Research article Special Issues

The fractional Malmheden theorem

  • Received: 14 November 2021 Revised: 12 March 2022 Accepted: 12 March 2022 Published: 14 April 2022
  • We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.

    Citation: Serena Dipierro, Giovanni Giacomin, Enrico Valdinoci. The fractional Malmheden theorem[J]. Mathematics in Engineering, 2023, 5(2): 1-28. doi: 10.3934/mine.2023024

    Related Papers:

  • We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for $ s $-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.



    加载中


    [1] M. Agranovsky, D. Khavinson, H. S. Shapiro, Malmheden's theorem revisited, Expo. Math., 28 (2010), 337–350. http://doi.org/10.1016/j.exmath.2010.03.002 doi: 10.1016/j.exmath.2010.03.002
    [2] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York, NY: Springer, 2011. http://doi.org/10.1007/978-0-387-70914-7
    [3] C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657–699. http://doi.org/10.3934/cpaa.2016.15.657 doi: 10.3934/cpaa.2016.15.657
    [4] C. Bucur, S. Dipierro, E. Valdinoci, On the mean value property of fractional harmonic functions, Nonlinear Anal., 201 (2020), 112112. http://doi.org/10.1016/j.na.2020.112112 doi: 10.1016/j.na.2020.112112
    [5] C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Cham: Springer, 2016. http://doi.org/10.1007/978-3-319-28739-3
    [6] L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. http://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
    [7] S. Dipierro, O. Savin, E. Valdinoci, All functions are locally $s$-harmonic up to a small error, J. Eur. Math. Soc., 19 (2017), 957–966. http://doi.org/10.4171/JEMS/684 doi: 10.4171/JEMS/684
    [8] S. Dipierro, E. Valdinoci, Elliptic partial differential equations from an elementary viewpoint, 2021, arXiv: 2101.07941.
    [9] R. J. Duffin, A note on Poisson's integral, Quart. Appl. Math., 15 (1957), 109–111. http://doi.org/10.1090/qam/86885
    [10] L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Boca Raton: CRC Press, 2015. http://doi.org/10.1201/9780203747940
    [11] M. Kassmann, Harnack-Ungleichungen für nichtlokale Differentialoperatoren und Dirichlet-Formen, (German), Bonn: Universität Bonn, Mathematisches Institut, 2001.
    [12] M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, C. R. Math., 349 (2011), 637–640. http://doi.org/10.1016/j.crma.2011.04.014 doi: 10.1016/j.crma.2011.04.014
    [13] H. W. Malmheden, Eine neue Lösung des dirichletschen problems für sphärische bereiche, (German), Fysiogr. Sällsk. Lund Förh., 4 (1934), 1–5.
    [14] S. G. Mikhlin, Multidimensional singular integrals and integral equations, Oxford-New York-Paris: Pergamon Press, 1965.
    [15] T. Needham, The geometry of harmonic functions, Mathematics Magazine, 67 (1994), 92–108. http://doi.org/10.2307/2690683 doi: 10.2307/2690683
    [16] T. Needham, Visual complex analysis, Oxford University Press, 1997.
    [17] C. Neumann, Vorlesungen über Riemann's Theorie der Abel'schen Integrale. Zweite vollständig umgearbeitete und wesentlich vermehrte Auflage, (German), Leipzig: Teubner, 1884.
    [18] H. A. Schwarz, Gesammelte mathematische Abhandlungen. Band I, II, (German), Bronx, N.Y.: Chelsea Publishing Co., 1972.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1842) PDF downloads(218) Cited by(1)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog