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1. Introduction

Let M be a closed connected smooth Riemannian manifold, and L ∈ C2(T M×R,R) be a Lagrangian
satisfying the following conditions introduced by Mather [1]:

1. Periodicity: L is 1-periodic in time, i.e., L(x, v, t) = L(x, v, t + 1) for all (x, v, t) ∈ T M × R;
2. Positive definiteness: ∂2L/∂v2(x, v, t) is positive definite, as a quadratic form, for all (x, v, t) ∈

T M × R;
3. Superlinear growth: lim∥v∥x→+∞

L(x,v,t)
∥v∥x

= +∞, in each fiber, i.e., for each A ∈ R, there exists
B(A) ∈ R such that L(x, v, t) ≥ A∥v∥x − B(A), for all (x, v, t) ∈ T M × R.

4. Completeness: Every orbit of the Euler-Lagrange flow introduced by L is defined for all time.

Remark 1.1. ∥ · ∥x denotes the norm associated to the Riemannian metric on M. Since M is compact,
condition (3) in the above definition is independent of which Riemannian metric is chosen on M. For
any x, y ∈ M, we use d(x, y) denotes the distance defined by the Riemannian metric.

For any compact interval [a, b] ⊂ R, we denote C([a, b],M) by the set of all absolutely continuous
curves defined on [a, b]. The action AL of L on any γ ∈ C([a, b],M) is defined by

AL(γ) :=
∫ b

a
L(dγ(t), t)dt, where dγ(t) = (γ(t), γ̇(t)).
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Given x, y ∈ M, we set C[a,b](x, y) := {γ ∈ C([a, b],M) : γ(a) = x, γ(b) = y} and CT (x, y) :=
C[0,T ](x, y) for any T > 0. The extremals of AL in C[a,b](x, y) are solutions of the Euler-Lagrange
equation which in local coordinates is given by

d
dt
∂L
∂v

(γ(t), γ̇(t), t) =
∂L
∂x

(γ(t), γ̇(t), t). (EL)

Furthermore we assume L is a critical Lagrangian. A Lagrangian is called critical if the infimum of
the actions of all closed curves is 0. Every Tonelli Lagrangian can be made critical by adding a proper
constant, see [2].

For any (x, a), (y, b) ∈ M × R with a < b, we define

h((x, a), (y, b)) = inf{
∫ b

a
L(dγ(t), t)dt : γ ∈ C[a,b](x, y)}.

The infimum above is actually a minimum, see Theorem 2.1.
For any (x, α), (y, β) ∈ M × T, we define

h∞((x, α), (y, β)) = lim inf
T∈Z+,T→+∞

h((x, α), (y, β + T )),

Φ((x, α), (y, β)) = inf
T∈Z+

h((x, α), (y, β + T )).

The following propositions of the functions we just defined will be needed in this paper and we
refer the interested readers to [3] for their proofs.

Proposition 1.1. 1. The function h : M×R×M×R→ R; ((x, a), (y, b))→ h((x, a), (y, b)) is Lipschitz
continuous and bounded on {b − a ≥ 1}.

2. For any α, β ∈ T, h∞((∗, α), (∗, β)) : M × M → R is Lipschitz continuous and satisfies triangle
inequality

h∞((x, α), (y, β)) + h∞((y, β), (z, ρ)) ≥ h∞((x, α), (z, ρ)),

for any (x, α), (y, β), (z, ρ) ∈ M × T.
3. We set d̃ : M × T × M × T :→ R as

d̃((x, α), (y, β)) = Φ((x, α), (y, β)) + Φ((y, β), (x, α)),

then d̃ is non-negative.

Let I ⊂ R be an interval of time, a curve γ ∈ C(I,M) is called semi-static if

AL(γ|[a,b]) = Φ((γ(a), a mod 1), (γ(b), b mod 1)), ∀[a, b] ⊂ I.

When I = R, we say γ is a global semi-static curve. When I = [a,+∞) (or I = (−∞, a]) for some a ∈ R,
we say γ is a forward (or backward) semi-static curve. Obviously a semi-static curve is a solution of
(EL).

If γ satisfies

AL(γ|[a,b]) = −Φ((γ(b), b mod 1), (γ(a), a mod 1)), ∀[a, b] ⊂ I,
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we say it is static. When I = R, we say γ is a global static curve. By Proposition 1.1 it is not hard to
see a static curve must be semi-static.

We define the Mañé set Ñ ⊂ T M × T and Aubry set Ã ⊂ T M × T as

Ñ := {(dγ(t), t mod 1) : γ ∈ C(R,M) is global semi-static.};

Ã := {(dγ(t), t mod 1) : γ ∈ C(R,M) is global static.}.

Similarly we define

Ñ+ := {(dγ(t), t mod 1) : γ is forward semi-static. };

Ñ− := {(dγ(t), t mod 1) : γ is backward semi-static. }.

It is easy to see
Ã ⊂ Ñ ⊂ Ñ±.

Let π : T M × T → M × T be the usual projection. We set N = π(Ñ) and A = π(Ã). The famous
Mather’s graph theorem (see [1]) tells us π|

Ã
: Ã → A is bijective and its inverse (π|

Ã
)−1 : A → Ã is

Lipschitz.
Following Mather’s graph theorem, for any (x, α) ∈ A ⊂ M×T, there is a unique global static curve,

denoted by γ(x,α), satisfying γ(x,α)(α) = x. Furthermore using d̃ defined in Proposition 1.1, we can define
an equivalence relation on Ã by saying (x, v, a), (y,w, b) ∈ Ã are equivalent iff d̃(π(x, v, a), π(y,w, b)) =
d̃((x, a), (y, b)) = 0.

By this equivalence relation, we break Ã into classes will be called static classes. Let Ã be the set
of static classes, through the entire paper Λ̃, Ω̃, Γ̃ and ∆̃ with or without super-index will be used to
represent static classes.

Under the assumption that
Ã contains only finite elements, (∗1)

we will prove the following two theorems.

Remark 1.2. (∗1) is a generic condition in the sense of Mañé, see [4].

Theorem 1.1. For any two different static classes Λ̃1, Λ̃2 ∈ Ã, one of the following must be true:

1. There is a global semi-static curve γ with the α-limit set α(dγ) ⊂ Λ̃1 and the ω-limit set ω(dγ) ⊂
Λ̃2;

2. There is a finite set of static classes {Ω̃1, . . . , Ω̃n} ⊂ Ã \ {Λ̃1, Λ̃2} and global semi-static curves
γi : i = 0, . . . , n with α(dγi) ⊂ Ω̃i and ω(dγi) ⊂ Ω̃i+1 for i = 0, . . . , n, where Ω̃0 = Λ̃1 and
Ω̃n+1 = Λ̃2.

By α(dγ) (or ω(dγ)), we mean the α-limit set (or ω-limit set) of the orbit {(γ(t), γ̇(t), t mod 1) : t ∈
R} of the Euler-Lagrange flow. Similarly we let α(γ) ( or ω(γ)) be the α-limit set ( or ω-limit set) of
{γ(t) : t ∈ Z} in M.

When L is time-independent the above theorem has been proved by Contreras and Paternain in [5].

Remark 1.3. Through the entire paper, for any subset U ⊂ M and δ > 0, by U(δ) we mean U(δ) :=
{x ∈ M : d(x,U) ≤ δ}.
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Let N0 := N ∩ M × {0} andA0 := A∩ M × {0}. Under an further assumption

N0 \ A0(δ) is totally isolated, for some δ > 0 small enough. (∗2)

We will prove along a chain of heteroclinic orbits obtained in Theorem 1.1, there is a real heteroclinic
orbit connecting the two given static classes.

Theorem 1.2. If (∗1), (∗2) are true, for any two different static classes Λ̃1, Λ̃2 ∈ Ã, there is a curve
γ ∈ C2(R,M), such that (dγ(t), t mod 1) is an orbit of the Euler-Lagrange system introduced by L with
α(dγ) ⊂ Λ̃1 and ω(dγ) ⊂ Λ̃2.

Similar variational method has been used in [6] and [7], where the authors established the existence
of homoclinic orbits to the Aubry set under various conditions different from ours.

2. Preliminary

By Mather’s graph theorem, we can breakA into a set of equivalent classes A := {Λ = π(Λ̃) : Λ̃ ∈
Ã}. By abusing of notation, they will also be called static classes and capital Greek letters Λ,Ω with or
without super-index will be reserved to represent such static classes throughout this paper.

For all the sets Ã, Ñ , Λ̃ (A,N ,Λ), by putting a sub-index t ∈ T to them, we mean it is their
intersection with T M × {t}( M × {t}), for example Ãt = Ã ∩ T M × {t},At = A∩ M × {t}.

For any n ∈ N, we define hn : M × M → R by

hn(x, y) = h((x, 0), (y, n)),

and h∞ : M × M → R, Φ : M × M → R by

h∞(x, y) = lim inf
n∈N,n→+∞

hn(x, y);

Φ(x, y) = Φ((x, 0), (y, 0)).

In some cases, we need to shift the time parameterization of a given curve for which we introduce
the following operator.

Definition 2.1. Given a < b ∈ R for any c ∈ R, we define an operator τc : C([a, b],M)→ C([a+ c, b+
c],M) by

τc(γ)(t) = γ(t − c), for any γ ∈ C([a, b],M) and t ∈ [a + c, b + c].
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The variational study of Tonelli Lagrangian L depends on some standard results proved by Mather
in [1].

Lemma 2.1. Given a real number K and a compact interval [a, b],

{γ ∈ C([a, b],M) : AL(γ) ≤ K}

is compact for the topology of uniform convergence.

Theorem 2.1. (Tonelli Theorem) Given two points x, y ∈ M and a compact interval [a, b], there is a
γ ∈ C[a,b](x, y) with AL(γ) = h((x, a), (y, b)) and γ is a C2 solution of (EL).

If a curve γ ∈ C[a,b](x, y) satisfies AL(γ) = h((x, a), (y, b)) we will call it a minimizer. Obviously a
semi-static curve is a minimizer, but a minimizer is not necessarily a semi-static curve.

The next lemma is well-known to experts, however we can not locate a complete proof in the
literature, therefore we give one at here.

Lemma 2.2. Given any p, q ∈ M and two sequences of positive integers {T 1
k } ↗ +∞, {T

2
k } ↗ +∞, if

{γk ∈ C[−T 1
k ,T

2
k ](p, q)} is a sequence of minimizers, i.e., AL(γk) = hT 1

k+T 2
k (γk(−T 1

k ), γk(T 2
k )), for any k ∈ N,

satisfying
lim

k→+∞
AL(γk) = lim inf

n→+∞
hn(p, q) = h∞(p, q),

then there is a global semi-static curve γ, such that γk converges to γ uniformly on any compact interval
along a subsequence.

Proof. By Proposition 1.1 and Lemma 2.1, it is not hard to see for any T > 0, along a subsequence γk

converges uniformly to a γT ∈ C([−T,T ],M) on [−T,T ]. Apply this to a sequence of positive integers
{Tn} ↗ +∞, then by a diagonal extraction, we can find a subsequence of γk, which we rename as γk,
and a γ ∈ C(R,M), such that γk converges uniformly to γ on any compact interval.

We claim for any T ∈ Z+, AL(γ|[−T,T ]) = Φ(γ(−T ), γ(T )), so γ is a global semi-static curve.
Assume this is not true, then there is a T ∈ Z+, such that

ε = AL(γ|[−T ,T ]) − Φ((γ(−T ), γ(T )) > 0. (2.1)

Since γk|[−T,T ] converges uniformly to γ|[−T,T ], the lower semi-continuity of AL implies

AL(γk|[−T ,T ]) ≥ AL(γ|[−T ,T ]) −
ε

4
for k large enough. (2.2)

By the definition of Φ there is a S ∈ Z+, such that

hS (γ(−T ), γ(T )) ≤ Φ(γ(−T ), γ(T )) +
ε

4
. (2.3)

Because hS is Lipschitz,

|hS (γk(−T ), γk(T )) − hS (γ(−T ), γ(T ))| ≤ C[d(γk(−T ), γ(−T )) + d(γk(T ), γ(T ))].

As limk→+∞ d(γk(±T ), γ(±T )) = 0, for k large enough we have

|hS (γk(−T ), γk(T )) − hS (γ(−T ), γ(T ))| ≤
ε

4
. (2.4)
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By Tonelli Theorem, for any k ∈ N, there are ξk ∈ C[0,S ](γk(−T ), γk(T )) with

AL(ξk) = hS (γk(−T ), γk(T )),

so by (2.4),
AL(ξk) ≤ hS (γ(−T ), γ(T )) +

ε

4
. (2.5)

Combine this with (2.1), (2.2) and (2.3), we get

AL(ξk) ≤ Φ(γ(−T ), γ(T )) +
ε

2
= AL(γ|[−T ,T ]) −

ε

2
≤ AL(γk|[−T ,T ]) −

ε

4
,

for k large enough.
We define a new sequence of curves {̃γk ∈ CT 1

k+T 2
k−2T+S (p, q)} by

γ̃k(t) =


γk(t − T 1

k ) if t ∈ [0,T 1
k − T ]

ξk(t − T 1
k + T ) if t ∈ [T 1

k − T,T 1
k − T + S ]

γk(t − T 1
k + 2T − S ) if t ∈ [T 1

k − T + S ,T 1
k + T 2

k − 2T + S ].

For all k large enough, AL(̃γk) ≤ AL(γk) − ε4 . Since {T 2
k + T 1

k − 2T + S } goes to infinity as k → +∞,
we have

h(p, q) ≤ lim inf
k→+∞

hT 2
k+T 1

k−2T+S (p, q) ≤ lim inf
k→+∞

AL(̃γk)

≤ lim
k→+∞

AL(γk) −
ε

4
= h(p, q) −

ε

4
,

which is absurd and we proved our claim. □

Remark 2.1. In the previous lemma, if we assume {T 1
k } (resp. {T 2

k }) is bounded, by the same arguments
it is not hard to see there is a forward semi-static curve (resp. backward semi-static curve) γ, such
that, γk converges uniformly to γ on any compact interval in the domain of γ along a subsequence.

In this paper a stronger version of Lemma 2.2 will be needed.

Lemma 2.3. Given any p, q ∈ M and a sequence of positive integers {Tk} ↗ +∞, let {γk ∈ CTk(p, q)}
be a sequence of minimizers, i.e., AL(γk) = h((p, 0), (q,Tk)), satisfies limk→+∞ AL(γk) = h∞(p, q).

If {ak} ↗ +∞, {bk} ↗ +∞ are two sequence of positive integers satisfying

1. 0 ≤ ak ≤ bk ≤ Tk, for all k ∈ N;
2. bk − ak → +∞ as k → +∞;
3. there are x, y ∈ M, such that along a subsequences d(γk(ak), x) → 0 and d(γk(bk), y) → 0 as

k → +∞,

then along a subsequence, limk→+∞ AL(γk|[ak ,bk]) = h∞(x, y).
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Proof. Noticing that {AL(γk|[ak ,bk])} has a finite upper bound, passing to a subsequence if necessary, we
can say

lim
k→+∞

hbk−ak(γk(ak), γk(bk)) = lim
k→+∞

AL(γk|[ak ,bk]) = B < +∞.

We claim B = h∞(x, y) and the lemma follows immediately from this claim.
By Lipschitz continuity of hn,

|hbk−ak(γk(ak), γk(bk)) − hbk−ak(x, y)| ≤ C(d(γk(ak), x) + d(γk(bk), y)),

by passing to a proper subsequence, we can say d(γk(ak), x) + d(γk(bk), y))→ 0 as k → +∞, then

lim
k→+∞

hbk−ak(x, y) = lim
k→+∞

hbk−ak(γk(ak), γk(bk)).

Hence,
B = lim

k→+∞
hbk−ak(x, y) ≥ lim inf

n→+∞
hn(x, y) = h∞(x, y).

Assume ε = B − h∞(x, y) > 0, then there are non-negative integers a′k < b′k with b′k − a′k → +∞ as
k → +∞ satisfying

lim
k→+∞

hb′k−a′k(x, y) = h∞(x, y) = B − ε.

Then for k large enough, we have

hb′k−a′k(x, y) ≤ B −
3
4
ε. (2.6)

On the other hand, B = limk→+∞ hbk−ak(γk(ak), γk(bk)), so for k large enough

hbk−ak(γk(ak), γk(bk)) ≥ B −
ε

4
. (2.7)

Combine (2.6) and (2.7), we get

hbk−ak(γk(ak), γk(bk)) ≥ hb′k−a′k(x, y) +
ε

2
. (2.8)

Again by the Lipschitz continuity of hn and d(γk(ak), x) + d(γk(bk), y)) → 0 as k → +∞, for k large
enough we have

hb′k−a′k(γk(ak), γk(bk)) ≤ hb′k−a′k(x, y) +
ε

4
. (2.9)

(2.8) and (2.9) imply

hbk−ak(γk(ak), γk(bk)) ≥ hb′k−a′k(γk(ak), γk(bk)) +
ε

4
.

Now following the same argument as in the proof of Lemma 2.2, we can construct a new sequence
{γ∗k ∈ CTk−(bk−ak)+(b′k−a′k)(p, q)} with

h∞(p, q) ≤ lim inf
k→+∞

AL(γ∗k) ≤ lim inf
k→+∞

AL(γk) −
ε

4
= h∞(p, q) −

ε

4
,

which is a contradiction.
□
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In next lemma we will strengthen the triangle inequality of h∞ given in Proposition 1.1.

Lemma 2.4. Given a Λ ∈ A and a compact set U ⊂ M with Λ0 ∩ U = ∅, then we can find an ε > 0
small enough and a δ = δ(ε) > 0, such that

h∞(x, y) + h∞(y, z) ≥ h∞(x, z) + ε, ∀x, z ∈ Λ0(δ), ∀y ∈ U.

Proof. Because Λ0 ∩ U = ∅ and U is compact, there is an ε′ > 0, such that

d̃(p, y) = h∞(p, y) + h∞(y, p) ≥ ε′ > 0, ∀p ∈ Λ0, ∀y ∈ U.

Then for any q ∈ Λ0, as h∞ satisfies triangle inequality,

h∞(p, y) + h∞(y, q) + h∞(q, p) ≥ h∞(p, y) + h∞(y, p) ≥ ε′,

so
h∞(p, y) + h∞(y, q) ≥ −h∞(q, p) + ε′ = h∞(p, q) + ε′, (2.10)

the last equality is because of h∞(p, q) + h∞(q, p) = d̃(p, q) = 0, as p, q ∈ Λ0 are in the same static
class.

Let ε = ε
′

4 and δ = ε
8C , then for any x, z ∈ Λ0(δ), there are p′, q′ ∈ Λ0 with d(x, p′) ≤ δ and d(z, q′) ≤

δ. By the Lipschitz continuity of h∞, we have

h∞(x, y) ≥ h∞(p′, y) −Cδ,

h∞(y, z) ≥ h∞(y, q′) −Cδ,

h∞(x, z) ≤ h(p′, q′) + 2Cδ,

combine these with (2.10), we get

h∞(x, y) + h∞(y, z) ≥ h∞(p′, y) + h∞(y, q′) − 2Cδ ≥ h(p′, q′) + ε′ − 2Cδ

≥ h∞(x, z) − 2Cδ + 2ε − 2Cδ = h∞(x, z) + 2ε − 4Cδ

= h∞(x, z) +
3
2
ε

□

Given an arbitrary (x, α) ∈ M × T, by Fathi’s weak KAM theory [8], there are at least one forward
semi-static curve γ+ ∈ C2([a,+∞),M) with γ+(a) = x, a mod 1 = α and one backward semi-static
curve γ− ∈ C2((−∞, a],M) with γ−(a) = x, a mod 1 = α.

One of the most important feature of these forward (or backward) semi-static curves is that the must
asymptotic to a unique static class of Ã.

Lemma 2.5. If γ is a forward (or backward) semi-static curve, then there is a unique static class
Λ̃ ∈ Ã, such that ω(dγ) (or α(dγ) ) ⊂ Λ̃.

Generally speaking there may be more than one forward (or backward) semi-static curves starting
from (or ending at) a given point (x, α) ∈ M × T, however if (x, α) belongs toA, then they are unique.
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Lemma 2.6. If (x, α) ∈ A, then there is a unique v ∈ TxM, such that (x, v, α) ∈ Ã ⊂ Ñ±.
As a consequence there is a unique forward semi-static curve γ+ ∈ C([α,+∞),M) with γ+(α) = x

and a unique backward semi-static curve γ− ∈ C((−∞, α],M) with γ−(α) = x, and γ+, γ− must be
static, with

γ+(t) = γ(x,α)(t), if t ∈ [α,+∞);

γ−(t) = γ(x,α)(t), if t ∈ (−∞, α],

where γ(x,α) is the unique global static curve passing (x, α).

The proofs of the above two lemmas can be found in [2, 5, 8], which we will not repeat here.

3. Heteroclinic chain

We will give the proof of Theorem 1.1 in this section. By assumption (∗1), we can fix a δ∗ > 0
small enough, such that for any two different static classes Λ1,Λ2 ∈ A, Λ1

0(δ∗) ∩ Λ2
0(δ∗) = ∅. In order

to distinguish the two different cases in Theorem 1.1, we introduce the following definition

Definition 3.1. Given a δ > 0 and a curve γ ∈ C([a, b],M), for any two static classes Λ1,Λ2 ∈ A, we
defined the following set

K(γ, δ,Λ1,Λ2) := {Λ ∈ A \ {Λ1,Λ2} : min
t∈[a,b]∩Z

d(γ(t),Λ0) ≤ δ}.

A similar idea was used by Maxwell [9] and Rabinowitz [10] on a special class of Hamiltonian
systems including periodic forced multiple pendulum under time-reversibility assumption.

For the remainder of this section, we fix two arbitrary static classes Λ1 , Λ2 ∈ A, and two points
p ∈ Λ1

0, q ∈ Λ
2
0. By Tonelli Theorem, there is a sequence of minimizers {γk ∈ C[−T 1

k ,T
2
k ](p, q)} satisfying

1. {T 1
k ∈ Z

+} ↗ +∞, {T 2
k ∈ Z

+} ↗ +∞ as k → +∞;
2. limk→+∞ AL(γk) = limk→+∞ hT 2

k+T 1
k (p, q) = h∞(p, q).

Let’s consider the collection of sets K(γk, δ,Λ
1,Λ2), for all k ∈ N and δ > 0, there are two possibil-

ities:
Case 1: There is a δ0 > 0 small enough, such that for each m ∈ N, there is a k > m with

K(γk, δ0,Λ
1,Λ2) = ∅;

Case 2: For each δ > 0, there is a m ∈ N, such that K(γk, δ,Λ
1,Λ2) , ∅, ∀k > m.

First we shall assume case 1 hold, then by passing {γk} to a subsequence, we may assume
K(γk, δ0,Λ

1,Λ2) = ∅ for all k ∈ N.

Proposition 3.1. If Case 1 hold, there is a global semi-static curve γ satisfying

α(dγ) ⊂ Λ̃1 and ω(dγ) ⊂ Λ̃2.

Proof. For each k ∈ N, we set S k := min{t ∈ [−T 1
k ,T

2
k ]∩Z : d(γk(t),Λ1

0) > δ∗}. It is not hard to see, for
each k ∈ N, S k is a well-defined integer and d(γk(t),Λ1

0) ≤ δ∗, for all t ∈ [−T 1
k , S k) ∩ Z.

Lemma 3.2. Both {S k + T 1
k } and {T 2

k − S k} go to infinity as k goes to infinity.
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Proof. (Lemma 3.2) We will only give the detailed proof for S k + T 1
k → +∞, while T 2

k − S k → +∞

can be proven similarly.
Suppose {S k +T 1

k } is bounded, then passing {γk} to a subsequence, we can say S k +T 1
k ≡ T ∈ Z+ for

all k ∈ N. For each k ∈ N, we define γ∗k ∈ C([0,T 1
k + T 2

k ],M) by γ∗k = τT 1
k
(γk), where τT 1

k
is defined as

in Definition 2.1, i.e., we shift the time parameterization on γk forward by T 1
k .

Replace γ∗k by a proper subsequence, by Remark 2.1, there is a forward semi-static curve γ∗ ∈
C([0,+∞),M), such that γ∗k converges to γ∗ on any compact interval of [0,+∞). Since

d(γ∗(T ),Λ1
0) = lim

k→+∞
d(γ∗k(T ),Λ1

0) = lim
k→+∞

d(γk(S k),Λ1
0) ≥ δ∗,

γ∗(T ) < Λ1
0. At the same time γ∗(0) = lim γ∗k(0) = p ∈ Λ1

0, then γ∗ can not be a static curve.
Because p ∈ Λ1

0 ⊂ A0, there must be a global static curve ξ with ξ(0) = p. As a result we have two
different forward semi-static curves starting from p and this is a contradiction to Lemma 2.6. □

By Lemma 3.2, without loss of generality, we may assume S k ≡ 0 for all k ∈ N. Passing γk to a
subsequence, by Lemma 2.2, there is a global semi-static curve γ, such that γk converges uniformly to
γ on any compact interval.

Since d(γk(t),Λ1
0) ≤ δ∗, for all t ∈ [−T 1

k , 0) ∩ Z and k ∈ N, we have d(γ(t),Λ1
0) ≤ δ∗, for all

t ∈ (−∞, 0) ∩ Z.
By Lemma 2.5, there is a unique Λ̃ ∈ Ã, such that α(dγ) ⊂ Λ̃, hence we must have Λ̃ = Λ̃1 and

α(dγ) ⊂ Λ̃1.
Because Case 1 is true, either ω(dγ) ⊂ Λ̃2 or ω(dγ) ⊂ Λ̃1 must be true. Assume ω(dγ) ⊂ Λ̃1, then

there is a sequence of positive integers {T j} ↗ +∞ with lim j→+∞ d(γ(T j), x) = 0 for some x ∈ Λ1
0.

On the other hand we can find a subsequence {γk j ∈ C[−T 1
k j
,T 2

k j
](p, q)} of {γk} with T j ≤ T 2

k j
for all

j ∈ N and d(γk j(T j), γ(T j)) approaches to 0 as j → +∞. Therefore d(γk j(T j), x) approaches to 0 as
j→ +∞.

Replacing {γk j} by a proper subsequence, by Lemma 2.3

h∞(p, x) = lim
j→+∞

AL(γk j |[−T 1
k j
,T j]). (3.1)

Since {T 1
k j
} and {T j} goes to infinity, as j → +∞, both sequences {γk j |[−T 1

k j
,0]} and {γk j |[0,T j]} satisfy

conditions of Lemma 2.3, passing {γk j} to a proper subsequence, we have

h∞(p, γ(0)) = lim
j→+∞

AL(γk j |[−T 1
k j
,0]); h∞(γ(0), x) = lim

j→+∞
AL(γk j |[0,T j]). (3.2)

By (3.1) and (3.2), h∞(p, γ(0)) + h∞(γ(0), x) = h∞(p, x).
However it is easy to see d(γ(0),Λ1

0) ≥ δ∗, at the same time p, x ∈ Λ1
0, by Lemma 2.4, h∞(p, γ(0)) +

h∞(γ(0), x) > h∞(p, x), which is a contradiction and we finished our proof. □

Now we assume Case 2 is true, because of (∗1), by passing {γk} to a subsequence, we can say
that for a sequence of positive real numbers {δk ∈ (0, δ∗)} ↘ 0, there is a finite set of static classes
{Ω1, . . . ,Ωn} ⊂ A \ {Λ1,Λ2} satisfying K(γk, δk,Λ

1,Λ2} ≡ {Ω1, . . . ,Ωn} for all k ∈ N.
We set Ω0 = Λ1 and Ωn+1 = Λ2.

Proposition 3.3. If Case 2 is true, there is a chain of global semi-static curves γi : i = 0, . . . , n
satisfying α(dγi) ⊂ Ω̃i and ω(dγi) ⊂ Ω̃i+1 for i = 0, . . . , n.
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Proof. By Definition 3.1, for every i = 1, . . . , n and k ∈ N, we can find an S i
k ∈ (−T 1

k ,T
2
k ) ∩ Z with

d(γk(S i
k),Ω

i
0) ≤ δk and we set S 0

k = −T 1
k and S n+1

k = T 2
k for all k ∈ N.

Without loss of generality, we can assume S i
k ≤ S i+1

k for all i = 0, . . . , n and k ∈ N. Furthermore by
passing {γk} to a proper subsequence , we can say there are xi ∈ Ω

i
0 for i = 0, . . . , n + 1 with

lim
k→+∞

d(γk(S i
k), xi) = 0,

where x0 = p and xn+1 = q.

Lemma 3.4. For every i = 0, . . . , n, {S i+1
k − S i

k} → +∞ as k → +∞.

Proof. (Lemma 3.4) It can be proven similarly as we did in the proof of Lemma 3.2 and we will not
repeat it here. □

Lemma 3.5. There is a δ̃ ∈ (0, δ∗) small enough, such that for every k large enough

K(γk|[S i
k ,S

i+1
k ], δ̃,Ω

i,Ωi+1) = ∅,∀i = 0, . . . , n.

Proof. (Lemma 3.5) If not, without loss of generality we can assume there are 0 ≤ i0 , i1 ≤ n and a
sequence of positive numbers {̃δk ∈ (0, δ∗)} ↘ 0 satisfying

Ωi1 ∈ K(γk|[S i0
k ,S

i0+1
k ], δ̃k,Ω

i0 ,Ωi0+1)

for all k large enough.
By the definition of K, we must have i1 , i0 + 1. Let’s assume i1 > i0 + 1 (the case of i1 < i0 can be

proven similarly), then there is a sequence of integers {S k ∈ (S i0
k , S

i0+1
k )}, such that d(γk(S k),Ω

i1
0 ) ≤ δ̃k.

First we will show that {S i0+1
k − S k} approaches positive infinity as k goes to +∞. If this is not true,

replacing {γk} by a proper subsequence, we may assume S i0+1
k − S k ≡ S ∈ R for all k ∈ N.

We define a new sequence of minimizers {γ∗k = τ−S k(γk)}, then

d(γ∗k(0),Ωi1
0 ) = d(τ−S k(γk)(0),Ωi1

0 ) = d(γk(S k),Ω
i1
0 ) ≤ δ̃k.

Since δ̃k → 0 as k → +∞, passing {γ∗} to a proper subsequence, we can say limk→+∞ γ
∗
k(0) = x for

some x ∈ Ωi1
0 .

Again passing {γ∗k} to a proper subsequence, by Lemma 2.2, there is a global semi-static curve γ∗

such that γ∗k converges to γ∗ on any compact interval. Hence

γ∗(0) = lim
k→+∞

γ∗k(0) = x ∈ Ωi1
0 .

On the other hand

γ∗(S ) = lim
k→+∞

γ∗k(S ) = lim
k→+∞

γk(S + S k)

= lim
k→+∞

γk(S
i0+1
k ) = xi0+1 ∈ Ω

i0+1
0 .

As Ωi0+1
0 ∩Ω

i1
0 = ∅, γ

∗ can not be a static curve. Since (x, 0) ∈ Ωi1 ⊂ A, there is a global static curve
γ(x,0) with γ(x,0)(0) = x. Obviously γ(x,0) , γ

∗ and we have two different forward semi-static curves
starting from x, which is a contradiction to Lemma 2.6. Therefore {S i0+1

k − S k} → +∞ as k → +∞.
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At the same time by Lemma 3.4, {S i1
k − S i0+1

k } → +∞ as k → +∞. Noticing that {γk|[S k ,S
i1
k ]} is a

sequence of minimizers with

lim
k→+∞

γk(S k) = x, lim
k→+∞

γ(S i0+1
k ) = xi0+1 and lim

k→+∞
γk(S

i1
k ) = xi1 ,

by Lemma 2.3, passing {γk} to a proper subsequence, we have

h∞(x, xi1) = lim
k→+∞

AL(γk|[S k ,S
i1
k ])

= lim
k→+∞

AL(γk|[S k ,S
i0+1
k ]) + lim

k→+∞
AL(γk|[S i0+1

k ,S k1
k ])

= h∞(x, xi0+1) + h∞(xi0+1, xi1).

However x, xi1 ∈ Ω
i1
0 and xi0+1 ∈ Ω

i0+1
0 , by Lemma 2.4,

h∞(x, xi1) < h∞(x, xi0+1) + h∞(xi0+1, xi1),

which is absurd, so we are done. □

Now we resume our proof of Proposition 3.3.
For each i = 0, . . . , n, by Lemma 3.4 and Lemma 3.5, we showed that {γ|[S i

k ,S
i+1
k ]} is a sequence of

minimizers satisfying the following:

1. S i+1
k − S i

k → +∞ as k → +∞;
2. limk→+∞ d(γk(S i

k), xi) = 0 and limk→+∞ d(γk(S i+1
k ), xi+1) = 0;

3. K(γk|[S i
k ,S

i+1
k ], δ̃,Ω

i,Ωi+1) = ∅, for all k large enough.

Let {γi
k = τck(γ|[S i

k ,S
i+1
k ])} , where ck = −

S i
k+S i+1

k
2 , then following the same argument as in the proof

of Proposition 3.1, we can show that along a subsequence {γi
k} converges uniformly on any compact

interval to a global semi-static curve γi satisfying α(dγi) ⊂ Ω̃i and ω(dγi) ⊂ Ω̃i+1.
Hence {γi : i = 0, . . . , n} form a chain of heteroclinic orbits as we wanted and {xi : i = 0, . . . , n}

satisfies xi ∈ ω(γi−1) ∩ α(γi) ∩Ωi
0 for i = 1, . . . , n, and x0 ∈ α(γ0) ∩Ω0

0, xn+1 ∈ ω(γn) ∩Ωn+1
0 .

Furthermore we have

h∞(xi, xi+1) = lim
k→+∞

AL(γk|[S i
k ,S

i+1
k ]), for all i = 0, . . . , n, (3.3)

Hence,

h∞(p, q) = lim
k→+∞

AL(γk|[S 0
k ,S

n+1
k ]) =

n∑
i=0

lim
k→+∞

AL(γk|[S i
k ,S

i+1
k ]) =

n∑
i=0

h∞(xi, xi+1). (3.4)

□

Obviously Theorem 1.1 follows directly from Proposition 3.1 and Proposition 3.3.
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4. Heteroclinic Orbits

This section will be devoted to the proof of Theorem 1.2. In the previous section we proved that
for any two different static classes, there is a chain of heteroclinic orbits connecting them. Under the
assumption (∗2), we will show that there is a real heteroclinic orbit connecting those two static classes
along such a chain of heteroclinic orbits.

Such a heteroclinic orbits will be found as a constraint minimizer of the action of Lagrangian L.
Using the minimizing properties of static curves and semi-static curves, we will show that the constraint
minimizers we find will not bump up to the boundary conditions we posted and it is a real orbit.

First we will introduce some technical lemmas.

Lemma 4.1. There is a δ̂ ∈ (0, δ∗) small enough, such that if p, q ∈ Λ0(δ̂), for some Λ ∈ A, then

h∞(p, x) + h∞(x, q) = h∞(p, q), ∀x ∈ Λ0, (4.1)

and
h∞(p, x) + h∞(x, q) > h∞(p, q), if x ∈ A0 \ Λ0. (4.2)

Proof. Choose an arbitrary p, q ∈ Λ0(δ∗), first let’s show h∞(p, x) + h∞(x, q) = h∞(p, x′) + h∞(x′, q) if
x, x′ ∈ Λ0. By the triangle inequality of h∞,

h∞(p, x) + h∞(x, q) ≤ h∞(p, x′) + h∞(x′, x) + h∞(x, x′) + h∞(x′, q)
= h∞(p, x′) + h∞(x′, q),

the last equality is due to the fact that x, x′ are contained in the same static class, which means

h∞(x, x′) + h∞(x′, x) = d̃(x, x′) = 0.

Therefore h∞(p, x)+h∞(x, q) ≤ h∞(p, x′)+h∞(x′, q), the other direction of the inequality can be proven
similarly.

First we will prove (4.1) under the assumption that both p, q are contained in Λ0.
For any x ∈ Λ0, by triangle inequality

h∞(p, x) + h∞(x, q) ≥ h∞(p, q).

On the other hand, since q, x are contained in the same static class Λ0, d̃(q, x) = h∞(q, x)+h∞(x, q) = 0,
then

h∞(p, q) − h∞(x, q) = h∞(p, q) + h∞(q, x) ≥ h∞(p, x),

so
h∞(p, q) ≥ h∞(p, x) + h∞(x, q).

As a result, we proved equality (4.1) under the assumption p, q ∈ Λ0.
Now we will drop our previous assumption. Without loss of generality, let’s say q < Λ0. Then there

is a sequence of minimizers {γk ∈ C[0,Tk](p, q)} with {Tk ∈ Z
+} ↗ +∞, and a forward semi-static curve

γ ∈ C([0,+∞),M), such that γk converges uniformly to γ on any compact sub-interval of [0,+∞).
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Then ω(γ) ⊂ Ω for some Ω ∈ A. We can find a sequence of positive integers {S k} ↗ +∞ and a
x ∈ Ω0, such that limk→+∞ d(γ(S k), x) = 0, then

lim
k→+∞

d(γk(S k), x) = 0

. 0 We claim Tk − S k → +∞ as k → +∞, if this is not true, passing to a subsequence, we may assume
Tk − S k ≡ T ∈ Z+. Let ξk ∈ C[−Tk ,0](p, q); ξk = τ−Tk(γk) be a new sequence of minimizers.

Then passing to a subsequence ξk converges uniformly to a backward semi-static curve ξ on any
compact sub-interval of (−∞, 0].

Noticing that ξk(−T ) = ξk(S k − Tk) = γk(S k) approaches to x as k goes to +∞, so ξ(−T ) =
limk→+∞ ξk(−T ) = x ∈ Ω0. Then by Lemma 2.6, ξmust be part of a global static curve and (ξ(t), 0) ∈ A0

for any t ∈ (−∞, 0] ∩ Z. However ξ(0) = lim ξk(0) = lim γk(Tk) = q < Λ0, which is a contradiction.
As we just showed, when k goes to +∞, {Tk − S k} approaches to +∞, {S k} approaches to +∞ and

γk(S k) approaches to x, by Lemma 2.3, passing {γk} to a proper subsequence, we have

h∞(p, q) = lim
k→+∞

AL(γk|[0,Tk])

= lim
k→+∞

AL(γk|[0,S k]) + lim
k→+∞

AL(γk|[S k ,Tk])

= h∞(p, x) + h∞(x, q).

Now we will show that for a small enough δ̂ > 0, we must have Ω = Λ, then x ∈ Λ0 and (4.1)
follows immediately from that.

Assume Ω , Λ, then x ∈ A0 \Λ0, which is a compact set without any intersection with Λ0, then by
Lemma 2.4, we can find an δ̂ ∈ (0, δ∗), such that for any p, q ∈ Λ0(δ̂) and y ∈ A0 \ Λ0, we have

h∞(p, y) + h∞(y, q) > h∞(p, q).

This is a contradiction to to what we just proved. Therefore we must have Ω = Λ.
Finally (4.2) follows directly from Lemma 2.4. □

In section 2, we have mentioned that for any (x, α) ∈ M×T, there is at least one forward semi-static
curve γ+ ( or backward semi-static curve γ−) starting from ( or ending at ) (x, α) with its ω-limit set (
or α-limit set ) contained in a unique static class. Generally we can not determine which static class
it will approach to, however by the above lemma we can determine where it asymptotic to in some
special case.

Lemma 4.2. Let δ̂ be defined as in Lemma 4.1, if p ∈ Λ0(δ̂), q ∈ Λ0 for someΛ ∈ A and {γk ∈ CTk(p, q)}
is a sequence of minimizers with limk→+∞ AL(γk) = h∞(p, q) and {Tk} ↗ +∞, then there is a forward
semi-static curve γ+ ∈ C2([0,+∞),M) satisfying the following conditions

1. γ+(0) = p;
2. {γk} converges uniformly to γ+ along a subsequence on any compact interval;
3. ω(dγ+) ⊂ Λ̃.

Proof. By Remark 2.1, there is a forward semi-static curve γ satisfying conditions (1), (2), we claim
it also satisfies condition (3). If not, by Lemma 2.5, there is another static class Ω , Λ, such that
ω(dγ) ⊂ Ω̃.
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Then there is a x ∈ Ω0 and a sequence of integers {S k ∈ (0,Tk)} ↗ +∞, such that

lim
k→+∞

d(γ(S k), x) = 0.

Hence passing {γk} to a subsequence, we have

lim
k→+∞

d(γk(S k), x) = 0.

Similar to the proof of Lemma 4.1, we have {Tk − S k} → +∞ as k → +∞.
Since {Tk − S k} → +∞, {S k} → +∞ and limk→+∞ d(γk(S k), x) = 0 as k → +∞, Lemma 2.3 tells us

that along a subsequence of {γk},

h∞(p, x) = lim
k→+∞

AL(γk|[0,S k]);

h∞(x, q) = lim
k→+∞

AL(γk|[S k ,Tk]).

Therefore
h∞(p, q) = lim

k→+∞
AL(γk|[0,Tk]) = h∞(p, x) + h∞(x, q). (4.3)

If x ∈ Ω0 , Λ0, Lemma 4.1 tells us

h∞(p, q) < h∞(p, x) + h∞(x, q),

which is a contradiction to (4.3). As a result we proved our claim and γ is the forward semi-static curve
γ+ we are looking for. □

Remark 4.1. It is not hard to see that similar argument can to be used to show the existence of a
backward semi-static curve γ− with γ−(0) = p and α(dγ−) ⊂ Λ̃.

Lemma 4.3. Given a global semi-static curve γ, if p ∈ α(γ) ∩A0 and q ∈ ω(γ) ∩A0, then

h∞(p, q) = h∞(p, γ(S )) + AL(γ|[S ,T ]) + h∞(γ(T ), q), for any S ≤ T ∈ Z.

Proof. For arbitrary p ∈ α(γ)∩A0 and q ∈ ω(γ)∩A0, there are two sequences of integers {S k} ↘ −∞

and {Tk} ↗ +∞, such that limk→+∞ γ(S k) = p and limk→+∞ γ(Tk) = q.
Following Lemma 2.3, without loss of generality, we can say

h∞(p, q) = lim
k→+∞

AL(γ|[S k ,Tk]),

h∞(p, γ(S )) = lim
k→−∞

AL(γ|[S k ,S ]),

h∞(γ(T ), q) = lim
k→+∞

AL(γ|[T,Tk]).

Therefore

h∞(p, q) = lim
k→+∞

[AL(γ|[S k ,S ]) + AL(γ|[S ,T ]) + AL(γ|[T,Tk])]

= lim
k→+∞

AL(γ|[S k ,S ]) + AL(γ|[S ,T ]) + lim
k→+∞

AL(γ|[T,Tk])

= h∞(p, γ(S )) + AL(γ|[S ,T ]) + h∞(γ(T ), q).

□
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Lemma 4.4. Given a global semi-static curve γ, if there are two compact sets U,V ⊂ M satisfying

1. γ(S ) ∈ U, γ(T ) ∈ V for some S ≤ T ∈ Z;
2. ∂U ∩ N0 = ∅, ∂V ∩ N0 = ∅, where ∂U, ∂V are the boundaries of U,V.

Then for any p ∈ α(γ) ∩A0, q ∈ ω(γ) ∩A0 and (x, y) ∈ U × V., we have

∆(p, x, y, q; γ) := h∞(p, x) + hT−S (x, y) + h∞(y, q) − h∞(p, q) ≥ 0.

Furthermore, if x ∈ U \ N0 or y ∈ V \ N0, then

∆(p, x, y, q; γ) > 0

and there is a ε > 0 such that

min{∆(p, x, y, q; γ) : (x, y) ∈ U × V \ Int(U) × Int(V)} ≥ ε,

where Int(U), Int(V) are the interiors of U,V.

Proof. Assume there are x ∈ U, y ∈ V with ∆(p, x, y, q; γ) < 0, then

h∞(p, x) + hT−S (x, y) + h∞(y, q) < h∞(p, q). (4.4)

By Remark 2.1, we can find two sequences of minimizers

{ξk ∈ C[0,S k](p, x)} with {S k ∈ Z} ↗ +∞;

{ζk ∈ C[0,Tk](y, q)} with {Tk ∈ Z} ↗ +∞,

satisfying
h∞(p, x) = lim

k→+∞
AL(ξk); h∞(y, q) = lim

k→+∞
AL(ζk).

Let η ∈ C[S ,T ](x, y) be a minimizer, i.e., AL(η) = hT−S (x, y). We define a new sequence of curves
{γk ∈ C[−S k ,T−S+Tk](p, q)} by

γk(t) =


ξk(t + S k), if t ∈ [−S k, 0];
η(t + S ), if t ∈ [0,T − S ];
ζk(t − T + S ), if t ∈ [T − S ,T − S + Tk].

Obviously S k + Tk + T − S → +∞ as k → +∞, and

lim
k→+∞

AL(γk) = h∞(p, x) + hT−S (x, y) + h∞(y, q).

However,

h∞(p, q) = lim inf
n→+∞

hn(p, q) ≤ lim inf
k→+∞

hS k+Tk+T−S (p, q)

≤ lim
k→+∞

AL(γk) = h∞(p, x) + hT−S (x, y) + h∞(y, q)

< h∞(p, q),
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where the last inequality follows from (4.4). However this is absurd and we proved the first part of the
lemma.

For the second part, without loss of generality we can assume there are x ∈ U \ N0 and y ∈ V with
∆(p, x, y, q; γ) = 0. Let {γk} be defined as above then

lim
k→+∞

AL(γk) = h∞(p, x) + hT−S (x, y) + h∞(y, q) = h∞(p, q). (4.5)

Although γk is not necessary a minimizer, by (4.5), it is not hard to see, for any T ′ ∈ Z+, {AL(γk|[−T ′,T ′])}
has a finite upper bound, and the argument in the proof of Lemma 2.2 will still hold. Therefore along a
subsequence {γk} converges uniformly to a global semi-static curve γ∗ on any compact interval. Which
means

γ∗(0) = lim
k→+∞

γk(0) = η(S ) = x ∈ N0,

and this is a contradiction to our assumption.
Hence ∆(p, x, y, q; γ) > 0, if x ∈ U \ N0 or y ∈ V \ N0. By the Lipschitz continuity of hn and h∞,

there is a ε > 0 such that

min{∆(p, x, y, q; γ) : (x, y) ∈ U × V \ Int(U) × Int(V)} ≥ ε > 0.

□

Now we are ready to prove Theorem 1.2.

Proof. (Theorem 1.2) We will follow the notations from the previous section, let p ∈ Λ1
0, q ∈ Λ2

0 and
{γk ∈ C[−T 1

k ,T
2
k ](p, q)} is a sequence of minimizers satisfying

h∞(p, q) = lim
k→+∞

AL(γk).

Again there are two different cases as we discussed in the previous section.
If Case 1 is true, nothing needs to be done here.
If Case 2 is true, by the proof of Proposition 3.3, we have a set of finite static classes {Ω1, . . . ,Ωn} ⊂

A \ {Λ1,Λ2}, a chain of global semi-static curves {γi : i = 1, . . . , n} and {xi ∈ Ω
i
0 : i = 0, 1, . . . , n + 1},

where x0 = p, xn+1 = q, satisfying

1. α(dγi) ⊂ Ω̃i and ω(dγi) ⊂ Ω̃i+1, for i = 0, . . . , n, where Ω0 = Λ1 and Ωn+1 = Λ2;
2. xi ∈ ω(γi−1) ∩ α(γi) ∩Ωi

0, for i = 1, . . . , n, and x0 = p ∈ α(γ0) ∩Ω0
0, xn+1 ∈ ω(γn) ∩Ωn+1

0 .
3. h∞(x0, xn+1) =

∑n
i=0 h∞(xi, xi+1).

Let δ̂ > 0 be defined as in Lemma 4.1, for each γi, we can choose S i < T i ∈ Z satisfying

γi(S i) ∈ Int(Ωi
0(δ̂)) and γi(T i) ∈ Int(Ωi+1

0 (δ̂)).

Then by assumption (∗2), for each i = 0, . . . , n there are compact sets U i,V i ⊂ M satisfying

γi(S i) ∈ Int(U i), U i ⊂ Ωi
0(δ̂), ∂U i ∩ N0 = ∅;

γi(T i) ∈ Int(V i), V i ⊂ Ωi+1
0 (δ̂), ∂V i ∩ N0 = ∅.
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For each (Y,Z) := {(y0, z0), . . . , (yn, zn)} ∈
∏n

i=0 U i × V i, we define a function J by

J(Y,Z) := h∞(x0, y0) +
n∑

i=0

hT i−S i
(yi, zi) +

n−1∑
i=0

h∞(zi, yi+1) + h∞(zn, xn+1). (4.6)

For each i = 0, . . . , n − 1, zi ∈ V i ⊂ Ωi+1
0 (δ̂) and yi+1 ∈ U i+1 ⊂ Ωi+1

0 (δ̂), by Lemma 4.1,

h∞(zi, yi+1) = h∞(zi, xi+1) + h∞(xi+1, yi+1).

Hence the function J can be rewritten as

J(Y,Z) =
n∑

i=0

[h∞(xi, yi) + hT i−S i
(yi, zi) + h∞(zi, xi+1)]. (4.7)

For any τ = (τi)n−1
i=0 with each τi ∈ Z

+ define a Jτ :
∏n

i=0 U i × V i → R, by

Jτ(Y,Z) = h∞(x0, y0) +
n∑

i=0

hT i−S i
(yi, zi) +

n−1∑
i=0

hτi(zi, yi+1) + h∞(zn, xn+1). (4.8)

Let

cτ := inf{Jτ(Y,Z) : (Y,Z) = {(y0, z0), . . . , (yn, zn)} ∈
n∏

i=0

U i × V i},

by the compactness of U i,V i and Lipschitz continuity of hn, h∞, it is easy to see the above infimum is
in fact a minimum.

Lemma 4.5. There is a τ, such that if (Y ′,Z′) = {(y′0, z
′
0), . . . , (y′n, z

′
n)} ∈

∏n
i=0 U i × V i satisfies

JT (Y ′,Z′) = cT , then

(Y ′,Z′) = {(y′0, z
′
0), . . . , (y′n, z

′
n)} ∈

n∏
i=0

Int(U i) × Int(V i).

We postpone the proof of the above lemma for a moment. Now there is a

(Y ′,Z′) = {(y′0, z
′
0), . . . , (y′n, z

′
n)} ∈

n∏
i=0

Int(U i) × Int(V i)

with Jτ(Y ′,Z′) = cτ. Meanwhile for each i = 0, . . . , n, there is a minimizer ζi ∈ C[0,T i−S i](y′i , z
′
i) with

AL(ζi) = hT i−S i
(y′i , z

′
i), and for each j = 0, . . . , n − 1, there is a minimizer η j ∈ C[0,τ j](z

′
j, y
′
j+1) such that

AL(η j) = hτ j(z′j+1, y
′
j+1).

By Lemma 4.2, there is a forward semi-static γ+ ∈ C([0,+∞),M) with γ+(0) = z′n and ω(dγ+) ⊂
Ω̃n+1, and a backward semi-static curve γ− ∈ C((−∞, 0],M) with γ−(0) = y′0 and α(dγ−) ⊂ Ω̃0.

Gluing these curves together by the following order

γ− ∗ ζ0 ∗ η0 ∗ · · · ∗ ηn−1 ∗ ζn ∗ γ
+,

we get a new curve γ ∈ C(R,M) with α(dγ) ⊂ Λ̃1 and ω(dγ) ⊂ Λ̃2.
By the standard variational argument, it is not hard to see γ is a classical solution of (EL) and we

are done.
□
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Proof of Lemma 4.5 . Set {γi(S i), γi(T i)} := {(γ0(S 0), γ0(T 0)), . . . , (γn(S n), γn(T n))}. Since
{γi(S i), γi(T i)} ∈

∏n
i=0 Int(U i) × Int(V i), it is enough to show, there is a τ such that

Jτ(Y,Z) > Jτ({γi(S i), γi(T i)}),

for all (Y,Z) = {(y0, z0), . . . , (yn, zn)} ∈
∏n

i=0 U i × V i \
∏n

i=0 Int(U i) × Int(V i). Using the expression of J
given in (4.7), we get

J(Y,Z) − J({γi(S i), γi(T i)}) =
n∑

i=0

{h∞(xi, yi) + hT i−S i
(yi, zi) + h∞(zi, xi+1)

− [h∞(xi, γ
i(S i)) + hT i−S i

(γi(S i), γi(T i)) + h∞(γi(T i), xi+1)]}.

Meanwhile by Lemma 4.3, for each i = 0, . . . , n,

h∞(xi, γ
i(S i)) + hT i−S i

(γi(S i), γi(T i)) + h∞(γi(T i), xi+1) = h∞(xi, xi+1).

Therefore

J(Y,Z) − J({γi(S i), γi(T i)}) =
n∑
0

∆(xi, yi, zi, xi+1; γi).

By Lemma 4.4, there is an ε > 0 independent of the choice of (Y,Z), such that

J(Y,Z) − J({γi(S i), γi(T i)}) ≥ ε. (4.9)

By the compactness of U i,V i and Lipschitz continuity of hn, h∞, there is a τ′ ∈ Z+, such that for all
i = 0, . . . , n − 1, when τi ≥ τ

′,

hτi(zi, yi+1) − h∞(zi, yi+1) ≥ −
ε

4(n − 1)
.

Then (4.6) and (4.8) imply
Jτ(Y,Z) ≥ J(Y,Z) −

ε

4
. (4.10)

Meanwhile for each i = 0, . . . , n − 1, we can always find a τi ≥ τ
′, such that

hτi(γi(Ti), γi+1(S i+1)) − h∞(γi(T i), γi+1(si+1) ≤
ε

4(n − 1)
.

Again by (4.6) and (4.8), we get

Jτ({γi(S i), γi(T i)}) ≤ J({γi(S i), γi(T i)}) +
ε

4
. (4.11)

Combining the above inequality with (4.9) and (4.10), we have

Jτ(Y,Z) ≥ J(Y,Z) −
ε

4
≥ J({γi(S i), γi(T i)}) +

3ε
4
≥ Jτ({γi(S i), γi(T i)}) +

ε

2
.

This finishes our proof of the lemma.
□
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