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Abstract: The deterministic Degasperis-Procesi equation admits weak multi-shockpeakon solutions

of the form i

u(x 1) = > e =" s (n)sgn(x - x()e Y,
i=1 i=1
where sgn(x) denotes the signum function with sgn(0) = 0, if and only if the time-dependent parameters
x;(?) (positions), m;(f) (momenta) and s;(¢) (shock strengths) satisfy a system of 3n ordinary differential
equations. We prove that a stochastic perturbation of the Degasperis-Procesi equation also has weak
multi-shockpeakon solutions if and only if the positions, momenta and shock strengths obey a system
of 3n stochastic differential equations.

Keywords: the stochastic Degasperis-Procesi equation; the deterministic Degasperis-Procesi
equation; multiplicative noise; Stratonovich stochastic process; multi-peakons; multi-shockpeakons

1. Introduction

Consider the ab-family of Equations [1]

(D.u)®
2

Ot — Ogqu + 0 (a(u, d,u)) = 0, (b’(u) + b(u)axxu) . (1.1)
The family (1.1) contains interesting deterministic equations, such as those studied by [2].

The first celebrated member of (1.1) is the well-known deterministic Camassa-Holm (CH) equation
[3,4] (b(u) = u and a(u, u,) = %uz). The existence and classification of weak travelling wave solutions
of the CH equation were considered in [5]. Stochastic perturbations of the CH equation were studied
in [6-10].

If b(u) = u and a(u, u,) = u?, Eq (1.1) becomes the deterministic modified Camassa-Holm (mCH)
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equation
Ot — Oyt = U tt + 20,ud u — 3u>d.u. (1.2)

Observe that the transformation u(x,t) = u(&,1), §é = x + ct, ¢ € R, reduces (1.2) to the following
modified Dullin-Gottwald-Holm (mDGH) equation

0;it — ng,it - Ijlaé:scgljl - 265116&:17[ + 317!2(9512 = —Cagﬁ + Cagg—‘g’ji-

Travelling waves for Eq (1.2) were found via computational methods by [11]. Wave breaking, clas-
sification of traveling waves and explicit elliptic peakons for the mCH equation (1.2) were analysed
in [12]. An stochastic perturbation of the Dullin-Gottwald-Holm equation [13] was studied in [14].

The particular case of (1.1), where b(u) = u and a(u, u,) = 2u* — %, corresponds to the determin-
istic Degasperis-Procesi (DP) equation [15]
Ot — Oyplt = UO it + 30, U0t — 4ud,u (1.3)

or, alternatively, to the hyperbolic-elliptic formulation

du+ 0, (%) +d.p =0,
3 5 (1.4)
(1 _8xx)p =5us,
which is used to define the weak solutions of the DP equation [16]. In fact, inverting
m=(1-0,)u
as u = g x m where
1
g = 5e™, (1.5)
(1.4) can be expressed as a conservation law [17]:
1, 3,
o+ 0, Eu +g>r<(§u) =0. (1.6)

Weak solutions are functions which satisfy (1.6) in the usual distributional sense.
The DP equation (1.6) admits weak solutions representing a wave train of discontinuous solitons
called shockpeakons [18], given by

u(x 1) =2 ) mgx = xi(0) +2 > si0)g'(x = x(1), (1.7)

i=1 i=1

where g(x — y) = 3¢, and

’ 1 —|X]
g'(0 = —5sgn(e™, (1.8)
with the convention g’(0) = 0.
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The n-shockpeakon (1.7) is a weak solution of the nonlocal DP equation (1.6) if and only if the
time-dependent parameters x; (positions), m; (momenta), and s; (shock strengths), i = 1, ..., n, satisfy
the following dynamical system of 3n ODEs [18]:

i _ oy o) — amida(e)), T = 0l
—r = ul), — = 2su(x) = 2O}, L = =sildu(x)), (1.9)
where . .
u(xp) = uC() 1) = 2 ) mig( = x) +2 ) s (i = x0) (1.10)
k=1 k=1
and . )
(D)} = {1} = 2 ) i’ (x; = x) + 2 ) g (i = x). (L.11)
k=1 k=1

Remark 1.1. Of course, if s; = 0, for all i = 1,2, ...,n, then the n-shockpeakon ansatz (1.7) reduces to
the ordinary n-peakon of the DP equation [19, 20]

u(e ) = 2 mng - x(0), (1.12)
i=1

where g is given by (1.5). The 2n DP multipeakon ODESs are understood in the case where the m;,i =
1,..,n, are positive.

The DP equation is also completely integrable, possesses a Lax pair, a bi-Hamiltonian structure, and
an infinite hierarchy of symmetries and conservation laws [21]. A method for the classification of all
traveling wave solutions for some dispersive nonlinear wave equations that encompasses the DP equa-
tion (1.3) was presented in [5]. Global existence, L'-stability and uniqueness results for weak solutions
in L'(R) N BV(R) and in L*(R) N L*(R) with an additional entropy condition were obtained in [22].
Here, BV(R) is the space of functions with bounded variation. The peakon-antipeakon interactions and
shock waves in the DP equation were studied in [18,23,24]. In [18], the author showed that a jump
discontinuity forms when a peakon collides with an antipeakon, and that the entropy weak solution
in this case is described by a shockpeakon. Stochastic perturbations of the DP equation were studied
in [1,25]. In [1], the authors considered the Cauchy problem for a stochastic (additive) perturbation
of the DP equation (1.3) with the initial conditions in the class L>(R) N L**¢(R), for any small € > 0,
and established the existence of a global pathwise solution, via kinetic theory [26]. In [25], the authors
studied the global well-posedness of a stochastic dynamic driven by a linear and multiplicative noise,
in the space of sample paths C([0, ), H*(R)), s > 3/2.

This work is concerned with the existence of multi-shockpeakons of the stochastic Degasperis-
Procesi (SDP) equation, in the one-dimensional domain R, with a multiplicative noise.

The stochastic evolution differential equations are given by

3n
du = —(udu+0d.p)di- ) Et)Du)odW, (1.13)

J=1
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3
(1-0)p = Euz, (1.14)

where x € R. Here u = u(x, ) denotes the velocity of the fluid, {&/ }321 is a set of prescribed func-
tions depending only on the time variable, the symbol o denotes a Stratonovich stochastic process and
{W,j }?Z , 1s a set of Brownian motions.

Equations (1.13) and (1.14) can be reformulated into the following form:

1 3 o .
du = -0, [EMQ + g (§u2)] dt — ;f’(@xu) o dW/. (1.15)

We say that u is a weak solution to (1.15) if it satisfies the following integral equation

[ o= [[s6

for any test function ¢(-, 1) € C5°(R).
We seek weak solutions of the SDP equation (1.15) of the form

3n
%uz + g (%uz)] dtdx — ; f f PLE/(Du)] o AW dx, (1.16)

n

u(et) = Y uxn =23 m(nglx—x(0)+2 Y s(g'(x = xi(1).
i=1 i=1 i=1

(1.17)

Here we define u' to be the contribution from a single shockpeakon, x;(t),m;(t) and s;(t), i =
1,2,...,n, are the positions, momenta and shock strengths, respectively, g and g’ are given by (1.5)
and (1.8), respectively, and we take g’(0) = 0.

Remark 1.2. Of course, if s; = 0 for all i = 1,2, ...,n, then the multi-shockpeakon (1.17) reduces to
the n-peakon

u(x,t) = 2 Z m(1)g(x — x;(1)), (1.18)
i=1

where g is given by (1.5).

2. Multi-shockpeakon soliton solutions for the SDP equation (1.15)

Let us state here the main result of this paper:

Theorem 2.1. The shockpeakon (1.17) is a weak solution of the SDP equation (1.15) if and only if the
stochastic process for (xi(t), ..., X,(t), m(t), ..., m,(¢), $1(2), ..., $,(t)) is given by the following system of
3n stochastic differential equations (SDEs)

Electronic Research Archive Volume 30, Issue 6, 2303-2320.
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3n
uCx)dt + ) E(t) o dW!

dx(t) =
j=1
dmi(t) = [2siu(x;) — 2m{0u(x;)}] dt,
dsi(t) = —si{0.u(x;)}dt,
where i .
u(x;) =2 Z mg(x; — xx) + 2 Z k8 (X — xi)
k=1 k=1
and i i
(1,0} = (Ou(x)) =2 )" mig! (5 = 3) + 2 ) 48(%i = x0),
k=1 k=1
i=1,2,..,n.

Proof. Suppose that

dx;(t) = a;(x1(0), ..., x,(0), m (1), ..., m, (1), s1(1), ..., $,(¢), D)dt

3n
£ D B, s X0 (D), ey (), $1(0), oy 5,(8), ) 0 AW
j=1

dm;(t) = ci(x1(0), ..., x,(0), m(2), ..., m,(1), s1(F), ..., $,(), dt

3n
£ 10, s X (01 (1), et 1,0, $1(0), s 5,(0), ) © AW
=1

dsi(t) = ei(x(0), ..., x,(t), m (1), ...,my(1), 51(), ..., s,(1), D)dt

3n
+ Z Jii(x1(0), ooy x,(2), my (1), ..., my(1), $1(0), ..., $,(1), 1) © dW,j,
j=1

i =1,2,...,n, are the stochastic differential equations for the evolution of x;(¢), m;(¢), s;(¢).

2.1

(2.2)
(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)
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In what follows, we will use the abbreviations g(x — x;(1)) as g;, g'(x — x;(¢)) as g/, 6; := 6(x — x;(1)),
i =1,...,n, (0 is the Dirac delta distribution) and fori = 1, ...,n, j = 1, ..., 3n,

a;(xi(t), ..., x,(1), m (), ..., m, (1), s1(), ..., $,(1), 1) = a;,
bij(x1(1), ..., X, (1), my (), ..., m, (1), $1(2), ..., $,(2), 1) = byj,

Ci(x1(1), ooy X, (1), my (), ..., my (1), $1(2), ..., $,(2), 1) = c;,
dij(x1(0), .oy X (1), my (1), ..., m,, (1), 51(0), ..., $,(0), 1) = dj,

ei(x1(1), oo, X, (1), my (1), ..., my (1), 1(2), ..., S,(1), 1) = e;,

Jij(x1(@), ooy X, (D), my (D), ..., my(2), $1(2), ..., $(2), 1) = fij.

We will look for solutions of the SDP equation (1.15) of the form (1.17) with x;(¢), m;(¢), s;(¢) obey-
ing (2.6), (2.7) and (2.8), respectively, the functions a;,c;,e;, i = 1,...,n, b;j,d;j and fi;, i = 1,...,n,
j = 1,...,3n, satisfying all the necessary conditions for the existence and uniqueness of solutions to
(2.6)—(2.8) and their extendability to a given time interval (7, #;] with #; > £, > 0.

Taking the differential of (1.17) and substituting in equations (2.6)—(2.8) we obtain

= [ oul ou' ou'
du = IZZI [8—Xidx,~ + a—’nldm, + a—SidS,']

= 23 mindg(x = x(0) +2 ) g(x = x0)dm(1)
i=1 i=1

+ 2 si0dg (x = xi(1) +2 ) g(x = x(D)dsi(1)
i=1 i=1
n n 3n

= 2> mi0dg(x - x,(0) +2 ) g(x = xi(t)leidt + ) dij o dW!]
i=1 i=1 j=1

n n 3n
+ 2 s(0dg (e x(0) +2 ) g(x = x(eDleds + 3 fiyo dW/]
i=1 i=1 j=1

= 2 mi(t)sgn(x — x(0)g(x — xi(D)aidt
i=1
n 3n
+ 2 Z mi(H)sgn(x — x:(1)g(x — x:(1)) Z bi; o dW!
i=1 j=1
n 3n
+ 2 g =xo)ledt + ) dyjo dW/]
i=1 j=1

- 0
+ 2 Z; (015 -8 (¢ = x()ailds

Electronic Research Archive Volume 30, Issue 6, 2303-2320.
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Y 0 , 3n |
+ 2 ; si(t) -8/ (x = (1) ; by 0 dW)

+ 2 Zn: g'(x = xi(1))[e;dt + i fijo dw/]
i=1 =1
= +2 Zn: m(t)sgn(x — x;(1))g(x — x;(1))a;dt
i=1
+ 2 Zn: mi(t)sgn(x — x;(1))g(x — x;(t)) i bij o dW!
i=1 =1
+ 2 ZH: g(x — x;(0)[cidt + i d;jo thj]
i=1 =1
+ 2 Zn: si(0g(x — xi () (=1 + 26(x — x;(1)))a;dt
i=1
+ 2 Zn: si(Dg(x — x;())(—=1 + 26(x — xi(1))) i bij o dW’
i=1

J=1

n 3n
+ 2 Z g (x — xi(t))le;dt + Z fi; 0 dW/].
i=1 j=1

(2.9)
Furthermore, using formula (A3) in [18],
2 C r ’ ’
uw = 4 Z(mkmlgkgl + Sk818,.8) + My Si18k&) + SikIMig81)-
ki=1
(2.10)
This implies that
ot = Z H(mymy + s1.51)(8kg) + 8181 + (myes; + spmy) (g8 + 8181
k=1
— Alsesi(8101 + &10k) + mysi8k0; + mysi&i0x]}
(2.11)

(using formula (A4) in [18]).
From (2.10) and formula (A7) in [18] we have

’ 3 - ’ ’
20:p = 28+ [50)= ) A=(mmi + s515)(818] + 818)
k,l=1

Electronic Research Archive Volume 30, Issue 6, 2303-2320.
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— A4(mys; + simy)(gr8r + 81.81)) + 2 Z e I ((mymy + sis)) (g + &)
k=1

+  mysi(4gk — g1) + simy(—gi +481) +

+ 2 sen(u - x)e M H(mmy — ses)(gi - 80) + (mesi + simi)(gl — g))).

k=1
(2.12)
From (2.9), (2.11) and (2.12) we obtain
3n . 3n .
0 = 2du+duldt+20.p)dt+2 Z EN0u) 0 dW! = 2du +2 Z E(0,u) o dW!
j=1 j=1

Z k8 (xk) + Z ngz(xk)] Sk5k] dt

=1 =1

n n
2my, Z me ¥ 4 2, Z sle_'x"_x’l] g,'(] dt

1 =1 =1

+ 2 4my Z sie D Z mle_lxk_m] gk] dt

1 =1 =1

+ 2 4my, Z mysgn(xy — x)e 06, Z sisgn(x; — xl)e_'x"_”') gk} dt

1 =1 =1

1T 1T 1
bl kel

s |l S |l ]
—_

1T
=~

s

1T
>~

s |l

+ 2 2my, Z sisgn(x; — x)e el g 2 g, Z nysgn(x; — xl)e_'x"_x") g}(] dt

L k=1 =1 =1

=~

3n
= 2du+2) @) o0 dW!

j=1
—4 lz Skt(X)gk0k — Z(2mk{ux(xk)} = 285.u(x0))8k = Z(sk{ux(xk)} + mku(xk))g;’(} dt
k=1 k=1 k=1
= | D (~4ma; + 4e,~)g;] dr
L i=1

+ Z(4Ci - 4siai + 4sl~6ia,-)gi} dt

_ >4 Z siu(x;)gio; — 4 Z(2m {ue(x)} = 2s;u(x;))gi — 4 Z(s {u(x)} + m; ”(xt))gl] dt
4Zm(l)g Zfl Ode+4ZS(t)ng§J ode SZS(I)5ng§jode
4Zn:g12duodwf 4Zg,s12b,,odwf 4Z(ng,)2bz,odW’

i=1 j=1

+

+

Electronic Research Archive Volume 30, Issue 6, 2303-2320.
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+ 4Zn1g§if,-jOdW,j+SZn:sig,~6iibijothf
=1 j=1 i=1 j=1

= | D (~4mia; + 4el-)g;] dt
L i=1

+ Zl(4c,~ —4s;a; + 4s,~(5,-al~)g,} dt

i=1

n  3n n  3n

+ 42 Z[m,-(fj — b)) + fjlg] o AW/ + 42 Z[s,-(gf — by) + dij1gi o AW

=1 j=1 i=1 j=1
n  3n
+ 8 Z Z(bij — &)s5,8,6; 0 thj-

i=1 j=1

= |4 su(x)gio; =4 Y Cmifu(x)} = 2sau(x))gs — 4 Y (silu(x)} + mu(x)g; | dt
L =1 i=1

(2.13)

In order to verify that (1.17) is a weak solution of the SDP equation (1.15) we will substitute it and

(2.13) into (1.16) to obtain

2 ffgb Z[—mig;a,- + 5:81(26; — Da; + gic; + gie;ldtdx
=1

ffas

n  3n

1 3
Euz + g (Euz)] dtdx

- —2f ¢ Z Z[mi(-fj —bij) + fijlg. o dW]dx
i=1 j=1
n 3n

_2f ¢ Z Z[Si(fj — bij) + d;jlgi o W] dx
i=1 j=1

n 3n
+4 ff¢ Z 5i0i8i Z(fj —bjj) o szjdx-
i=1 =y

(2.14)

We must show that the deterministic and stochastic parts of the above equation will both be equal to

Z€10.

Consider the multi-shockpeakon solution for u from (1.17). This multi-shockpeakon is a weak
solution to the deterministic equation, and therefore the left-hand side of (2.14) is zero. Moreover from
(2.13) the left-hand side of (2.14) is zero if and only if a@; = u(x;), ¢; = 2s;u(x;) — 2m{0,u(x;)} and
e; = —si{ou(x;)}, i = 1,...,n, where u(x;) and {0,u(x;)} are given by (2.4) and (2.5) respectively since

n

{0i, &i» &/}, 18 a linearly independent set. We also have

—[mi&' = b)) + fijlg: — [s{(& — bij) + dijlgi + 25:0,8:(&" — bij) = 0

Electronic Research Archive Volume 30, Issue 6, 2303-2320.
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almost everywhere if and only if b;; = &i=1,2,..,n,j=1,..73n, and dij=fij=0,i=12,..,n,
J=1,..,3n, since {9;, g, g/}"_, s a linearly independent set. O

From the above Theorem we deduce the following results:

Corollary 2.2. The n-peakon (1.18) is a weak solution of the SDP equation (1.15) if and only if the
stochastic process for (xi(t), ..., X,(t), m(t), ..., m,(t)), is given by the following system of 2n SDEs

3n

dxi(t) = u(x)dt+ ) € odW,
j=1

dmi(t) = [-2mf{u.(x;)}]dt,

i=1,2,..,n.

Corollary 2.3. The stochastic process for

(Xl (t)9 ceesy Xn(t), ml(t)a cees mn(t)’ Sl(t)9 ceey Sn(t))
(2.1)-(2.3) becomes the deterministic system of 3n ODEs (1.9) if and only if & =0, j=1,...,3n.

Remark 2.4. From Corollary 2.3 above and Theorem 2.1 in [18] it follows that the weak multi-
shockpeakon of the form (1.17), with x;,m; and s;, i = 1,..,n, satisfying the system (2.1)—(2.3), with
& =0, j=1,..3n, is a solution of the deterministic DP equation in the weak form (1.6) (Equation
(1.15)with&/ =0, j=1,...,3n).

Remark 2.5. From (2.2), (2.4) and (2.5) and Proposition 4.1 in [27], the multi-shockpeakon (1.17)
conserves momentum.

3. Example

Letting n = 1 in (2.1)—(2.3) and choosing &/(t) = constant = £/(ty), j = 1,2,3, we see that the
dynamics of a single shockpeakon is described by the stochastic equations

3
dx(t) = mdt+ ) E(tg) o dW; 3.1)
j=1
dmy(t) = 0 (3.2)
ds\(t) = -sidt. (3.3)

Thus m(t) = m,(ty), and therefore

3
x1(8) = x1 () + my(to)(t = o) + €/(t0) D (W(1) = W/(ty)).

=

The equation (3.3) is equivalent to s; = 0 or % (1/s1) = 1; Consequently

Electronic Research Archive Volume 30, Issue 6, 2303-2320.
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51(to)
si(t) = .
L+ (- 10)s1(to)
It follows that
W) = my(fg)e P EE=0)+E ) T W O-W )

3

g/ (x = (1 (to) + mu (1)t = 1) + £(t0) D (W/(t) = W(to)),
j=1

J=

s1(t)
I+ (2 —19)s1(0)

where g’ is given by (1.8).

3.1. Numerical simulations

In this section, numerical simulations are used to illustrate the effect of the stochastic term in the
example above (See Figure 1-10). We take & = 1, j = 1,2, 3, and use that the increments W/(z + At) —
Wi(t), j=1,2,3, have a normal distribution with zero expected value and variance equal to At.

1.4

1.2 H

0.8 -

0.6

0.4 <

0.2 +

Figure 1. Shockpeakon u(x, ty) with position x;(fy) = 0, momentum m;(ty) = 1 and shock
strength s;(#y) = 1/4.
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1.2

L1

0.5+
0.8 —-
0.7 —-
0.6
0.5
I}.f-l—-
0.3 —-
0.2 -

0.1

Figure 2. Shockpeakon u(x, t = 2) with position x;(#y = 1) = 0, momentum m;(tp = 1) = 1
and shock strength s,(fp = 1) = 1/4.

0.9
0.8 -
0.7 |
0.6 |
0.5 |
04 -
0.3 ]
0.2

0.1+

Figure 3. Shockpeakon u(x,t = 3) with position x;(fyp = 1) = 0, momentum m;(tp = 1) = 1
and shock strength s1(fp = 1) = 1/4.
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12

1.1 +

0.9 -
0.8 4
0.7 ]
0.6 |
0.5 -
0.4 -
0.3 |
0.2 -

0.1

Figure 4. Shockpeakon u(x, ¢t = 5) with position x;(#y = 1) = 0, momentum m;(tp = 1) = 1
and shock strength s,(fp = 1) = 1/4.

1.2

1.1+

0.9 -
0.8 —_
0.7 —_
0.6
0.5
D.fl—-
0.3 —-
0.2 +

0.1+

Figure 5. Shockpeakon u(x,t = 8) with position x;(fyp = 1) = 0, momentum m;(tp = 1) = 1
and shock strength s1(fp = 1) = 1/4.
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0.9 -
0.8 4
0.7 ]
0.6 |
0.5 -
0.4 -
0.3 |
0.2 -

0.1

T
=20 -15 =10 -5 0 5 10 15 20

Figure 6. Shockpeakon u(x, t = 9) with position x;(#y = 1) = 0, momentum m;(tp = 1) = 1
and shock strength s,(fp = 1) = 1/4.

0.5 -
05
0.7 |
0.6 -|
0.5 |
0.4 -
0.3 i
0.2 -

0.1

-20 -15 -10 -5 o 5 10 15 20

Figure 7. Shockpeakon u(x,t = 11) with position x;(#y = 1) = 0, momentum m;(t, = 1) = 1
and shock strength s1(fp = 1) = 1/4.
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1.2

11

14
0.9 -
05 -
07 4
0.6 -
0.5
0.4 4
03 -
0.2

0.1+

0 T T T T T T T
=20 -15 -10 -5 o 5 10 15 20

Figure 8. Shockpeakon u(x, t = 15) with position x;(zy = 1) = 0, momentum m;(t, = 1) = 1
and shock strength s1(fp = 1) = 1/4.

0.9 -
0.8 -
0.7

0.6 -

0.5
0.4—_
0.3 —_
0.2

0.1

]

T T T
-40 =30 =20 -10 0 10 20 30 40

Figure 9. Shockpeakon u(x, t = 30) with position x;(#p = 1) = 0, momentum m;(t, = 1) = 1
and shock strength s1(fp = 1) = 1/4.
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Figure 10. Shockpeakon u(x, ¢t = 50) with position x;(ty = 1) = 0, momentum m;(ty = 1) = 1
and shock strength s,(fp = 1) = 1/4.
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