

ERA, 30(6): 2303–2320. DOI: 10.3934/era.2022117 Received: 14 October 2021 Revised: 09 January 2022 Accepted: 09 January 2022 Published: 21 April 2022

http://www.aimspress.com/journal/era

Research article

Multi-shockpeakons for the stochastic Degasperis-Procesi equation

Lynnyngs K. Arruda*

Departamento de Matemática, Universidade Federal de São Carlos. CP 676, 13565-905, São Carlos - SP, Brazil

* Correspondence: Email: lynnyngs@ufscar.br; Tel: +551633519181.

Abstract: The deterministic Degasperis-Procesi equation admits weak multi-shockpeakon solutions of the form

$$u(x,t) = \sum_{i=1}^{n} m_i(t) e^{-|x-x_i(t)|} - \sum_{i=1}^{n} s_i(t) \operatorname{sgn}(x-x_i(t)) e^{-|x-x_i(t)|},$$

where sgn(x) denotes the signum function with sgn(0) = 0, if and only if the time-dependent parameters $x_i(t)$ (positions), $m_i(t)$ (momenta) and $s_i(t)$ (shock strengths) satisfy a system of 3n ordinary differential equations. We prove that a stochastic perturbation of the Degasperis-Procesi equation also has weak multi-shockpeakon solutions if and only if the positions, momenta and shock strengths obey a system of 3n stochastic differential equations.

Keywords: the stochastic Degasperis-Procesi equation; the deterministic Degasperis-Procesi equation; multiplicative noise; Stratonovich stochastic process; multi-peakons; multi-shockpeakons

1. Introduction

Consider the *ab*-family of Equations [1]

$$\partial_t u - \partial_{xxt} u + \partial_x (a(u, \partial_x u)) = \partial_x \left(b'(u) \frac{(\partial_x u)^2}{2} + b(u) \partial_{xx} u \right).$$
(1.1)

The family (1.1) contains interesting deterministic equations, such as those studied by [2].

The first celebrated member of (1.1) is the well-known deterministic Camassa-Holm (CH) equation [3,4] (b(u) = u and $a(u, u_x) = \frac{3}{2}u^2$). The existence and classification of weak travelling wave solutions of the CH equation were considered in [5]. Stochastic perturbations of the CH equation were studied in [6–10].

If b(u) = u and $a(u, u_x) = u^3$, Eq (1.1) becomes the deterministic modified Camassa-Holm (mCH)

equation

$$\partial_t u - \partial_{xxt} u = u \partial_{xxx} u + 2 \partial_x u \partial_{xx} u - 3 u^2 \partial_x u. \tag{1.2}$$

Observe that the transformation $u(x, t) = \tilde{u}(\xi, t), \xi = x + ct, c \in \mathbb{R}$, reduces (1.2) to the following modified Dullin-Gottwald-Holm (mDGH) equation

$$\partial_t \tilde{u} - \partial_{\xi\xi t} \tilde{u} - \tilde{u} \partial_{\xi\xi\xi} \tilde{u} - 2\partial_{\xi} \tilde{u} \partial_{\xi\xi} \tilde{u} + 3\tilde{u}^2 \partial_{\xi} \tilde{u} = -c \partial_{\xi} \tilde{u} + c \partial_{\xi\xi\xi} \tilde{u}.$$

Travelling waves for Eq (1.2) were found via computational methods by [11]. Wave breaking, classification of traveling waves and explicit elliptic peakons for the mCH equation (1.2) were analysed in [12]. An stochastic perturbation of the Dullin-Gottwald-Holm equation [13] was studied in [14].

The particular case of (1.1), where b(u) = u and $a(u, u_x) = 2u^2 - \frac{(\partial_x u)^2}{2}$, corresponds to the deterministic Degasperis-Procesi (DP) equation [15]

$$\partial_t u - \partial_{xxt} u = u \partial_{xxx} u + 3 \partial_x u \partial_{xx} u - 4 u \partial_x u \tag{1.3}$$

or, alternatively, to the hyperbolic-elliptic formulation

$$\begin{cases} \partial_t u + \partial_x \left(\frac{u^2}{2}\right) + \partial_x p = 0, \\ (1 - \partial_{xx}) p = \frac{3}{2}u^2, \end{cases}$$
(1.4)

which is used to define the weak solutions of the DP equation [16]. In fact, inverting

$$m = (1 - \partial_{xx})u$$

as u = g * m where

$$g(x) = \frac{1}{2}e^{-|x|},\tag{1.5}$$

(1.4) can be expressed as a conservation law [17]:

$$\partial_t u + \partial_x \left[\frac{1}{2} u^2 + g * (\frac{3}{2} u^2) \right] = 0.$$
 (1.6)

Weak solutions are functions which satisfy (1.6) in the usual distributional sense.

The DP equation (1.6) admits weak solutions representing a wave train of discontinuous solitons called shockpeakons [18], given by

$$u(x,t) = 2\sum_{i=1}^{n} m_i(t)g(x - x_i(t)) + 2\sum_{i=1}^{n} s_i(t)g'(x - x_i(t)),$$
(1.7)

where $g(x - y) = \frac{1}{2}e^{-|x-y|}$, and

$$g'(x) = -\frac{1}{2} \operatorname{sgn}(x) e^{-|x|},$$
(1.8)

with the convention g'(0) = 0.

Electronic Research Archive

The *n*-shockpeakon (1.7) is a weak solution of the nonlocal DP equation (1.6) if and only if the time-dependent parameters x_i (positions), m_i (momenta), and s_i (shock strengths), i = 1, ..., n, satisfy the following dynamical system of 3n ODEs [18]:

$$\frac{dx_i}{dt} = u(x_i), \quad \frac{dm_i}{dt} = 2s_i u(x_i) - 2m_i \{\partial_x u(x_i)\}, \quad \frac{ds_i}{dt} = -s_i \{\partial_x u(x_i)\}, \quad (1.9)$$

where

$$u(x_i) := u(x_i(t), t) = 2\sum_{k=1}^n m_k g(x_i - x_k) + 2\sum_{k=1}^n s_k g'(x_i - x_k)$$
(1.10)

and

$$\{\partial_x u(x_i)\} = \{u_x(x_i)\} := 2\sum_{k=1}^n m_k g'(x_i - x_k) + 2\sum_{k=1}^n s_k g(x_i - x_k).$$
(1.11)

Remark 1.1. Of course, if $s_i = 0$, for all i = 1, 2, ..., n, then the n-shockpeakon ansatz (1.7) reduces to the ordinary n-peakon of the DP equation [19, 20]

$$u(x,t) = 2\sum_{i=1}^{n} m_i(t)g(x-x_i(t)), \qquad (1.12)$$

where g is given by (1.5). The 2n DP multipeakon ODEs are understood in the case where the m_i , i = 1, ..., n, are positive.

The DP equation is also completely integrable, possesses a Lax pair, a bi-Hamiltonian structure, and an infinite hierarchy of symmetries and conservation laws [21]. A method for the classification of all traveling wave solutions for some dispersive nonlinear wave equations that encompasses the DP equation (1.3) was presented in [5]. Global existence, L^1 -stability and uniqueness results for weak solutions in $L^1(\mathbb{R}) \cap BV(\mathbb{R})$ and in $L^2(\mathbb{R}) \cap L^4(\mathbb{R})$ with an additional entropy condition were obtained in [22]. Here, $BV(\mathbb{R})$ is the space of functions with bounded variation. The peakon-antipeakon interactions and shock waves in the DP equation were studied in [18, 23, 24]. In [18], the author showed that a jump discontinuity forms when a peakon collides with an antipeakon, and that the entropy weak solution in this case is described by a shockpeakon. Stochastic perturbations of the DP equation were studied in [1, 25]. In [1], the authors considered the Cauchy problem for a stochastic (additive) perturbation of the DP equation (1.3) with the initial conditions in the class $L^2(\mathbb{R}) \cap L^{2+\epsilon}(\mathbb{R})$, for any small $\epsilon > 0$, and established the existence of a global pathwise solution, via kinetic theory [26]. In [25], the authors studied the global well-posedness of a stochastic dynamic driven by a linear and multiplicative noise, in the space of sample paths $C([0, \infty), H^s(\mathbb{R}))$, s > 3/2.

This work is concerned with the existence of multi-shockpeakons of the stochastic Degasperis-Procesi (SDP) equation, in the one-dimensional domain \mathbb{R} , with a multiplicative noise.

The stochastic evolution differential equations are given by

$$du = -(u\partial_x u + \partial_x p) dt - \sum_{j=1}^{3n} \xi^j(t)(\partial_x u) \circ dW_t^j, \qquad (1.13)$$

Electronic Research Archive

$$(1 - \partial_{xx}) p = \frac{3}{2}u^2, (1.14)$$

where $x \in \mathbb{R}$. Here u = u(x, t) denotes the velocity of the fluid, $\{\xi^j\}_{j=1}^{3n}$ is a set of prescribed functions depending only on the time variable, the symbol \circ denotes a Stratonovich stochastic process and $\{W_t^j\}_{j=1}^{3n}$ is a set of Brownian motions.

Equations (1.13) and (1.14) can be reformulated into the following form:

$$du = -\partial_x \left[\frac{1}{2} u^2 + g * (\frac{3}{2} u^2) \right] dt - \sum_{j=1}^{3n} \xi^j (\partial_x u) \circ dW_t^j.$$
(1.15)

We say that u is a weak solution to (1.15) if it satisfies the following integral equation

$$\iint \phi du dx = \iint \partial_x \phi \left[\frac{1}{2} u^2 + g * (\frac{3}{2} u^2) \right] dt dx - \sum_{j=1}^{3n} \iint \phi[\xi^j(\partial_x u)] \circ dW_t^j dx, \tag{1.16}$$

for any test function $\phi(\cdot, t) \in C_0^{\infty}(\mathbb{R})$.

We seek weak solutions of the SDP equation (1.15) of the form

$$u(x,t) = \sum_{i=1}^{n} u^{i}(x,t) = 2 \sum_{i=1}^{n} m_{i}(t)g(x-x_{i}(t)) + 2 \sum_{i=1}^{n} s_{i}(t)g'(x-x_{i}(t)).$$
(1.17)

Here we define u^i to be the contribution from a single shockpeakon, $x_i(t)$, $m_i(t)$ and $s_i(t)$, i = 1, 2, ..., n, are the positions, momenta and shock strengths, respectively, g and g' are given by (1.5) and (1.8), respectively, and we take g'(0) = 0.

Remark 1.2. Of course, if $s_i = 0$ for all i = 1, 2, ..., n, then the multi-shockpeakon (1.17) reduces to the *n*-peakon

$$u(x,t) = 2\sum_{i=1}^{n} m_i(t)g(x-x_i(t)), \qquad (1.18)$$

where g is given by (1.5).

2. Multi-shockpeakon soliton solutions for the SDP equation (1.15)

Let us state here the main result of this paper:

Theorem 2.1. The shockpeakon (1.17) is a weak solution of the SDP equation (1.15) if and only if the stochastic process for $(x_1(t), ..., x_n(t), m_1(t), ..., m_n(t), s_1(t), ..., s_n(t))$ is given by the following system of 3n stochastic differential equations (SDEs)

Electronic Research Archive

2307

$$dx_{i}(t) = u(x_{i})dt + \sum_{j=1}^{3n} \xi^{j}(t) \circ dW_{t}^{j}$$
(2.1)

$$dm_i(t) = [2s_i u(x_i) - 2m_i \{\partial_x u(x_i)\}] dt, \qquad (2.2)$$

$$ds_i(t) = -s_i \{\partial_x u(x_i)\} dt, \qquad (2.3)$$

where

$$u(x_i) = 2\sum_{k=1}^n m_k g(x_i - x_k) + 2\sum_{k=1}^n s_k g'(x_i - x_k)$$
(2.4)

and

$$\{u_x(x_i)\} = \{\partial_x u(x_i)\} := 2\sum_{k=1}^n m_k g'(x_i - x_k) + 2\sum_{k=1}^n s_k g(x_i - x_k),$$
(2.5)

i = 1, 2, ..., n.

Proof. Suppose that

$$dx_{i}(t) = a_{i}(x_{1}(t), ..., x_{n}(t), m_{1}(t), ..., m_{n}(t), s_{1}(t), ..., s_{n}(t), t)dt + \sum_{j=1}^{3n} b_{ij}(x_{1}(t), ..., x_{n}(t), m_{1}(t), ..., m_{n}(t), s_{1}(t), ..., s_{n}(t), t) \circ dW_{t}^{j}$$
(2.6)

$$dm_{i}(t) = c_{i}(x_{1}(t), ..., x_{n}(t), m_{1}(t), ..., m_{n}(t), s_{1}(t), ..., s_{n}(t), t)dt + \sum_{j=1}^{3n} d_{ij}(x_{1}(t), ..., x_{n}(t), m_{1}(t), ..., m_{n}(t), s_{1}(t), ..., s_{n}(t), t) \circ dW_{t}^{j}$$

$$(2.7)$$

$$ds_{i}(t) = e_{i}(x_{1}(t), ..., x_{n}(t), m_{1}(t), ..., m_{n}(t), s_{1}(t), ..., s_{n}(t), t)dt + \sum_{j=1}^{3n} f_{ij}(x_{1}(t), ..., x_{n}(t), m_{1}(t), ..., m_{n}(t), s_{1}(t), ..., s_{n}(t), t) \circ dW_{t}^{j},$$
(2.8)

i = 1, 2, ..., n, are the stochastic differential equations for the evolution of $x_i(t), m_i(t), s_i(t)$.

Electronic Research Archive

In what follows, we will use the abbreviations $g(x - x_i(t))$ as g_i , $g'(x - x_i(t))$ as g'_i , $\delta_i := \delta(x - x_i(t))$, i = 1, ..., n, (δ is the Dirac delta distribution) and for i = 1, ..., n, j = 1, ..., 3n,

$$\begin{aligned} a_i(x_1(t), \dots, x_n(t), m_1(t), \dots, m_n(t), s_1(t), \dots, s_n(t), t) &= a_i, \\ b_{ij}(x_1(t), \dots, x_n(t), m_1(t), \dots, m_n(t), s_1(t), \dots, s_n(t), t) &= b_{ij}, \\ c_i(x_1(t), \dots, x_n(t), m_1(t), \dots, m_n(t), s_1(t), \dots, s_n(t), t) &= c_i, \\ d_{ij}(x_1(t), \dots, x_n(t), m_1(t), \dots, m_n(t), s_1(t), \dots, s_n(t), t) &= d_{ij}, \\ e_i(x_1(t), \dots, x_n(t), m_1(t), \dots, m_n(t), s_1(t), \dots, s_n(t), t) &= e_i, \\ f_{ij}(x_1(t), \dots, x_n(t), m_1(t), \dots, m_n(t), s_1(t), \dots, s_n(t), t) &= f_{ij}. \end{aligned}$$

We will look for solutions of the SDP equation (1.15) of the form (1.17) with $x_i(t)$, $m_i(t)$, $s_i(t)$ obeying (2.6), (2.7) and (2.8), respectively, the functions a_i , c_i , e_i , i = 1, ..., n, b_{ij} , d_{ij} and f_{ij} , i = 1, ..., n, j = 1, ..., 3n, satisfying all the necessary conditions for the existence and uniqueness of solutions to (2.6)–(2.8) and their extendability to a given time interval $[t_0, t_1]$ with $t_1 > t_0 \ge 0$.

Taking the differential of (1.17) and substituting in equations (2.6)–(2.8) we obtain

$$du = \sum_{i=1}^{n} \left[\frac{\partial u^{i}}{\partial x_{i}} dx_{i} + \frac{\partial u^{i}}{\partial m_{i}} dm_{i} + \frac{\partial u^{i}}{\partial s_{i}} ds_{i} \right]$$

$$= 2 \sum_{i=1}^{n} m_{i}(t) dg(x - x_{i}(t)) + 2 \sum_{i=1}^{n} g(x - x_{i}(t)) dm_{i}(t)$$

$$+ 2 \sum_{i=1}^{n} s_{i}(t) dg'(x - x_{i}(t)) + 2 \sum_{i=1}^{n} g(x - x_{i}(t)) ds_{i}(t)$$

$$= 2 \sum_{i=1}^{n} m_{i}(t) dg(x - x_{i}(t)) + 2 \sum_{i=1}^{n} g(x - x_{i}(t)) [c_{i}dt + \sum_{j=1}^{3n} d_{ij} \circ dW_{i}^{j}]$$

$$+ 2 \sum_{i=1}^{n} s_{i}(t) dg'(x - x_{i}(t)) + 2 \sum_{i=1}^{n} g(x - x_{i}(t)) [e_{i}dt + \sum_{j=1}^{3n} f_{ij} \circ dW_{i}^{j}]$$

$$= 2 \sum_{i=1}^{n} m_{i}(t) \operatorname{sgn}(x - x_{i}(t)) g(x - x_{i}(t)) a_{i} dt$$

+ $2 \sum_{i=1}^{n} m_{i}(t) \operatorname{sgn}(x - x_{i}(t)) g(x - x_{i}(t)) \sum_{j=1}^{3n} b_{ij} \circ dW_{t}^{j}$
+ $2 \sum_{i=1}^{n} g(x - x_{i}(t)) [c_{i} dt + \sum_{j=1}^{3n} d_{ij} \circ dW_{t}^{j}]$
+ $2 \sum_{i=1}^{n} s_{i}(t) [\frac{\partial}{\partial x_{i}} g'(x - x_{i}(t)) a_{i}] dt$

Electronic Research Archive

+
$$2\sum_{i=1}^{n} s_i(t) \frac{\partial}{\partial x_i} g'(x - x_i(t)) \sum_{j=1}^{3n} b_{ij} \circ dW_t^j$$

+ $2\sum_{i=1}^{n} g'(x - x_i(t)) [e_i dt + \sum_{j=1}^{3n} f_{ij} \circ dW_t^j]$

$$= +2\sum_{i=1}^{n} m_{i}(t) \operatorname{sgn}(x - x_{i}(t))g(x - x_{i}(t))a_{i}dt$$

$$+ 2\sum_{i=1}^{n} m_{i}(t) \operatorname{sgn}(x - x_{i}(t))g(x - x_{i}(t))\sum_{j=1}^{3n} b_{ij} \circ dW_{t}^{j}$$

$$+ 2\sum_{i=1}^{n} g(x - x_{i}(t))[c_{i}dt + \sum_{j=1}^{3n} d_{ij} \circ dW_{t}^{j}]$$

$$+ 2\sum_{i=1}^{n} s_{i}(t)g(x - x_{i}(t))(-1 + 2\delta(x - x_{i}(t)))a_{i}dt$$

$$+ 2\sum_{i=1}^{n} s_{i}(t)g(x - x_{i}(t))(-1 + 2\delta(x - x_{i}(t)))\sum_{j=1}^{3n} b_{ij} \circ dW_{t}^{j}$$

$$+ 2\sum_{i=1}^{n} g'(x - x_{i}(t))[e_{i}dt + \sum_{j=1}^{3n} f_{ij} \circ dW_{t}^{j}].$$
(2.9)

Furthermore, using formula (A3) in [18],

$$u^{2} = 4 \sum_{k,l=1}^{n} (m_{k}m_{l}g_{k}g_{l} + s_{k}s_{l}g_{k}'g_{l}' + m_{k}s_{l}g_{k}g_{l}' + s_{k}m_{l}g_{k}'g_{l}).$$
(2.10)

This implies that

$$\partial_{x}u^{2} = \sum_{k,l=1}^{n} 4\{(m_{k}m_{l} + s_{k}s_{l})(g_{k}g_{l}' + g_{k}'g_{l}) + (m_{k}s_{l} + s_{k}m_{l})(g_{k}g_{l} + g_{k}'g_{l}') - 4[s_{k}s_{l}(g_{k}'\delta_{l} + g_{l}'\delta_{k}) + m_{k}s_{l}g_{k}\delta_{l} + m_{l}s_{k}g_{l}\delta_{k}]\}$$
(2.11)

(using formula (A4) in [18]).

From (2.10) and formula (A7) in [18] we have

$$2\partial_x p = 2g' * \left[\frac{3}{2}u^2\right] = \sum_{k,l=1}^n 4(-(m_k m_l + s_k s_l)(g_k g'_l + g'_k g_l)$$

Electronic Research Archive

$$- 4(m_{k}s_{l} + s_{k}m_{l})(g_{k}g_{l} + g'_{k}g'_{l})) + 2\sum_{k,l=1}^{n} e^{-|x_{k}-x_{l}|}((m_{k}m_{l} + s_{k}s_{l})(g'_{k} + g'_{l})) + m_{k}s_{l}(4g_{k} - g_{l}) + s_{k}m_{l}(-g_{k} + 4g_{l})) + 2\sum_{k,l=1}^{n} \operatorname{sgn}(x_{k} - x_{l})e^{-|x_{k}-x_{l}|}((2m_{k}m_{l} - s_{k}s_{l})(g_{k} - g_{l}) + (m_{k}s_{l} + s_{k}m_{l})(g'_{k} - g'_{l})).$$

$$(2.12)$$

From (2.9), (2.11) and (2.12) we obtain

$$\begin{array}{lll} 0 &=& 2du + \partial_{x}u^{2}dt + 2(\partial_{x}p)dt + 2\sum_{j=1}^{3n}\xi^{j}(\partial_{x}u) \circ dW_{i}^{j} = 2du + 2\sum_{j=1}^{3n}\xi^{j}(\partial_{x}u) \circ dW_{i}^{j} \\ &=& 8\left[\sum_{k=1}^{n}\left(\sum_{l=1}^{n}s_{k}g_{l}'(x_{k}) + \sum_{l=1}^{n}m_{l}g_{l}(x_{k})\right)s_{k}\delta_{k}\right]dt \\ &+& 2\left[\sum_{k=1}^{n}\left(2m_{k}\sum_{l=1}^{n}m_{l}e^{-|x_{k}-x_{l}|} + 2s_{k}\sum_{l=1}^{n}s_{l}e^{-|x_{k}-x_{l}|}\right)g_{k}\right]dt \\ &+& 2\left[\sum_{k=1}^{n}\left(4m_{k}\sum_{l=1}^{n}m_{l}e^{-|x_{k}-x_{l}|} - 2s_{k}\sum_{l=1}^{n}m_{l}e^{-|x_{k}-x_{l}|}\right)g_{k}\right]dt \\ &+& 2\left[\sum_{k=1}^{n}\left(4m_{k}\sum_{l=1}^{n}s_{l}e^{-|x_{k}-x_{l}|} - 2s_{k}\sum_{l=1}^{n}s_{l}sgn(x_{k}-x_{l})e^{-|x_{k}-x_{l}|}\right)g_{k}\right]dt \\ &+& 2\left[\sum_{k=1}^{n}\left(4m_{k}\sum_{l=1}^{n}s_{l}sgn(x_{k}-x_{l})e^{-|x_{k}-x_{l}|} + 2s_{k}\sum_{l=1}^{n}s_{l}sgn(x_{k}-x_{l})e^{-|x_{k}-x_{l}|}\right)g_{k}\right]dt \\ &+& 2\left[\sum_{k=1}^{n}\left(2m_{k}\sum_{l=1}^{n}s_{l}sgn(x_{k}-x_{l})e^{-|x_{k}-x_{l}|} + 2s_{k}\sum_{l=1}^{n}m_{l}sgn(x_{k}-x_{l})e^{-|x_{k}-x_{l}|}\right)g_{k}\right]dt \\ &+& 2\left[\sum_{k=1}^{n}\left(2m_{k}\sum_{l=1}^{n}s_{l}sgn(x_{k}-x_{l})e^{-|x_{k}-x_{l}|} + 2s_{k}\sum_{l=1}^{n}m_{l}sgn(x_{k}-x_{l})e^{-|x_{k}-x_{l}|}\right)g_{k}\right]dt \\ &=& 2du + 2\sum_{j=1}^{3n}\xi^{j}(\partial_{x}u) \circ dW_{l}^{j} \\ &-& 4\left[\sum_{k=1}^{n}s_{k}u(x_{k})g_{k}\delta_{k} - \sum_{k=1}^{n}(2m_{k}\{u_{x}(x_{k})\} - 2s_{k}u(x_{k}))g_{k} - \sum_{k=1}^{n}(s_{k}\{u_{x}(x_{k})\} + m_{k}u(x_{k}))g_{k}'\right]dt \\ &=& \left[\sum_{l=1}^{n}(-4m_{l}a_{l} + 4e_{l})g_{l}'\right]dt \\ &+& \left[\sum_{l=1}^{n}(4c_{l} - 4s_{l}a_{l} + 4s_{l}\delta_{l}a_{l})g_{l}\right]dt \\ &+& 4\sum_{l=1}^{n}s_{l}(u_{l})g_{l}\delta_{l} - 4\sum_{l=1}^{n}(2m_{l}\{u_{x}(x_{l})\} - 2s_{l}u(x_{l}))g_{l} - 4\sum_{l=1}^{n}(s_{l}\{u_{x}(x_{l})\} + m_{l}u(x_{l}))g_{l}'\right]dt \\ &+& 4\sum_{l=1}^{n}m_{l}(t)g_{l}'\sum_{j=1}^{3n}\xi^{j} \circ dW_{l}' + 4\sum_{l=1}^{n}s_{l}(t)g_{l}\sum_{j=1}^{3n}\xi^{j} \circ dW_{l}' - 4\sum_{l=1}^{n}(m_{l}g_{l}')\sum_{j=1}^{3n}b_{l}j \circ dW_{l}' \\ &+& 4\sum_{l=1}^{n}g_{l}\sum_{j=1}^{3n}d_{l}i \circ dW_{l}' - 4\sum_{l=1}^{n}g_{l}s_{l}\sum_{j=1}^{3n}b_{l}j \circ dW_{l}' - 4\sum_{l=1}^{n}(m_{l}g_{l}')\sum_{j=1}^{3n}b_{l}j \circ dW_{l}' \\ &+& 4\sum_{l=1}^{n}g_{l}\sum_{j=1}^{3n}d_{l}i \circ dW_{l}' - 4\sum_{l=1}^{n}g_{l}s_{l}\sum_{j=1}^{3n}b_{l}i \land dW_{l}' - 4\sum_{l=1}^{n}(m_{l}g_{l}')\sum_{j=1}^{3n}b_{l}j \land dW_{l}' \\$$

Electronic Research Archive

$$+ 4 \sum_{i=1}^{n} g'_{i} \sum_{j=1}^{3n} f_{ij} \circ dW_{t}^{j} + 8 \sum_{i=1}^{n} s_{i}g_{i}\delta_{i} \sum_{j=1}^{3n} b_{ij} \circ dW_{t}^{j}$$

$$= \left[\sum_{i=1}^{n} (-4m_{i}a_{i} + 4e_{i})g'_{i}\right] dt$$

$$+ \left[\sum_{i=1}^{n} (4c_{i} - 4s_{i}a_{i} + 4s_{i}\delta_{i}a_{i})g_{i}\right] dt$$

$$- \left[4\sum_{i=1}^{n} s_{i}u(x_{i})g_{i}\delta_{i} - 4\sum_{i=1}^{n} (2m_{i}\{u_{x}(x_{i})\} - 2s_{i}u(x_{i}))g_{i} - 4\sum_{i=1}^{n} (s_{i}\{u_{x}(x_{i})\} + m_{i}u(x_{i}))g'_{i}\right] dt$$

$$+ 4\sum_{i=1}^{n} \sum_{j=1}^{3n} [m_{i}(\xi^{j} - b_{ij}) + f_{ij}]g'_{i} \circ dW_{t}^{j} + 4\sum_{i=1}^{n} \sum_{j=1}^{3n} [s_{i}(\xi^{j} - b_{ij}) + d_{ij}]g_{i} \circ dW_{t}^{j}$$

$$+ 8\sum_{i=1}^{n} \sum_{j=1}^{3n} (b_{ij} - \xi^{j})s_{i}g_{i}\delta_{i} \circ dW_{t}^{j}.$$
(2.13)

In order to verify that (1.17) is a weak solution of the SDP equation (1.15) we will substitute it and (2.13) into (1.16) to obtain

$$2 \iint \phi \sum_{i=1}^{n} [-m_{i}g_{i}'a_{i} + s_{i}g_{i}(2\delta_{i} - 1)a_{i} + g_{i}c_{i} + g_{i}'e_{i}]dtdx - \iint \partial_{x}\phi \left[\frac{1}{2}u^{2} + g * (\frac{3}{2}u^{2})\right]dtdx = -2 \iint \phi \sum_{i=1}^{n} \sum_{j=1}^{3n} [m_{i}(\xi^{j} - b_{ij}) + f_{ij}]g_{i}' \circ dW_{t}^{j}dx -2 \iint \phi \sum_{i=1}^{n} \sum_{j=1}^{3n} [s_{i}(\xi^{j} - b_{ij}) + d_{ij}]g_{i} \circ dW_{t}^{j}dx +4 \iint \phi \sum_{i=1}^{n} s_{i}\delta_{i}g_{i} \sum_{j=1}^{3n} (\xi^{j} - b_{ij}) \circ dW_{t}^{j}dx.$$
(2.14)

We must show that the deterministic and stochastic parts of the above equation will both be equal to zero.

Consider the multi-shockpeakon solution for *u* from (1.17). This multi-shockpeakon is a weak solution to the deterministic equation, and therefore the left-hand side of (2.14) is zero. Moreover from (2.13) the left-hand side of (2.14) is zero if and only if $a_i = u(x_i)$, $c_i = 2s_iu(x_i) - 2m_i\{\partial_x u(x_i)\}$ and $e_i = -s_i\{\partial_x u(x_i)\}$, i = 1, ..., n, where $u(x_i)$ and $\{\partial_x u(x_i)\}$ are given by (2.4) and (2.5) respectively since $\{\delta_i, g_i, g'_i\}_{i=1}^n$ is a linearly independent set. We also have

$$-[m_i(\xi^j - b_{ij}) + f_{ij}]g'_i - [s_i(\xi^j - b_{ij}) + d_{ij}]g_i + 2s_i\delta_i g_i(\xi^j - b_{ij}) = 0$$

Electronic Research Archive

almost everywhere if and only if $b_{ij} = \xi^j$, i = 1, 2, ..., n, j = 1, ..., 3n, and $d_{ij} = f_{ij} = 0$, i = 1, 2, ..., n, j = 1, ..., 3n, since $\{\delta_i, g_i, g'_i\}_{i=1}^n$ is a linearly independent set.

From the above Theorem we deduce the following results:

Corollary 2.2. The n-peakon (1.18) is a weak solution of the SDP equation (1.15) if and only if the stochastic process for $(x_1(t), ..., x_n(t), m_1(t), ..., m_n(t))$, is given by the following system of 2n SDEs

$$dx_{i}(t) = u(x_{i})dt + \sum_{j=1}^{3n} \xi^{j} \circ dW_{t}^{j},$$

$$dm_{i}(t) = [-2m_{i}\{u_{x}(x_{i})\}] dt,$$

i = 1, 2, ..., n.

Corollary 2.3. The stochastic process for

$$(x_1(t), ..., x_n(t), m_1(t), ..., m_n(t), s_1(t), ..., s_n(t))$$

(2.1)-(2.3) becomes the deterministic system of 3n ODEs (1.9) if and only if $\xi^j = 0$, j = 1, ..., 3n.

Remark 2.4. From Corollary 2.3 above and Theorem 2.1 in [18] it follows that the weak multishockpeakon of the form (1.17), with x_i , m_i and s_i , i = 1, ..., n, satisfying the system (2.1)–(2.3), with $\xi^j = 0$, j = 1, ..., 3n, is a solution of the deterministic DP equation in the weak form (1.6) (Equation (1.15) with $\xi^j = 0$, j = 1, ..., 3n).

Remark 2.5. From (2.2), (2.4) and (2.5) and Proposition 4.1 in [27], the multi-shockpeakon (1.17) conserves momentum.

3. Example

Letting n = 1 in (2.1)–(2.3) and choosing $\xi^{j}(t) = constant = \xi^{j}(t_{0}), j = 1, 2, 3$, we see that the dynamics of a single shockpeakon is described by the stochastic equations

$$dx_1(t) = m_1 dt + \sum_{i=1}^{3} \xi^j(t_0) \circ dW_t^j$$
(3.1)

 $dm_1(t) = 0 \tag{3.2}$

$$ds_1(t) = -s_1^2 dt. (3.3)$$

Thus $m_1(t) = m_1(t_0)$, and therefore

$$x_1(t) = x_1(t_0) + m_1(t_0)(t - t_0) + \xi^j(t_0) \sum_{j=1}^3 (W^j(t) - W^j(t_0)).$$

The equation (3.3) is equivalent to $s_1 \equiv 0$ or $\frac{d}{dt}(1/s_1) = 1$; Consequently

Electronic Research Archive

$$s_1(t) = \frac{s_1(t_0)}{1 + (t - t_0)s_1(t_0)}$$

It follows that

$$\begin{split} u(x,t) &= m_1(t_0) e^{-|x-(x_1(t_0)+m_1(t_0)(t-t_0)+\xi^j(t_0)\sum_{j=1}^3(W^j(t)-W^j(t_0)))|} \\ &+ 2\frac{s_1(t_0)}{1+(t-t_0)s_1(t_0)}g'(x-(x_1(t_0)+m_1(t_0)(t-t_0)+\xi^j(t_0)\sum_{j=1}^3(W^j(t)-W^j(t_0))), \end{split}$$

where g' is given by (1.8).

3.1. Numerical simulations

In this section, numerical simulations are used to illustrate the effect of the stochastic term in the example above (See Figure 1–10). We take $\xi^j \equiv 1$, j = 1, 2, 3, and use that the increments $W^j(t + \Delta t) - W^j(t)$, j=1,2,3, have a normal distribution with zero expected value and variance equal to Δt .

Figure 1. Shockpeakon $u(x, t_0)$ with position $x_1(t_0) = 0$, momentum $m_1(t_0) = 1$ and shock strength $s_1(t_0) = 1/4$.

Figure 2. Shockpeakon u(x, t = 2) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 3. Shockpeakon u(x, t = 3) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 4. Shockpeakon u(x, t = 5) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 5. Shockpeakon u(x, t = 8) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 6. Shockpeakon u(x, t = 9) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 7. Shockpeakon u(x, t = 11) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 8. Shockpeakon u(x, t = 15) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 9. Shockpeakon u(x, t = 30) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Figure 10. Shockpeakon u(x, t = 50) with position $x_1(t_0 = 1) = 0$, momentum $m_1(t_0 = 1) = 1$ and shock strength $s_1(t_0 = 1) = 1/4$.

Acknowledgments

Lynnyngs K. Arruda acknowledges support from the São Paulo Research Foundation (FAPESP) Grant 2021/05935-4, and the reviewers for the valuable comments.

Conflict of interest

The author declares there is no conflicts of interest.

References

- 1. L. K. Arruda, N. V. Chemetov, F. Cipriano, Solvability of the Stochastic Degasperis-Procesi Equation, J. Dyn. Differ. Equ., (2021), 1–20. https://doi.org/10.1007/s10884-021-10021-5
- S. Hakkaev, I. D. Iliev, K. Kirchev, Stability of periodic travelling shallow-water waves determined by Newton's equation, *J. Phys. A: Math. Theor.*, **41** (2008), 085203. https://doi.org/10.1088/1751-8113/41/8/085203
- 3. R. Camassa, D. D. Holm, An integrable shallow water equation with peaked solitons, *Phys. Rev. Lett.*, **71** (1993), 1661–1664. https://doi.org/10.1103/PhysRevLett.71.1661
- 4. A. Fokas, B. Fuchssteiner, Symplectic structures, their Backlund transformation and hereditary symmetries, *Physica D*, **4** (1982), 47–66. https://doi.org/10.1016/0362-546X(81)90025-0

Electronic Research Archive

- 5. J. Lenells, Classification of all travelling-wave solutions for some nonlinear dispersive equations, *Phil. Trans. R. Soc. A*, **365** (2007), 2291–2298. https://doi.org/10.1098/rsta.2007.2009
- 6. T. M. Bendall, C. J. Cotter, D. D. Holm, Perspectives on the formation of peakons in the stochastic Camassa-Holm equation, *Proc. R. Soc. A.*, **477** (2021), 20210224. https://doi.org/10.1098/rspa.2021.0224
- Y. Chen, H. Gao, B. Guo, Well-posedness for stochastic Camassa-Holm equation, J. Differ. Equ., 253 (2012), 2353–2379. https://doi.org/10.1016/j.jde.2012.06.023
- 8. D. Crisan, D. D. Holm, Wave breaking for the stochastic Camassa-Holm equation, *Physica D*, **376** (2018), 138–143. https://doi.org/10.1016/j.physd.2018.02.004
- 9. D. D. Holm, T. M. Tyranowski, Variational principles for stochastic soliton dynamics, *Proc. Math. Phys. Eng. Sci.*, **472** (2016), 20150827. https://doi.org/10.1098/rspa.2015.0827
- 10. G. Lv, J. Wei, G. Zou, The dependence on initial data of stochastic Camassa-Holm equation, *Appl. Math. Lett.*, (2020), 106472. https://doi.org/10.1016/j.aml.2020.106472
- 11. X. Deng, A note on exact travelling wave solutions for the modified Camassa-Holm and Degasperis-Procesi equations, *Appl. Math. Comput.*, **218** (2009), 2269–2276. https://doi.org/10.1016/j.amc.2011.07.044
- 12. A. Darós, L. K. Arruda Saraiva de Paiva, The Modified Camassa-Holm Equation: Wave breaking, Classification of Traveling Waves and Explicit Elliptic Peakons, *arXiv preprint*, (2018), arXiv:1809.02529.
- H. R. Dullin, G. A. Gottwald, D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion, *Phys. Rev. Lett.*, 87 (2001),194501. https://doi.org/10.1103/PhysRevLett.87.194501
- 14. C. Rohde, H. Tang, On the stochastic Dullin-Gottwald-Holm equation: Global existence and wave-breaking phenomena, *Nonlinear Differ. Equ. Appl.*, **28** (2021), 1–34. https://doi.org/10.1007/s00030-021-00676-w
- 15. A. Degasperis, M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, (Rome, 1998), *World Sci. Publishing, River Edge, NJ*, (1999), 23–37.
- G. M. Coclite, K. Karlsen, N. Risebro, Numerical schemes for computing discontinuous solutions of the Degasperis-Procesi equation, *IMA J. Numer. Anal.*, 28 (2008), 80–105. https://doi.org/10.1093/imanum/drm003
- 17. Z. Yin, On the Cauchy problem for an integrable equation with peakon solutions, *Illinois J. Math.*, 47 (2003), 649–666. https://doi.org/10.1215/ijm/1258138186
- H. Lundmark, Formation and dynamics of shock waves in the Degasperis-Procesi equation, J. Nonlinear Sci., 17 (2007), 169–198. https://doi.org/10.1007/s00332-006-0803-3
- 19. H. Lundmark, J. Szmigeilski, Multi-peakon solutions of the Degasperis-Procesi equation, *Inverse Probl.*, **19** (2003), 1241–1245. https://doi.org/10.1088/0266-5611/19/6/001
- 20. H. Lundmark, J. Szmigeilski, Degasperis-Procesi peakons and the discrete cubic string, *Int. Math. Res. Papers*, **2** (2005), 53–116. https://doi.org/10.1155/IMRP.2005.53
- 21. A. Degasperis, D. D. Holm, A. N. W. Hone, A New Integrable Equation with Peakon Solutions, *Theor. Math. Phys.*, **133** (2002), 1463–1474. https://doi.org/10.1023/A:1021186408422

- 22. G. M. Coclite, K. H. Karlsen, On the well-posedness of the Degasperis-Procesi equation, *J. Funct. Anal.*, **233** (2006), 60–91. https://doi.org/10.1016/j.jfa.2005.07.008
- 23. J. Escher, Y. Liu, Z. Yin, Shock waves and blow-up phenomena for the periodic Degasperis - Procesi equation, *Indiana Univ. Math. J.*, **56** (2007), 87–117. https://doi.org/10.1512/iumj.2007.56.3040
- J. Szmigeilski, L. Zhou, Peakon-antipeakon interactions in the Degasperis-Procesi equation, in algebraic and geometric aspects of integrable systems and random matrices, *Contemp. Math.*, 593 (2013), 83–107. https://doi.org/10.1090/conm/593/11873
- 25. Y. Chen, H. Gao, Global existence for the stochastic Degasperis-Procesi equation, *Discrete Contin. Dyn. Syst.*, **35** (2015), 5171–5184. https://doi.org/10.3934/dcds.2015.35.5171
- 26. B. Perthame, Kinetic formulation of conservation laws, Oxford University Press, 2002.
- 27. H. A. Hoel, A numerical scheme using multi-shockpeakons to compute solutions of the Degasperis-Procesi equation, *Electron. J. Differ. Equ.*, **2007** (2007), 1–22.

© 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)