dsi(t)=−si{∂xu(xi)}dt, | (2.3) |
where
u(xi)=2n∑k=1mkg(xi−xk)+2n∑k=1skg′(xi−xk) | (2.4) |
and
{ux(xi)}={∂xu(xi)}:=2n∑k=1mkg′(xi−xk)+2n∑k=1skg(xi−xk), | (2.5) |
i=1,2,...,n.
Proof. Suppose that
dxi(t)=ai(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dt+3n∑j=1bij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)∘dWjt | (2.6) |
dmi(t)=ci(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dt+3n∑j=1dij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)∘dWjt | (2.7) |
dsi(t)=ei(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dt+3n∑j=1fij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)∘dWjt, | (2.8) |
i=1,2,...,n, are the stochastic differential equations for the evolution of xi(t),mi(t),si(t).
In what follows, we will use the abbreviations g(x−xi(t)) as gi, g′(x−xi(t)) as g′i, δi:=δ(x−xi(t)), i=1,...,n, (δ is the Dirac delta distribution) and for i=1,...,n, j=1,...,3n,
ai(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=ai, |
bij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=bij, |
ci(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=ci, |
dij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=dij, |
ei(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=ei, |
fij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=fij. |
We will look for solutions of the SDP equation (1.15) of the form (1.17) with xi(t),mi(t),si(t) obeying (2.6), (2.7) and (2.8), respectively, the functions ai,ci,ei, i=1,...,n, bij,dij and fij, i=1,...,n, j=1,...,3n, satisfying all the necessary conditions for the existence and uniqueness of solutions to (2.6)–(2.8) and their extendability to a given time interval [t0,t1] with t1>t0≥0.
Taking the differential of (1.17) and substituting in equations (2.6)–(2.8) we obtain
du=n∑i=1[∂ui∂xidxi+∂ui∂midmi+∂ui∂sidsi]=2n∑i=1mi(t)dg(x−xi(t))+2n∑i=1g(x−xi(t))dmi(t)+2n∑i=1si(t)dg′(x−xi(t))+2n∑i=1g(x−xi(t))dsi(t)=2n∑i=1mi(t)dg(x−xi(t))+2n∑i=1g(x−xi(t))[cidt+3n∑j=1dij∘dWjt]+2n∑i=1si(t)dg′(x−xi(t))+2n∑i=1g(x−xi(t))[eidt+3n∑j=1fij∘dWjt] |
=2n∑i=1mi(t)sgn(x−xi(t))g(x−xi(t))aidt+2n∑i=1mi(t)sgn(x−xi(t))g(x−xi(t))3n∑j=1bij∘dWjt+2n∑i=1g(x−xi(t))[cidt+3n∑j=1dij∘dWjt]+2n∑i=1si(t)[∂∂xig′(x−xi(t))ai]dt+2n∑i=1si(t)∂∂xig′(x−xi(t))3n∑j=1bij∘dWjt+2n∑i=1g′(x−xi(t))[eidt+3n∑j=1fij∘dWjt] |
=+2n∑i=1mi(t)sgn(x−xi(t))g(x−xi(t))aidt+2n∑i=1mi(t)sgn(x−xi(t))g(x−xi(t))3n∑j=1bij∘dWjt+2n∑i=1g(x−xi(t))[cidt+3n∑j=1dij∘dWjt]+2n∑i=1si(t)g(x−xi(t))(−1+2δ(x−xi(t)))aidt+2n∑i=1si(t)g(x−xi(t))(−1+2δ(x−xi(t)))3n∑j=1bij∘dWjt+2n∑i=1g′(x−xi(t))[eidt+3n∑j=1fij∘dWjt]. | (2.9) |
Furthermore, using formula (A3) in [18],
u2=4n∑k,l=1(mkmlgkgl+skslg′kg′l+mkslgkg′l+skmlg′kgl). | (2.10) |
This implies that
∂xu2=n∑k,l=14{(mkml+sksl)(gkg′l+g′kgl)+(mksl+skml)(gkgl+g′kg′l)−4[sksl(g′kδl+g′lδk)+mkslgkδl+mlskglδk]} | (2.11) |
(using formula (A4) in [18]).
From (2.10) and formula (A7) in [18] we have
2∂xp=2g′∗[32u2]=n∑k,l=14(−(mkml+sksl)(gkg′l+g′kgl)−4(mksl+skml)(gkgl+g′kg′l))+2n∑k,l=1e−|xk−xl|((mkml+sksl)(g′k+g′l)+mksl(4gk−gl)+skml(−gk+4gl))++2n∑k,l=1sgn(xk−xl)e−|xk−xl|((2mkml−sksl)(gk−gl)+(mksl+skml)(g′k−g′l)). | (2.12) |
From (2.9), (2.11) and (2.12) we obtain
0=2du+∂xu2dt+2(∂xp)dt+23n∑j=1ξj(∂xu)∘dWjt=2du+23n∑j=1ξj(∂xu)∘dWjt−8[n∑k=1(n∑l=1skg′l(xk)+n∑l=1mlgl(xk))skδk]dt+2[n∑k=1(2mkn∑l=1mle−|xk−xl|+2skn∑l=1sle−|xk−xl|)g′k]dt+2[n∑k=1(4mkn∑l=1sle−|xk−xl|−2skn∑l=1mle−|xk−xl|)gk]dt+2[n∑k=1(4mkn∑l=1mlsgn(xk−xl)e−|xk−xl|−2skn∑l=1slsgn(xk−xl)e−|xk−xl|)gk]dt+2[n∑k=1(2mkn∑l=1slsgn(xk−xl)e−|xk−xl|+2skn∑l=1mlsgn(xk−xl)e−|xk−xl|)g′k]dt=2du+23n∑j=1ξj(∂xu)∘dWjt−4[n∑k=1sku(xk)gkδk−n∑k=1(2mk{ux(xk)}−2sku(xk))gk−n∑k=1(sk{ux(xk)}+mku(xk))g′k]dt |
=[n∑i=1(−4miai+4ei)g′i]dt+[n∑i=1(4ci−4siai+4siδiai)gi]dt−[4n∑i=1siu(xi)giδi−4n∑i=1(2mi{ux(xi)}−2siu(xi))gi−4n∑i=1(si{ux(xi)}+miu(xi))g′i]dt+4n∑i=1mi(t)g′i3n∑j=1ξj∘dWjt+4n∑i=1si(t)gi3n∑j=1ξj∘dWjt−8n∑i=1si(t)δigi3n∑j=1ξj∘dWjt+4n∑i=1gi3n∑j=1dij∘dWjt−4n∑i=1gisi3n∑j=1bij∘dWjt−4n∑i=1(mig′i)3n∑j=1bij∘dWjt+4n∑i=1g′i3n∑j=1fij∘dWjt+8n∑i=1sigiδi3n∑j=1bij∘dWjt |
=[n∑i=1(−4miai+4ei)g′i]dt+[n∑i=1(4ci−4siai+4siδiai)gi]dt−[4n∑i=1siu(xi)giδi−4n∑i=1(2mi{ux(xi)}−2siu(xi))gi−4n∑i=1(si{ux(xi)}+miu(xi))g′i]dt+4n∑i=13n∑j=1[mi(ξj−bij)+fij]g′i∘dWjt+4n∑i=13n∑j=1[si(ξj−bij)+dij]gi∘dWjt+8n∑i=13n∑j=1(bij−ξj)sigiδi∘dWjt. | (2.13) |
In order to verify that (1.17) is a weak solution of the SDP equation (1.15) we will substitute it and (2.13) into (1.16) to obtain
2∬ϕn∑i=1[−mig′iai+sigi(2δi−1)ai+gici+g′iei]dtdx−∬∂xϕ[12u2+g∗(32u2)]dtdx=−2∬ϕn∑i=13n∑j=1[mi(ξj−bij)+fij]g′i∘dWjtdx−2∬ϕn∑i=13n∑j=1[si(ξj−bij)+dij]gi∘dWjtdx+4∬ϕn∑i=1siδigi3n∑j=1(ξj−bij)∘dWjtdx. | (2.14) |
We must show that the deterministic and stochastic parts of the above equation will both be equal to zero.
Consider the multi-shockpeakon solution for u from (1.17). This multi-shockpeakon is a weak solution to the deterministic equation, and therefore the left-hand side of (2.14) is zero. Moreover from (2.13) the left-hand side of (2.14) is zero if and only if ai=u(xi), ci=2siu(xi)−2mi{∂xu(xi)} and ei=−si{∂xu(xi)}, i=1,...,n, where u(xi) and {∂xu(xi)} are given by (2.4) and (2.5) respectively since {δi,gi,g′i}ni=1 is a linearly independent set. We also have
−[mi(ξj−bij)+fij]g′i−[si(ξj−bij)+dij]gi+2siδigi(ξj−bij)=0 |
almost everywhere if and only if bij=ξj, i=1,2,...,n, j=1,...,3n, and dij=fij=0, i=1,2,...,n, j=1,...,3n, since {δi,gi,g′i}ni=1 is a linearly independent set.
From the above Theorem we deduce the following results:
Corollary 2.2. The n-peakon (1.18) is a weak solution of the SDP equation (1.15) if and only if the stochastic process for (x1(t),...,xn(t),m1(t),...,mn(t)), is given by the following system of 2n SDEs
dxi(t)=u(xi)dt+3n∑j=1ξj∘dWjt,dmi(t)=[−2mi{ux(xi)}]dt, |
i=1,2,...,n.
Corollary 2.3. The stochastic process for
(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t)) |
(2.1)-(2.3) becomes the deterministic system of 3n ODEs (1.9) if and only if ξj=0, j=1,...,3n.
Remark 2.4. From Corollary 2.3 above and Theorem 2.1 in [18] it follows that the weak multi-shockpeakon of the form (1.17), with xi,mi and si, i=1,..,n, satisfying the system (2.1)–(2.3), with ξj=0, j=1,..,3n, is a solution of the deterministic DP equation in the weak form (1.6) (Equation (1.15) with ξj=0, j=1,...,3n).
Remark 2.5. From (2.2), (2.4) and (2.5) and Proposition 4.1 in [27], the multi-shockpeakon (1.17) conserves momentum.
Letting n=1 in (2.1)–(2.3) and choosing ξj(t)=constant=ξj(t0), j=1,2,3, we see that the dynamics of a single shockpeakon is described by the stochastic equations
dx1(t)=m1dt+3∑j=1ξj(t0)∘dWjt | (3.1) |
dm1(t)=0 | (3.2) |
ds1(t)=−s21dt. | (3.3) |
Thus m1(t)=m1(t0), and therefore
x1(t)=x1(t0)+m1(t0)(t−t0)+ξj(t0)3∑j=1(Wj(t)−Wj(t0)). |
The equation (3.3) is equivalent to s1≡0 or ddt(1/s1)=1; Consequently
s1(t)=s1(t0)1+(t−t0)s1(t0). |
It follows that
u(x,t)=m1(t0)e−|x−(x1(t0)+m1(t0)(t−t0)+ξj(t0)3∑j=1(Wj(t)−Wj(t0)))|+2s1(t0)1+(t−t0)s1(t0)g′(x−(x1(t0)+m1(t0)(t−t0)+ξj(t0)3∑j=1(Wj(t)−Wj(t0))), |
where g′ is given by (1.8).
In this section, numerical simulations are used to illustrate the effect of the stochastic term in the example above (See Figure 1–10). We take ξj≡1, j=1,2,3, and use that the increments Wj(t+Δt)−Wj(t), j = 1, 2, 3, have a normal distribution with zero expected value and variance equal to Δt.
Lynnyngs K. Arruda acknowledges support from the São Paulo Research Foundation (FAPESP) Grant 2021/05935-4, and the reviewers for the valuable comments.
The author declares there is no conflicts of interest.
[1] |
L. K. Arruda, N. V. Chemetov, F. Cipriano, Solvability of the Stochastic Degasperis-Procesi Equation, J. Dyn. Differ. Equ., (2021), 1–20. https://doi.org/10.1007/s10884-021-10021-5 doi: 10.1007/s10884-021-10021-5
![]() |
[2] |
S. Hakkaev, I. D. Iliev, K. Kirchev, Stability of periodic travelling shallow-water waves determined by Newton' s equation, J. Phys. A: Math. Theor., 41 (2008), 085203. https://doi.org/10.1088/1751-8113/41/8/085203 doi: 10.1088/1751-8113/41/8/085203
![]() |
[3] |
R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661–1664. https://doi.org/10.1103/PhysRevLett.71.1661 doi: 10.1103/PhysRevLett.71.1661
![]() |
[4] |
A. Fokas, B. Fuchssteiner, Symplectic structures, their Backlund transformation and hereditary symmetries, Physica D, 4 (1982), 47–66. https://doi.org/10.1016/0362-546X(81)90025-0 doi: 10.1016/0362-546X(81)90025-0
![]() |
[5] |
J. Lenells, Classification of all travelling-wave solutions for some nonlinear dispersive equations, Phil. Trans. R. Soc. A, 365 (2007), 2291–2298. https://doi.org/10.1098/rsta.2007.2009 doi: 10.1098/rsta.2007.2009
![]() |
[6] |
T. M. Bendall, C. J. Cotter, D. D. Holm, Perspectives on the formation of peakons in the stochastic Camassa-Holm equation, Proc. R. Soc. A., 477 (2021), 20210224. https://doi.org/10.1098/rspa.2021.0224 doi: 10.1098/rspa.2021.0224
![]() |
[7] |
Y. Chen, H. Gao, B. Guo, Well-posedness for stochastic Camassa-Holm equation, J. Differ. Equ., 253 (2012), 2353–2379. https://doi.org/10.1016/j.jde.2012.06.023 doi: 10.1016/j.jde.2012.06.023
![]() |
[8] |
D. Crisan, D. D. Holm, Wave breaking for the stochastic Camassa-Holm equation, Physica D, 376 (2018), 138–143. https://doi.org/10.1016/j.physd.2018.02.004 doi: 10.1016/j.physd.2018.02.004
![]() |
[9] |
D. D. Holm, T. M. Tyranowski, Variational principles for stochastic soliton dynamics, Proc. Math. Phys. Eng. Sci., 472 (2016), 20150827. https://doi.org/10.1098/rspa.2015.0827 doi: 10.1098/rspa.2015.0827
![]() |
[10] |
G. Lv, J. Wei, G. Zou, The dependence on initial data of stochastic Camassa-Holm equation, Appl. Math. Lett., (2020), 106472. https://doi.org/10.1016/j.aml.2020.106472 doi: 10.1016/j.aml.2020.106472
![]() |
[11] |
X. Deng, A note on exact travelling wave solutions for the modified Camassa-Holm and Degasperis-Procesi equations, Appl. Math. Comput., 218 (2009), 2269–2276. https://doi.org/10.1016/j.amc.2011.07.044 doi: 10.1016/j.amc.2011.07.044
![]() |
[12] | A. Darós, L. K. Arruda Saraiva de Paiva, The Modified Camassa-Holm Equation: Wave breaking, Classification of Traveling Waves and Explicit Elliptic Peakons, arXiv preprint, (2018), arXiv: 1809.02529. |
[13] |
H. R. Dullin, G. A. Gottwald, D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501. https://doi.org/10.1103/PhysRevLett.87.194501 doi: 10.1103/PhysRevLett.87.194501
![]() |
[14] |
C. Rohde, H. Tang, On the stochastic Dullin-Gottwald-Holm equation: Global existence and wave-breaking phenomena, Nonlinear Differ. Equ. Appl., 28 (2021), 1–34. https://doi.org/10.1007/s00030-021-00676-w doi: 10.1007/s00030-021-00676-w
![]() |
[15] | A. Degasperis, M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, (Rome, 1998), World Sci. Publishing, River Edge, NJ, (1999), 23–37. |
[16] |
G. M. Coclite, K. Karlsen, N. Risebro, Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation, IMA J. Numer. Anal., 28 (2008), 80–105. https://doi.org/10.1093/imanum/drm003 doi: 10.1093/imanum/drm003
![]() |
[17] |
Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649–666. https://doi.org/10.1215/ijm/1258138186 doi: 10.1215/ijm/1258138186
![]() |
[18] |
H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., 17 (2007), 169–198. https://doi.org/10.1007/s00332-006-0803-3 doi: 10.1007/s00332-006-0803-3
![]() |
[19] |
H. Lundmark, J. Szmigeilski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Probl., 19 (2003), 1241–1245. https://doi.org/10.1088/0266-5611/19/6/001 doi: 10.1088/0266-5611/19/6/001
![]() |
[20] |
H. Lundmark, J. Szmigeilski, Degasperis-Procesi peakons and the discrete cubic string, Int. Math. Res. Papers, 2 (2005), 53–116. https://doi.org/10.1155/IMRP.2005.53 doi: 10.1155/IMRP.2005.53
![]() |
[21] |
A. Degasperis, D. D. Holm, A. N. W. Hone, A New Integrable Equation with Peakon Solutions, Theor. Math. Phys., 133 (2002), 1463–1474. https://doi.org/10.1023/A:1021186408422 doi: 10.1023/A:1021186408422
![]() |
[22] |
G. M. Coclite, K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60–91. https://doi.org/10.1016/j.jfa.2005.07.008 doi: 10.1016/j.jfa.2005.07.008
![]() |
[23] |
J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis - Procesi equation, Indiana Univ. Math. J., 56 (2007), 87–117. https://doi.org/10.1512/iumj.2007.56.3040 doi: 10.1512/iumj.2007.56.3040
![]() |
[24] |
J. Szmigeilski, L. Zhou, Peakon-antipeakon interactions in the Degasperis-Procesi equation, in algebraic and geometric aspects of integrable systems and random matrices, Contemp. Math., 593 (2013), 83–107. https://doi.org/10.1090/conm/593/11873 doi: 10.1090/conm/593/11873
![]() |
[25] |
Y. Chen, H. Gao, Global existence for the stochastic Degasperis-Procesi equation, Discrete Contin. Dyn. Syst., 35 (2015), 5171–5184. https://doi.org/10.3934/dcds.2015.35.5171 doi: 10.3934/dcds.2015.35.5171
![]() |
[26] | B. Perthame, Kinetic formulation of conservation laws, Oxford University Press, 2002. |
[27] | H. A. Hoel, A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation, Electron. J. Differ. Equ., 2007 (2007), 1–22. |