Loading [MathJax]/jax/output/SVG/jax.js
Research article

Multi-shockpeakons for the stochastic Degasperis-Procesi equation

  • Received: 14 October 2021 Revised: 09 January 2022 Accepted: 09 January 2022 Published: 21 April 2022
  • The deterministic Degasperis-Procesi equation admits weak multi-shockpeakon solutions of the form

    u(x,t)=ni=1mi(t)e|xxi(t)|ni=1si(t)sgn(xxi(t))e|xxi(t)|,

    where sgn(x) denotes the signum function with sgn(0)=0, if and only if the time-dependent parameters xi(t) (positions), mi(t) (momenta) and si(t) (shock strengths) satisfy a system of 3n ordinary differential equations. We prove that a stochastic perturbation of the Degasperis-Procesi equation also has weak multi-shockpeakon solutions if and only if the positions, momenta and shock strengths obey a system of 3n stochastic differential equations.

    Citation: Lynnyngs K. Arruda. Multi-shockpeakons for the stochastic Degasperis-Procesi equation[J]. Electronic Research Archive, 2022, 30(6): 2303-2320. doi: 10.3934/era.2022117

    Related Papers:

    [1] Guenbo Hwang, Byungsoo Moon . Global existence and propagation speed for a Degasperis-Procesi equation with both dissipation and dispersion. Electronic Research Archive, 2020, 28(1): 15-25. doi: 10.3934/era.2020002
    [2] Jun Meng, Shaoyong Lai . $ L^1 $ local stability to a nonlinear shallow water wave model. Electronic Research Archive, 2024, 32(9): 5409-5423. doi: 10.3934/era.2024251
    [3] Sahar Albosaily, Wael Mohammed, Mahmoud El-Morshedy . The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication. Electronic Research Archive, 2023, 31(6): 3552-3567. doi: 10.3934/era.2023180
    [4] Seda IGRET ARAZ, Mehmet Akif CETIN, Abdon ATANGANA . Existence, uniqueness and numerical solution of stochastic fractional differential equations with integer and non-integer orders. Electronic Research Archive, 2024, 32(2): 733-761. doi: 10.3934/era.2024035
    [5] Yanjiao Li, Yue Zhang . Dynamic behavior on a multi-time scale eco-epidemic model with stochastic disturbances. Electronic Research Archive, 2025, 33(3): 1667-1692. doi: 10.3934/era.2025078
    [6] Hongze Zhu, Chenguang Zhou, Nana Sun . A weak Galerkin method for nonlinear stochastic parabolic partial differential equations with additive noise. Electronic Research Archive, 2022, 30(6): 2321-2334. doi: 10.3934/era.2022118
    [7] Youngjin Hwang, Ildoo Kim, Soobin Kwak, Seokjun Ham, Sangkwon Kim, Junseok Kim . Unconditionally stable monte carlo simulation for solving the multi-dimensional Allen–Cahn equation. Electronic Research Archive, 2023, 31(8): 5104-5123. doi: 10.3934/era.2023261
    [8] Guifen Liu, Wenqiang Zhao . Regularity of Wong-Zakai approximation for non-autonomous stochastic quasi-linear parabolic equation on $ {\mathbb{R}}^N $. Electronic Research Archive, 2021, 29(6): 3655-3686. doi: 10.3934/era.2021056
    [9] Jiaqi Chang, Xiangxin Yin, Caoyuan Ma, Donghua Zhao, Yongzheng Sun . Estimation of the time cost with pinning control for stochastic complex networks. Electronic Research Archive, 2022, 30(9): 3509-3526. doi: 10.3934/era.2022179
    [10] Wenhui Niu, Xinhong Zhang, Daqing Jiang . Dynamics and numerical simulations of a generalized mosquito-borne epidemic model using the Ornstein-Uhlenbeck process: Stability, stationary distribution, and probability density function. Electronic Research Archive, 2024, 32(6): 3777-3818. doi: 10.3934/era.2024172
  • The deterministic Degasperis-Procesi equation admits weak multi-shockpeakon solutions of the form

    u(x,t)=ni=1mi(t)e|xxi(t)|ni=1si(t)sgn(xxi(t))e|xxi(t)|,

    where sgn(x) denotes the signum function with sgn(0)=0, if and only if the time-dependent parameters xi(t) (positions), mi(t) (momenta) and si(t) (shock strengths) satisfy a system of 3n ordinary differential equations. We prove that a stochastic perturbation of the Degasperis-Procesi equation also has weak multi-shockpeakon solutions if and only if the positions, momenta and shock strengths obey a system of 3n stochastic differential equations.



    Consider the ab-family of Equations [1]

    tuxxtu+x(a(u,xu))=x(b(u)(xu)22+b(u)xxu). (1.1)

    The family (1.1) contains interesting deterministic equations, such as those studied by [2].

    The first celebrated member of (1.1) is the well-known deterministic Camassa-Holm (CH) equation [3,4] (b(u)=u and a(u,ux)=32u2). The existence and classification of weak travelling wave solutions of the CH equation were considered in [5]. Stochastic perturbations of the CH equation were studied in [6,7,8,9,10].

    If b(u)=u and a(u,ux)=u3, Eq (1.1) becomes the deterministic modified Camassa-Holm (mCH) equation

    tuxxtu=uxxxu+2xuxxu3u2xu. (1.2)

    Observe that the transformation u(x,t)=˜u(ξ,t), ξ=x+ct, cR, reduces (1.2) to the following modified Dullin-Gottwald-Holm (mDGH) equation

    t˜uξξt˜u˜uξξξ˜u2ξ˜uξξ˜u+3˜u2ξ˜u=cξ˜u+cξξξ˜u.

    Travelling waves for Eq (1.2) were found via computational methods by [11]. Wave breaking, classification of traveling waves and explicit elliptic peakons for the mCH equation (1.2) were analysed in [12]. An stochastic perturbation of the Dullin-Gottwald-Holm equation [13] was studied in [14].

    The particular case of (1.1), where b(u)=u and a(u,ux)=2u2(xu)22, corresponds to the deterministic Degasperis-Procesi (DP) equation [15]

    tuxxtu=uxxxu+3xuxxu4uxu (1.3)

    or, alternatively, to the hyperbolic-elliptic formulation

    {tu+x(u22)+xp=0,(1xx)p=32u2, (1.4)

    which is used to define the weak solutions of the DP equation [16]. In fact, inverting

    m=(1xx)u

    as u=gm where

    g(x)=12e|x|, (1.5)

    (1.4) can be expressed as a conservation law [17]:

    tu+x[12u2+g(32u2)]=0. (1.6)

    Weak solutions are functions which satisfy (1.6) in the usual distributional sense.

    The DP equation (1.6) admits weak solutions representing a wave train of discontinuous solitons called shockpeakons [18], given by

    u(x,t)=2ni=1mi(t)g(xxi(t))+2ni=1si(t)g(xxi(t)), (1.7)

    where g(xy)=12e|xy|, and

    g(x)=12sgn(x)e|x|, (1.8)

    with the convention g(0)=0.

    The n-shockpeakon (1.7) is a weak solution of the nonlocal DP equation (1.6) if and only if the time-dependent parameters xi (positions), mi (momenta), and si (shock strengths), i=1,...,n, satisfy the following dynamical system of 3n ODEs [18]:

    dxidt=u(xi),  dmidt=2siu(xi)2mi{xu(xi)},  dsidt=si{xu(xi)}, (1.9)

    where

    u(xi):=u(xi(t),t)=2nk=1mkg(xixk)+2nk=1skg(xixk) (1.10)

    and

    {xu(xi)}={ux(xi)}:=2nk=1mkg(xixk)+2nk=1skg(xixk). (1.11)

    Remark 1.1. Of course, if si=0, for all i=1,2,...,n, then the n-shockpeakon ansatz (1.7) reduces to the ordinary n-peakon of the DP equation [19,20]

    u(x,t)=2ni=1mi(t)g(xxi(t)), (1.12)

    where g is given by (1.5). The 2n DP multipeakon ODEs are understood in the case where the mi,i=1,..,n, are positive.

    The DP equation is also completely integrable, possesses a Lax pair, a bi-Hamiltonian structure, and an infinite hierarchy of symmetries and conservation laws [21]. A method for the classification of all traveling wave solutions for some dispersive nonlinear wave equations that encompasses the DP equation (1.3) was presented in [5]. Global existence, L1-stability and uniqueness results for weak solutions in L1(R)BV(R) and in L2(R)L4(R) with an additional entropy condition were obtained in [22]. Here, BV(R) is the space of functions with bounded variation. The peakon-antipeakon interactions and shock waves in the DP equation were studied in [18,23,24]. In [18], the author showed that a jump discontinuity forms when a peakon collides with an antipeakon, and that the entropy weak solution in this case is described by a shockpeakon. Stochastic perturbations of the DP equation were studied in [1,25]. In [1], the authors considered the Cauchy problem for a stochastic (additive) perturbation of the DP equation (1.3) with the initial conditions in the class L2(R)L2+ϵ(R), for any small ϵ>0, and established the existence of a global pathwise solution, via kinetic theory [26]. In [25], the authors studied the global well-posedness of a stochastic dynamic driven by a linear and multiplicative noise, in the space of sample paths C([0,),Hs(R)), s>3/2.

    This work is concerned with the existence of multi-shockpeakons of the stochastic Degasperis-Procesi (SDP) equation, in the one-dimensional domain R, with a multiplicative noise.

    The stochastic evolution differential equations are given by

    du=(uxu+xp) dt3nj=1ξj(t)(xu)dWjt, (1.13)
    (1xx)p=32u2, (1.14)

    where xR. Here u=u(x,t) denotes the velocity of the fluid, {ξj}3nj=1 is a set of prescribed functions depending only on the time variable, the symbol denotes a Stratonovich stochastic process and {Wjt}3nj=1 is a set of Brownian motions.

    Equations (1.13) and (1.14) can be reformulated into the following form:

    du=x[12u2+g(32u2)]dt3nj=1ξj(xu)dWjt. (1.15)

    We say that u is a weak solution to (1.15) if it satisfies the following integral equation

    ϕdudx=xϕ[12u2+g(32u2)]dtdx3nj=1ϕ[ξj(xu)]dWjtdx, (1.16)

    for any test function ϕ(,t)C0(R).

    We seek weak solutions of the SDP equation (1.15) of the form

    u(x,t)=ni=1ui(x,t)=2ni=1mi(t)g(xxi(t))+2ni=1si(t)g(xxi(t)). (1.17)

    Here we define ui to be the contribution from a single shockpeakon, xi(t),mi(t) and si(t), i=1,2,...,n, are the positions, momenta and shock strengths, respectively, g and g are given by (1.5) and (1.8), respectively, and we take g(0)=0.

    Remark 1.2. Of course, if si=0 for all i=1,2,...,n, then the multi-shockpeakon (1.17) reduces to the n-peakon

    u(x,t)=2ni=1mi(t)g(xxi(t)), (1.18)

    where g is given by (1.5).

    Let us state here the main result of this paper:

    Theorem 2.1. The shockpeakon (1.17) is a weak solution of the SDP equation (1.15) if and only if the stochastic process for (x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t)) is given by the following system of 3n stochastic differential equations (SDEs)

    dxi(t)=u(xi)dt+3nj=1ξj(t)dWjt (2.1)
    dmi(t)=[2siu(xi)2mi{xu(xi)}]dt, (2.2)
    dsi(t)=si{xu(xi)}dt, (2.3)

    where

    u(xi)=2nk=1mkg(xixk)+2nk=1skg(xixk) (2.4)

    and

    {ux(xi)}={xu(xi)}:=2nk=1mkg(xixk)+2nk=1skg(xixk), (2.5)

    i=1,2,...,n.

    Proof. Suppose that

    dxi(t)=ai(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dt+3nj=1bij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dWjt (2.6)
    dmi(t)=ci(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dt+3nj=1dij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dWjt (2.7)
    dsi(t)=ei(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dt+3nj=1fij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)dWjt, (2.8)

    i=1,2,...,n, are the stochastic differential equations for the evolution of xi(t),mi(t),si(t).

    In what follows, we will use the abbreviations g(xxi(t)) as gi, g(xxi(t)) as gi, δi:=δ(xxi(t)), i=1,...,n, (δ is the Dirac delta distribution) and for i=1,...,n, j=1,...,3n,

    ai(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=ai,
    bij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=bij,
    ci(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=ci,
    dij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=dij,
    ei(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=ei,
    fij(x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t),t)=fij.

    We will look for solutions of the SDP equation (1.15) of the form (1.17) with xi(t),mi(t),si(t) obeying (2.6), (2.7) and (2.8), respectively, the functions ai,ci,ei, i=1,...,n, bij,dij and fij, i=1,...,n, j=1,...,3n, satisfying all the necessary conditions for the existence and uniqueness of solutions to (2.6)–(2.8) and their extendability to a given time interval [t0,t1] with t1>t00.

    Taking the differential of (1.17) and substituting in equations (2.6)–(2.8) we obtain

    du=ni=1[uixidxi+uimidmi+uisidsi]=2ni=1mi(t)dg(xxi(t))+2ni=1g(xxi(t))dmi(t)+2ni=1si(t)dg(xxi(t))+2ni=1g(xxi(t))dsi(t)=2ni=1mi(t)dg(xxi(t))+2ni=1g(xxi(t))[cidt+3nj=1dijdWjt]+2ni=1si(t)dg(xxi(t))+2ni=1g(xxi(t))[eidt+3nj=1fijdWjt]
    =2ni=1mi(t)sgn(xxi(t))g(xxi(t))aidt+2ni=1mi(t)sgn(xxi(t))g(xxi(t))3nj=1bijdWjt+2ni=1g(xxi(t))[cidt+3nj=1dijdWjt]+2ni=1si(t)[xig(xxi(t))ai]dt+2ni=1si(t)xig(xxi(t))3nj=1bijdWjt+2ni=1g(xxi(t))[eidt+3nj=1fijdWjt]
    =+2ni=1mi(t)sgn(xxi(t))g(xxi(t))aidt+2ni=1mi(t)sgn(xxi(t))g(xxi(t))3nj=1bijdWjt+2ni=1g(xxi(t))[cidt+3nj=1dijdWjt]+2ni=1si(t)g(xxi(t))(1+2δ(xxi(t)))aidt+2ni=1si(t)g(xxi(t))(1+2δ(xxi(t)))3nj=1bijdWjt+2ni=1g(xxi(t))[eidt+3nj=1fijdWjt]. (2.9)

    Furthermore, using formula (A3) in [18],

    u2=4nk,l=1(mkmlgkgl+skslgkgl+mkslgkgl+skmlgkgl). (2.10)

    This implies that

    xu2=nk,l=14{(mkml+sksl)(gkgl+gkgl)+(mksl+skml)(gkgl+gkgl)4[sksl(gkδl+glδk)+mkslgkδl+mlskglδk]} (2.11)

    (using formula (A4) in [18]).

    From (2.10) and formula (A7) in [18] we have

    2xp=2g[32u2]=nk,l=14((mkml+sksl)(gkgl+gkgl)4(mksl+skml)(gkgl+gkgl))+2nk,l=1e|xkxl|((mkml+sksl)(gk+gl)+mksl(4gkgl)+skml(gk+4gl))++2nk,l=1sgn(xkxl)e|xkxl|((2mkmlsksl)(gkgl)+(mksl+skml)(gkgl)). (2.12)

    From (2.9), (2.11) and (2.12) we obtain

    0=2du+xu2dt+2(xp)dt+23nj=1ξj(xu)dWjt=2du+23nj=1ξj(xu)dWjt8[nk=1(nl=1skgl(xk)+nl=1mlgl(xk))skδk]dt+2[nk=1(2mknl=1mle|xkxl|+2sknl=1sle|xkxl|)gk]dt+2[nk=1(4mknl=1sle|xkxl|2sknl=1mle|xkxl|)gk]dt+2[nk=1(4mknl=1mlsgn(xkxl)e|xkxl|2sknl=1slsgn(xkxl)e|xkxl|)gk]dt+2[nk=1(2mknl=1slsgn(xkxl)e|xkxl|+2sknl=1mlsgn(xkxl)e|xkxl|)gk]dt=2du+23nj=1ξj(xu)dWjt4[nk=1sku(xk)gkδknk=1(2mk{ux(xk)}2sku(xk))gknk=1(sk{ux(xk)}+mku(xk))gk]dt
    =[ni=1(4miai+4ei)gi]dt+[ni=1(4ci4siai+4siδiai)gi]dt[4ni=1siu(xi)giδi4ni=1(2mi{ux(xi)}2siu(xi))gi4ni=1(si{ux(xi)}+miu(xi))gi]dt+4ni=1mi(t)gi3nj=1ξjdWjt+4ni=1si(t)gi3nj=1ξjdWjt8ni=1si(t)δigi3nj=1ξjdWjt+4ni=1gi3nj=1dijdWjt4ni=1gisi3nj=1bijdWjt4ni=1(migi)3nj=1bijdWjt+4ni=1gi3nj=1fijdWjt+8ni=1sigiδi3nj=1bijdWjt
    =[ni=1(4miai+4ei)gi]dt+[ni=1(4ci4siai+4siδiai)gi]dt[4ni=1siu(xi)giδi4ni=1(2mi{ux(xi)}2siu(xi))gi4ni=1(si{ux(xi)}+miu(xi))gi]dt+4ni=13nj=1[mi(ξjbij)+fij]gidWjt+4ni=13nj=1[si(ξjbij)+dij]gidWjt+8ni=13nj=1(bijξj)sigiδidWjt. (2.13)

    In order to verify that (1.17) is a weak solution of the SDP equation (1.15) we will substitute it and (2.13) into (1.16) to obtain

    2ϕni=1[migiai+sigi(2δi1)ai+gici+giei]dtdxxϕ[12u2+g(32u2)]dtdx=2ϕni=13nj=1[mi(ξjbij)+fij]gidWjtdx2ϕni=13nj=1[si(ξjbij)+dij]gidWjtdx+4ϕni=1siδigi3nj=1(ξjbij)dWjtdx. (2.14)

    We must show that the deterministic and stochastic parts of the above equation will both be equal to zero.

    Consider the multi-shockpeakon solution for u from (1.17). This multi-shockpeakon is a weak solution to the deterministic equation, and therefore the left-hand side of (2.14) is zero. Moreover from (2.13) the left-hand side of (2.14) is zero if and only if ai=u(xi), ci=2siu(xi)2mi{xu(xi)} and ei=si{xu(xi)}, i=1,...,n, where u(xi) and {xu(xi)} are given by (2.4) and (2.5) respectively since {δi,gi,gi}ni=1 is a linearly independent set. We also have

    [mi(ξjbij)+fij]gi[si(ξjbij)+dij]gi+2siδigi(ξjbij)=0

    almost everywhere if and only if bij=ξj, i=1,2,...,n, j=1,...,3n, and dij=fij=0, i=1,2,...,n, j=1,...,3n, since {δi,gi,gi}ni=1 is a linearly independent set.

    From the above Theorem we deduce the following results:

    Corollary 2.2. The n-peakon (1.18) is a weak solution of the SDP equation (1.15) if and only if the stochastic process for (x1(t),...,xn(t),m1(t),...,mn(t)), is given by the following system of 2n SDEs

    dxi(t)=u(xi)dt+3nj=1ξjdWjt,dmi(t)=[2mi{ux(xi)}]dt,

    i=1,2,...,n.

    Corollary 2.3. The stochastic process for

    (x1(t),...,xn(t),m1(t),...,mn(t),s1(t),...,sn(t))

    (2.1)-(2.3) becomes the deterministic system of 3n ODEs (1.9) if and only if ξj=0, j=1,...,3n.

    Remark 2.4. From Corollary 2.3 above and Theorem 2.1 in [18] it follows that the weak multi-shockpeakon of the form (1.17), with xi,mi and si, i=1,..,n, satisfying the system (2.1)–(2.3), with ξj=0, j=1,..,3n, is a solution of the deterministic DP equation in the weak form (1.6) (Equation (1.15) with ξj=0, j=1,...,3n).

    Remark 2.5. From (2.2), (2.4) and (2.5) and Proposition 4.1 in [27], the multi-shockpeakon (1.17) conserves momentum.

    Letting n=1 in (2.1)–(2.3) and choosing ξj(t)=constant=ξj(t0), j=1,2,3, we see that the dynamics of a single shockpeakon is described by the stochastic equations

    dx1(t)=m1dt+3j=1ξj(t0)dWjt (3.1)
    dm1(t)=0 (3.2)
    ds1(t)=s21dt. (3.3)

    Thus m1(t)=m1(t0), and therefore

    x1(t)=x1(t0)+m1(t0)(tt0)+ξj(t0)3j=1(Wj(t)Wj(t0)).

    The equation (3.3) is equivalent to s10 or ddt(1/s1)=1; Consequently

    s1(t)=s1(t0)1+(tt0)s1(t0).

    It follows that

    u(x,t)=m1(t0)e|x(x1(t0)+m1(t0)(tt0)+ξj(t0)3j=1(Wj(t)Wj(t0)))|+2s1(t0)1+(tt0)s1(t0)g(x(x1(t0)+m1(t0)(tt0)+ξj(t0)3j=1(Wj(t)Wj(t0))),

    where g is given by (1.8).

    In this section, numerical simulations are used to illustrate the effect of the stochastic term in the example above (See Figure 110). We take ξj1, j=1,2,3, and use that the increments Wj(t+Δt)Wj(t), j = 1, 2, 3, have a normal distribution with zero expected value and variance equal to Δt.

    Figure 1.  Shockpeakon u(x,t0) with position x1(t0)=0, momentum m1(t0)=1 and shock strength s1(t0)=1/4.
    Figure 2.  Shockpeakon u(x,t=2) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 3.  Shockpeakon u(x,t=3) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 4.  Shockpeakon u(x,t=5) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 5.  Shockpeakon u(x,t=8) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 6.  Shockpeakon u(x,t=9) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 7.  Shockpeakon u(x,t=11) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 8.  Shockpeakon u(x,t=15) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 9.  Shockpeakon u(x,t=30) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.
    Figure 10.  Shockpeakon u(x,t=50) with position x1(t0=1)=0, momentum m1(t0=1)=1 and shock strength s1(t0=1)=1/4.

    Lynnyngs K. Arruda acknowledges support from the São Paulo Research Foundation (FAPESP) Grant 2021/05935-4, and the reviewers for the valuable comments.

    The author declares there is no conflicts of interest.



    [1] L. K. Arruda, N. V. Chemetov, F. Cipriano, Solvability of the Stochastic Degasperis-Procesi Equation, J. Dyn. Differ. Equ., (2021), 1–20. https://doi.org/10.1007/s10884-021-10021-5 doi: 10.1007/s10884-021-10021-5
    [2] S. Hakkaev, I. D. Iliev, K. Kirchev, Stability of periodic travelling shallow-water waves determined by Newton' s equation, J. Phys. A: Math. Theor., 41 (2008), 085203. https://doi.org/10.1088/1751-8113/41/8/085203 doi: 10.1088/1751-8113/41/8/085203
    [3] R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, Phys. Rev. Lett., 71 (1993), 1661–1664. https://doi.org/10.1103/PhysRevLett.71.1661 doi: 10.1103/PhysRevLett.71.1661
    [4] A. Fokas, B. Fuchssteiner, Symplectic structures, their Backlund transformation and hereditary symmetries, Physica D, 4 (1982), 47–66. https://doi.org/10.1016/0362-546X(81)90025-0 doi: 10.1016/0362-546X(81)90025-0
    [5] J. Lenells, Classification of all travelling-wave solutions for some nonlinear dispersive equations, Phil. Trans. R. Soc. A, 365 (2007), 2291–2298. https://doi.org/10.1098/rsta.2007.2009 doi: 10.1098/rsta.2007.2009
    [6] T. M. Bendall, C. J. Cotter, D. D. Holm, Perspectives on the formation of peakons in the stochastic Camassa-Holm equation, Proc. R. Soc. A., 477 (2021), 20210224. https://doi.org/10.1098/rspa.2021.0224 doi: 10.1098/rspa.2021.0224
    [7] Y. Chen, H. Gao, B. Guo, Well-posedness for stochastic Camassa-Holm equation, J. Differ. Equ., 253 (2012), 2353–2379. https://doi.org/10.1016/j.jde.2012.06.023 doi: 10.1016/j.jde.2012.06.023
    [8] D. Crisan, D. D. Holm, Wave breaking for the stochastic Camassa-Holm equation, Physica D, 376 (2018), 138–143. https://doi.org/10.1016/j.physd.2018.02.004 doi: 10.1016/j.physd.2018.02.004
    [9] D. D. Holm, T. M. Tyranowski, Variational principles for stochastic soliton dynamics, Proc. Math. Phys. Eng. Sci., 472 (2016), 20150827. https://doi.org/10.1098/rspa.2015.0827 doi: 10.1098/rspa.2015.0827
    [10] G. Lv, J. Wei, G. Zou, The dependence on initial data of stochastic Camassa-Holm equation, Appl. Math. Lett., (2020), 106472. https://doi.org/10.1016/j.aml.2020.106472 doi: 10.1016/j.aml.2020.106472
    [11] X. Deng, A note on exact travelling wave solutions for the modified Camassa-Holm and Degasperis-Procesi equations, Appl. Math. Comput., 218 (2009), 2269–2276. https://doi.org/10.1016/j.amc.2011.07.044 doi: 10.1016/j.amc.2011.07.044
    [12] A. Darós, L. K. Arruda Saraiva de Paiva, The Modified Camassa-Holm Equation: Wave breaking, Classification of Traveling Waves and Explicit Elliptic Peakons, arXiv preprint, (2018), arXiv: 1809.02529.
    [13] H. R. Dullin, G. A. Gottwald, D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87 (2001), 194501. https://doi.org/10.1103/PhysRevLett.87.194501 doi: 10.1103/PhysRevLett.87.194501
    [14] C. Rohde, H. Tang, On the stochastic Dullin-Gottwald-Holm equation: Global existence and wave-breaking phenomena, Nonlinear Differ. Equ. Appl., 28 (2021), 1–34. https://doi.org/10.1007/s00030-021-00676-w doi: 10.1007/s00030-021-00676-w
    [15] A. Degasperis, M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, (Rome, 1998), World Sci. Publishing, River Edge, NJ, (1999), 23–37.
    [16] G. M. Coclite, K. Karlsen, N. Risebro, Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation, IMA J. Numer. Anal., 28 (2008), 80–105. https://doi.org/10.1093/imanum/drm003 doi: 10.1093/imanum/drm003
    [17] Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, Illinois J. Math., 47 (2003), 649–666. https://doi.org/10.1215/ijm/1258138186 doi: 10.1215/ijm/1258138186
    [18] H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., 17 (2007), 169–198. https://doi.org/10.1007/s00332-006-0803-3 doi: 10.1007/s00332-006-0803-3
    [19] H. Lundmark, J. Szmigeilski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Probl., 19 (2003), 1241–1245. https://doi.org/10.1088/0266-5611/19/6/001 doi: 10.1088/0266-5611/19/6/001
    [20] H. Lundmark, J. Szmigeilski, Degasperis-Procesi peakons and the discrete cubic string, Int. Math. Res. Papers, 2 (2005), 53–116. https://doi.org/10.1155/IMRP.2005.53 doi: 10.1155/IMRP.2005.53
    [21] A. Degasperis, D. D. Holm, A. N. W. Hone, A New Integrable Equation with Peakon Solutions, Theor. Math. Phys., 133 (2002), 1463–1474. https://doi.org/10.1023/A:1021186408422 doi: 10.1023/A:1021186408422
    [22] G. M. Coclite, K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, J. Funct. Anal., 233 (2006), 60–91. https://doi.org/10.1016/j.jfa.2005.07.008 doi: 10.1016/j.jfa.2005.07.008
    [23] J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis - Procesi equation, Indiana Univ. Math. J., 56 (2007), 87–117. https://doi.org/10.1512/iumj.2007.56.3040 doi: 10.1512/iumj.2007.56.3040
    [24] J. Szmigeilski, L. Zhou, Peakon-antipeakon interactions in the Degasperis-Procesi equation, in algebraic and geometric aspects of integrable systems and random matrices, Contemp. Math., 593 (2013), 83–107. https://doi.org/10.1090/conm/593/11873 doi: 10.1090/conm/593/11873
    [25] Y. Chen, H. Gao, Global existence for the stochastic Degasperis-Procesi equation, Discrete Contin. Dyn. Syst., 35 (2015), 5171–5184. https://doi.org/10.3934/dcds.2015.35.5171 doi: 10.3934/dcds.2015.35.5171
    [26] B. Perthame, Kinetic formulation of conservation laws, Oxford University Press, 2002.
    [27] H. A. Hoel, A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation, Electron. J. Differ. Equ., 2007 (2007), 1–22.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1536) PDF downloads(72) Cited by(0)

Figures and Tables

Figures(10)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog