In this paper, we show the existence of heteroclinic orbits between two different static classes of the Aubry set of a Tonelli Lagrangian when the Aubry set has only finite static classes (which is a generic condition in the sense of Mañé) and the Mañé set satisfies certain isolated condition.
Citation: Guowei Yu. Heteroclinic orbits between static classes of time periodic Tonelli Lagrangian systems[J]. Electronic Research Archive, 2022, 30(6): 2283-2302. doi: 10.3934/era.2022116
In this paper, we show the existence of heteroclinic orbits between two different static classes of the Aubry set of a Tonelli Lagrangian when the Aubry set has only finite static classes (which is a generic condition in the sense of Mañé) and the Mañé set satisfies certain isolated condition.
[1] | J. N. Mather, Action minimizing invariant measures for positive definite Lagrangian systems, Math. Z., 207 (1991), 169–207. https://doi.org/10.1007/BF02571383 doi: 10.1007/BF02571383 |
[2] | G. Contreras, J. Delgado, R. Iturriaga, Lagrangian flows: the dynamics of globally minimizing orbits, Ⅱ. Boletim da Sociedade Brasileira de Matemática-Bulletin/Brazilian Mathematical Society, 28 (1997), 155–196. https://doi.org/10.1007/BF01233390 doi: 10.1007/BF01233390 |
[3] | P. Bernard, Connecting orbits of time dependent Lagrangian systems, Ann. Inst. Fourier, 52 (2002), 1533–1568. https://doi.org/10.5802/aif.1924 doi: 10.5802/aif.1924 |
[4] | P. Bernard, G. Contreras, A generic property of families of Lagrangian systems, Ann. Math., 167 (2008), 1099–1108. https://doi.org/10.4007/annals.2008.167.1099 doi: 10.4007/annals.2008.167.1099 |
[5] | G. Contreras, G. P. Paternain, Connecting orbits between static classes for generic Lagrangian systems, Topology, 41 (2002), 645–666. https://doi.org/10.1016/S0040-9383(00)00042-2 doi: 10.1016/S0040-9383(00)00042-2 |
[6] | X. Cui, C. Q. Cheng, W. Cheng, Existence of infinitely many homoclinic orbits to Aubry sets for positive definite Lagrangian systems, J. Differ. Equ., 214 (2005), 176–188. https://doi.org/10.1016/j.jde.2004.08.008 doi: 10.1016/j.jde.2004.08.008 |
[7] | Y. Zheng, C. Q. Cheng, Homoclinic orbits of positive definite Lagrangian systems, J. Differ. Equ., 229 (2006), 297–316. https://doi.org/10.1016/j.jde.2006.03.007 doi: 10.1016/j.jde.2006.03.007 |
[8] | A. Fathi, Weak KAM Theorem in Lagrangian Dynamics, book to appear, Cambridge University Press. |
[9] | T. O. Maxwell, Heteroclinic chains for a reversible Hamiltonian system, Nonlinear Anal., 28 (1997), 871–887. https://doi.org/10.1016/0362-546X(95)00193-Y doi: 10.1016/0362-546X(95)00193-Y |
[10] | P. H. Rabinowitz, Connecting orbits for a reversible Hamiltonian system, Ergod. Theory Dyn. Syst., 20 (2000), 1767–1784. https://doi.org/10.1017/S0143385700000985 doi: 10.1017/S0143385700000985 |
[11] | J. N. Mather, Variational construction of connecting orbits, Ann. Inst. Fourier, 43 (1993), 1349–1386. |