Research article Special Issues

Heteroclinic orbits between static classes of time periodic Tonelli Lagrangian systems

  • Received: 23 September 2021 Revised: 19 December 2021 Accepted: 03 January 2022 Published: 21 April 2022
  • In this paper, we show the existence of heteroclinic orbits between two different static classes of the Aubry set of a Tonelli Lagrangian when the Aubry set has only finite static classes (which is a generic condition in the sense of Mañé) and the Mañé set satisfies certain isolated condition.

    Citation: Guowei Yu. Heteroclinic orbits between static classes of time periodic Tonelli Lagrangian systems[J]. Electronic Research Archive, 2022, 30(6): 2283-2302. doi: 10.3934/era.2022116

    Related Papers:

  • In this paper, we show the existence of heteroclinic orbits between two different static classes of the Aubry set of a Tonelli Lagrangian when the Aubry set has only finite static classes (which is a generic condition in the sense of Mañé) and the Mañé set satisfies certain isolated condition.



    加载中


    [1] J. N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169–207. https://doi.org/10.1007/BF02571383 doi: 10.1007/BF02571383
    [2] G. Contreras, J. Delgado, R. Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits, Ⅱ. Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 28 (1997), 155–196. https://doi.org/10.1007/BF01233390 doi: 10.1007/BF01233390
    [3] P. Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier, 52 (2002), 1533–1568. https://doi.org/10.5802/aif.1924 doi: 10.5802/aif.1924
    [4] P. Bernard, G. Contreras, A generic property of families of Lagrangian systems, Ann. Math., 167 (2008), 1099–1108. https://doi.org/10.4007/annals.2008.167.1099 doi: 10.4007/annals.2008.167.1099
    [5] G. Contreras, G. P. Paternain, Connecting orbits between static classes for generic Lagrangian systems, Topology, 41 (2002), 645–666. https://doi.org/10.1016/S0040-9383(00)00042-2 doi: 10.1016/S0040-9383(00)00042-2
    [6] X. Cui, C. Q. Cheng, W. Cheng, Existence of infinitely many homoclinic orbits to Aubry sets for positive definite Lagrangian systems, J. Differ. Equ., 214 (2005), 176–188. https://doi.org/10.1016/j.jde.2004.08.008 doi: 10.1016/j.jde.2004.08.008
    [7] Y. Zheng, C. Q. Cheng, Homoclinic orbits of positive definite Lagrangian systems, J. Differ. Equ., 229 (2006), 297–316. https://doi.org/10.1016/j.jde.2006.03.007 doi: 10.1016/j.jde.2006.03.007
    [8] A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, book to appear, Cambridge University Press.
    [9] T. O. Maxwell, Heteroclinic chains for a reversible Hamiltonian system, Nonlinear Anal., 28 (1997), 871–887. https://doi.org/10.1016/0362-546X(95)00193-Y doi: 10.1016/0362-546X(95)00193-Y
    [10] P. H. Rabinowitz, Connecting orbits for a reversible Hamiltonian system, Ergod. Theory Dyn. Syst., 20 (2000), 1767–1784. https://doi.org/10.1017/S0143385700000985 doi: 10.1017/S0143385700000985
    [11] J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349–1386.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1188) PDF downloads(65) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog