Nonlinear wave equations are widely used in many areas of science and engineering. This paper proposes two high-order compact (HOC) difference schemes with convergence orders of $ O\left({{\tau ^4} + h_x^4 + h_y^4} \right) $ that can be used to solve nonlinear wave equations. The first scheme is a nonlinear compact difference scheme with three temporal levels. After calculating the second-order spatial derivatives of the previous time level using the Padé scheme, numerical solutions of the next time level are obtained through repeated iterations. The second scheme is a three-level linearized compact difference scheme. Unlike the first scheme, iterations are not required and it obtains numerical solutions through an explicit calculation. The two proposed schemes are applied to solutions of the coupled sine-Gordon equations. Finally, some numerical experiments are presented to confirm the effectiveness and accuracy of the proposed schemes.
Citation: Shuaikang Wang, Yunzhi Jiang, Yongbin Ge. High-order compact difference methods for solving two-dimensional nonlinear wave equations[J]. Electronic Research Archive, 2023, 31(6): 3145-3168. doi: 10.3934/era.2023159
Nonlinear wave equations are widely used in many areas of science and engineering. This paper proposes two high-order compact (HOC) difference schemes with convergence orders of $ O\left({{\tau ^4} + h_x^4 + h_y^4} \right) $ that can be used to solve nonlinear wave equations. The first scheme is a nonlinear compact difference scheme with three temporal levels. After calculating the second-order spatial derivatives of the previous time level using the Padé scheme, numerical solutions of the next time level are obtained through repeated iterations. The second scheme is a three-level linearized compact difference scheme. Unlike the first scheme, iterations are not required and it obtains numerical solutions through an explicit calculation. The two proposed schemes are applied to solutions of the coupled sine-Gordon equations. Finally, some numerical experiments are presented to confirm the effectiveness and accuracy of the proposed schemes.
[1] | A. Biswas, Soliton perturbation theory for phi-four model and nonlinear Klein-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 14 (2009), 3239–3249. http://dx.doi.org/10.1016/j.cnsns.2008.12.020 doi: 10.1016/j.cnsns.2008.12.020 |
[2] | Y. Sun, New exact traveling wave solutions for double sine-Gordon equation, Appl. Math. Comput., 258 (2015), 100–104. http://dx.doi.org/10.1016/j.amc.2015.02.002 doi: 10.1016/j.amc.2015.02.002 |
[3] | R. Jiwari, S. Pandit, R. C. Mittal, Numerical simulation of two-dimensional sine-Gordon solitons by differential quadrature method, Comput. Phys. Commun., 183 (2012), 600–616. http://dx.doi.org/10.1016/j.cpc.2011.12.004 doi: 10.1016/j.cpc.2011.12.004 |
[4] | S. I. Abdelsalam, M. M. Bhatti, Anomalous reactivity of thermo-bioconvective nanofluid towards oxytactic microorganisms, Appl. Math. Mech., 41 (2020), 711–724. http://dx.doi.org/10.1007/s10483-020-2609-6 doi: 10.1007/s10483-020-2609-6 |
[5] | S. I. Abdelsalam, M. Sohail, Numerical approach of variable thermophysical features of dissipated viscous nanofluid comprising gyrotactic micro-organisms, Pramana-J. Phys., 94 (2020), 67. http://dx.doi.org/10.1007/s12043-020-1933-x doi: 10.1007/s12043-020-1933-x |
[6] | D. Deng, D. Liang, The time fourth-order compact ADI methods for solving two-dimensional nonlinear wave equations, Appl. Math. Comput., 329 (2018), 188–209. http://dx.doi.org/10.1016/j.amc.2018.02.010 doi: 10.1016/j.amc.2018.02.010 |
[7] | A. D. Jagtap, On spatio-temporal dynamics of sine-Gordon soliton in nonlinear non-homogeneous media using fully implicit spectral element scheme, Appl. Anal., 100 (2021), 37–60. http://doi.org/10.1080/00036811.2019.1588961 doi: 10.1080/00036811.2019.1588961 |
[8] | K. R. Khusnutdinova, D. E. Pelinovsky, On the exchange of energy in coupled Klein-Gordon equations, Wave Mot., 38 (2003), 1–10. http://dx.doi.org/10.1016/S0165-2125(03)00022-2 doi: 10.1016/S0165-2125(03)00022-2 |
[9] | S. Yomosa, Soliton excitations in deoxyribonucleic acid (DNA) double helices, Phys. Rev. A, 27 (1983), 2120–2125. http://dx.doi.org/10.1103/PhysRevA.27.2120 doi: 10.1103/PhysRevA.27.2120 |
[10] | A. H. Salas, Exact solutions of coupled sine-Gordon equations, Nonlinear Anal. RWA, 11 (2010), 3930–3935. http://dx.doi.org/10.1016/j.nonrwa.2010.02.020 doi: 10.1016/j.nonrwa.2010.02.020 |
[11] | O. Braun, Y. Kivshar, The Frenkel-Kontorova Model, Springer Press, 2003. http://doi.org/10.1007/978-3-662-10331-9 |
[12] | A. M. Wazwaz, The tanh and the sine-cosine methods for compact and noncompact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167 (2005), 1179–1195. http://dx.doi.org/10.1016/j.amc.2004.08.006 doi: 10.1016/j.amc.2004.08.006 |
[13] | A. M. Wazwaz, Exact solutions for the generalized sine-Gordon and the generalized sinh-Gordon equations, Chaos. Soliton. Fract., 28 (2006), 127–135. http://dx.doi.org/10.1016/j.chaos.2005.05.017 doi: 10.1016/j.chaos.2005.05.017 |
[14] | T. Aktosun, F. Demontis, C. V. Der Mee, Exact solutions to the sine-Gordon equation, J. Math. Phys., 51 (2010), 123521. http://dx.doi.org/10.1063/1.3520596 doi: 10.1063/1.3520596 |
[15] | Q. Zhou, M. Ekici, M. Mirzazadeh, A. The investigation of soliton solutions of the coupled sine-Gordon equation in nonlinear optics, J. Morden Opt., 64 (2017), 1677–1682. http://dx.doi.org/10.1080/09500340.2017.1310318 doi: 10.1080/09500340.2017.1310318 |
[16] | Y. Chen, Z. Yu, L. Zou, The lump, lump off and rogue wave solutions of a (2 + 1)-dimensional breaking soliton equation, Nonlinear Dyn., 111 (2023), 591–602. https://doi.org/10.1007/s11071-022-07823-7 doi: 10.1007/s11071-022-07823-7 |
[17] | B. Dong, Z. Ye, X. Zhai, Global regularity for the 2D boussinesq equations with temperature-dependent viscosity, J. Math. Fluid Mech., 22 (2020), 2. https://doi.org/10.1007/s00021-019-0463-0 doi: 10.1007/s00021-019-0463-0 |
[18] | B. Dong, Z. zhang, Global regularity of the 2D micropolar fluid flows with zero angular viscosity, J. Differ. Equ., 249 (2010), 200–213. https://doi.org/10.1016/j.jde.2010.03.016 doi: 10.1016/j.jde.2010.03.016 |
[19] | M. Cui, High order compact alternating direction implicit method for the generalized sine-Gordon equation, J. Comput. Appl. Math., 235 (2010), 837–849. http://dx.doi.org/10.1016/j.cam.2010.07.016 doi: 10.1016/j.cam.2010.07.016 |
[20] | S. Xie, S. Yi, T. I. Kwon, Fourth-order compact difference and alternating direction implicit schemes for telegraph equations, Comput. Phys. Commun., 183 (2012), 552–569. http://dx.doi.org/10.1016/j.cpc.2011.11.023 doi: 10.1016/j.cpc.2011.11.023 |
[21] | D. Deng, C. Zhang, A new fourth-order numerical algorithm for a class of nonlinear wave equations, Appl. Numer. Math., 62 (2012), 1864–1879. http://dx.doi.org/10.1016/j.apnum.2012.07.004 doi: 10.1016/j.apnum.2012.07.004 |
[22] | B. Hou, D. Liang, The energy-preserving time high-order AVF compact finite difference scheme for nonlinear wave equations in two dimensions, Appl. Numer. Math., 170 (2021), 298–320. http://dx.doi.org/10.1016/j.apnum.2021.07.026 doi: 10.1016/j.apnum.2021.07.026 |
[23] | J. Argyris, M. Haase, J. C. Heinrich, Finite element approximation to two-dimensional sine-Gordon solitons, Comput. Methods Appl. Mech. Eng., 86 (1991), 1–26. http://dx.doi.org/10.1016/0045-7825(91)90136-T doi: 10.1016/0045-7825(91)90136-T |
[24] | D. Shi, L. Pei, Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gordon equations, Appl. Math. Comput., 219 (2013), 9447–9460. http://dx.doi.org/10.1016/j.amc.2013.03.008 doi: 10.1016/j.amc.2013.03.008 |
[25] | A. G. Bratsos, The solution of the two-dimensional sine-Gordon equation using the method of lines, J. Comput. Appl. Math., 206 (2007), 251–277. http://dx.doi.org/10.1016/j.cam.2006.07.002 doi: 10.1016/j.cam.2006.07.002 |
[26] | A. G. Bratsos, An improved numerical scheme for the sine-Gordon equation in 2 + 1 dimensions, Int. J. Numer. Methods Eng., 75 (2008), 787–799. http://dx.doi.org/10.1002/nme.2276 doi: 10.1002/nme.2276 |
[27] | D. Deng, C. Zhang, Analysis and application of a compact multistep ADI solver for a class of nonlinear viscous wave equations, Appl. Math. Model., 39 (2015), 1033–1049. http://dx.doi.org/10.1016/j.apm.2014.07.031 doi: 10.1016/j.apm.2014.07.031 |
[28] | D. Deng, Unified compact ADI methods for solving nonlinear viscous and nonviscous wave equations, Chinese J. Chem. Phys., 56 (2018), 2897–2915. http://dx.doi.org/10.1016/j.cjph.2018.09.025 doi: 10.1016/j.cjph.2018.09.025 |
[29] | M. Ilati, M. Dehghan, The use of radial basis functions (RBFs) collocation and RBF-QR methods for solving the coupled nonlinear sine-Gordon equations, Eng. Anal. Bound. Elem., 52 (2015), 99–109. http://dx.doi.org/10.1016/j.enganabound.2014.11.023 doi: 10.1016/j.enganabound.2014.11.023 |
[30] | D. Deng, Numerical Simulation of the coupled sine-Gordon equations via a linearized and decoupled compact ADI method, Numer. Funct. Anal. Optim., 40 (2019), 1053–1079. http://dx.doi.org/10.1080/01630563.2019.1596951 doi: 10.1080/01630563.2019.1596951 |
[31] | Y. Nawaz, M. S. Arif, W. Shatanawi, A. Nazeer, An explicit fourth-order compact numerical scheme for heat transfer of boundary layer flow, Energies., 14 (2021), 3396. http://dx.doi.org/10.3390/en14123396 doi: 10.3390/en14123396 |
[32] | A. Bourchtein, L. Bourchtein, Explicit finite difference schemes with extended stability for advection equations, J. Comput. Appl. Math., 236 (2012), 3591–3604. http://dx.doi.org/10.1016/j.cam.2011.04.028 doi: 10.1016/j.cam.2011.04.028 |
[33] | K. Li, W. Liao, An efficient and high accuracy finite-difference scheme for the acoustic wave equation in 3D heterogeneous media, J. Comput. Sci., 40 (2020), 101063. http://dx.doi.org/10.1016/j.jocs.2019.101063 doi: 10.1016/j.jocs.2019.101063 |
[34] | S. K. Lele, Compact finite difference schemes with spectral-like resolution, J. Comput. Phys., 103 (1992), 16–42. http://dx.doi.org/10.1016/0021-9991(92)90324-R doi: 10.1016/0021-9991(92)90324-R |
[35] | O. M. Braun, Y. S. Kivshar, Nonlinear dynamics of the Frenkel-Kontorova model, Phys. Rep., 306 (1998), 1–108. http://dx.doi.org/10.1016/S0370-1573(98)00029-5 doi: 10.1016/S0370-1573(98)00029-5 |
[36] | G. Zhang, Two conservative and linearly-implicit compact difference schemes for the nonlinear fourth-order wave equation, Appl. Math. Comput., 401 (2021), 126055. http://dx.doi.org/10.1016/j.amc.2021.126055 doi: 10.1016/j.amc.2021.126055 |
[37] | T. Achouri, T. Kadri, K. Omrani, Analysis of finite difference schemes for a fourth-order strongly damped nonlinear wave equations, Comput. Math. Appl., 82 (2021), 74–96. http://dx.doi.org/10.1016/j.camwa.2020.11.012 doi: 10.1016/j.camwa.2020.11.012 |
[38] | T. Achouri, Conservarive finite difference scheme for the nonlinear fourth-order wave equation, Appl. Math. Comput., 359 (2019), 121–131. http://dx.doi.org/10.1016/j.amc.2019.04.033 doi: 10.1016/j.amc.2019.04.033 |
[39] | M. Wu, Y. Jiang, Y. Ge, An accurate and efficient local one-dimensional method for the 3D acoustic wave equation, Demonstr. Math., 55 (2022), 528–552. http://doi.org/10.1515/dema-2022-0148 doi: 10.1515/dema-2022-0148 |
[40] | K. Li, W. Liao, An efficient and high accuracy finite-difference scheme for the acoustic wave equation in 3D heterogeneous media, J. Comput. Sci., 40 (2020), 101063. http://doi.org/10.1016/j.jocs.2019.101063 doi: 10.1016/j.jocs.2019.101063 |
[41] | D. Yang, Iterative Solution for Large Linear System, $1^{st}$ edition, Academic Press, 1971. http://doi.org/10.1016/C2013-0-11733-3 |