Research article Special Issues

On the low Mach number limit for 2D Navier–Stokes–Korteweg systems

  • Received: 15 December 2021 Revised: 25 February 2022 Accepted: 25 February 2022 Published: 12 April 2022
  • This paper addresses the low Mach number limit for two-dimensional Navier–Stokes–Korteweg systems. The primary purpose is to investigate the relevance of the capillarity tensor for the analysis. For the sake of a concise exposition, our considerations focus on the case of the quantum Navier-Stokes (QNS) equations. An outline for a subsequent generalization to general viscosity and capillarity tensors is provided. Our main result proves the convergence of finite energy weak solutions of QNS to the unique Leray-Hopf weak solutions of the incompressible Navier-Stokes equations, for general initial data without additional smallness or regularity assumptions. We rely on the compactness properties stemming from energy and BD-entropy estimates. Strong convergence of acoustic waves is proven by means of refined Strichartz estimates that take into account the alteration of the dispersion relation due to the capillarity tensor. For both steps, the presence of a suitable capillarity tensor is pivotal.

    Citation: Lars Eric Hientzsch. On the low Mach number limit for 2D Navier–Stokes–Korteweg systems[J]. Mathematics in Engineering, 2023, 5(2): 1-26. doi: 10.3934/mine.2023023

    Related Papers:

  • This paper addresses the low Mach number limit for two-dimensional Navier–Stokes–Korteweg systems. The primary purpose is to investigate the relevance of the capillarity tensor for the analysis. For the sake of a concise exposition, our considerations focus on the case of the quantum Navier-Stokes (QNS) equations. An outline for a subsequent generalization to general viscosity and capillarity tensors is provided. Our main result proves the convergence of finite energy weak solutions of QNS to the unique Leray-Hopf weak solutions of the incompressible Navier-Stokes equations, for general initial data without additional smallness or regularity assumptions. We rely on the compactness properties stemming from energy and BD-entropy estimates. Strong convergence of acoustic waves is proven by means of refined Strichartz estimates that take into account the alteration of the dispersion relation due to the capillarity tensor. For both steps, the presence of a suitable capillarity tensor is pivotal.



    加载中


    [1] R. A. Adams, J. J. F. Fournier, Sobolev spaces, 2 Eds., Amsterdam: Elsevier/Academic Press, 2003.
    [2] T. Alazard, A minicourse on the low Mach number limit, Discrete Contin. Dyn. Syst. Ser. S, 1 (2008), 365–404. https://doi.org/10.3934/dcdss.2008.1.365 doi: 10.3934/dcdss.2008.1.365
    [3] D. M. Anderson, G. B. McFadden, A. A. Wheeler, Diffuse-interface methods in fluid mechanics, Annu. Rev. Fluid Mech., 30 (1998), 139–165. https://doi.org/10.1146/annurev.fluid.30.1.139 doi: 10.1146/annurev.fluid.30.1.139
    [4] P. Antonelli, L. E. Hientzsch, P. Marcati, On the low Mach number limit for quantum Navier-Stokes equations, SIAM J. Math. Anal., 52 (2020), 6105–6139. https://doi.org/10.1137/19M1252958 doi: 10.1137/19M1252958
    [5] P. Antonelli, L. E. Hientzsch, P. Marcati, The incompressible limit for finite energy weak solutions of quantum Navier-Stokes equations, In: Hyperbolic problems: theory, numerics, applications, Springfield, MO: American Institute of Mathematical Sciences (AIMS), 2020,256–263.
    [6] P. Antonelli, L. E. Hientzsch, P. Marcati, Analysis of acoustic oscillations for a class of hydrodynamic systems describing quantum fluids, 2022, arXiv: 2011.13435.
    [7] P. Antonelli, L. E. Hientzsch, P. Marcati, H. Zheng, On some results for quantum hydrodynamical models (Mathematical Analysis in Fluid and Gas Dynamics), Research Institute for Mathematical Sciences, 2070 (2018), 107–129.
    [8] P. Antonelli, L. E. Hientzsch, S. Spirito, Global existence of finite energy weak solutions to the quantum Navier-Stokes equations with non-trivial far-field behavior, J. Differ. Equations, 290 (2021), 147–177. https://doi.org/10.1016/j.jde.2021.04.025 doi: 10.1016/j.jde.2021.04.025
    [9] P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657. https://doi.org/10.1007/s00220-008-0632-0 doi: 10.1007/s00220-008-0632-0
    [10] P. Antonelli, P. Marcati, The quantum hydrodynamics system in two space dimensions, Arch. Rational Mech. Anal., 203 (2012), 499–527. https://doi.org/10.1007/s00205-011-0454-7 doi: 10.1007/s00205-011-0454-7
    [11] P. Antonelli, S. Spirito, Global existence of finite energy weak solutions of quantum Navier-Stokes equations, Arch. Rational Mech. Anal., 225 (2017), 1161–1199. https://doi.org/10.1007/s00205-017-1124-1 doi: 10.1007/s00205-017-1124-1
    [12] P. Antonelli, S. Spirito, On the compactness of weak solutions to the Navier-Stokes-Korteweg equations for capillary fluids, Nonlinear Anal., 187 (2019), 110–124. https://doi.org/10.1016/j.na.2019.03.020 doi: 10.1016/j.na.2019.03.020
    [13] P. Antonelli, S. Spirito, Global existence of weak solutions to the Navier-Stokes-Korteweg equations, Ann. Inst. H. Poincaré, Anal. Non Linéaire, 39 (2022), 171–200. https://doi.org/10.4171/AIHPC/5 doi: 10.4171/AIHPC/5
    [14] S. Benzoni-Gavage, R. Danchin, S. Descombes, On the well-posedness for the Euler-Korteweg model in several space dimensions, Indiana Univ. Math. J., 56 (2007), 1499–1579. https://doi.org/10.1512/iumj.2007.56.2974 doi: 10.1512/iumj.2007.56.2974
    [15] J. Bergh, J. Löfström, Interpolation spaces, Berlin, Heidelberg: Springer, 1976. https://doi.org/10.1007/978-3-642-66451-9
    [16] F. Béthuel, R. Danchin, D. Smets, On the linear wave regime of the Gross-Pitaevskii equation, JAMA, 110 (2010), 297–338. https://doi.org/10.1007/s11854-010-0008-1 doi: 10.1007/s11854-010-0008-1
    [17] N. N. Bogolyubov, On the theory of superfluidity, J. Phys. (USSR), 11 (1947), 23–32.
    [18] D. Bresch, B. Desjardins, Quelques modèles diffusifs capillaires de type Korteweg, Comptes Rendus Mécanique, 332 (2004), 881–886. https://doi.org/10.1016/j.crme.2004.07.003 doi: 10.1016/j.crme.2004.07.003
    [19] D. Bresch, B. Desjardins, C.-K. Lin, On some compressible fluid models: Korteweg, lubrication, and shallow water systems, Commun. Part. Diff. Eq., 28 (2003), 843–868. https://doi.org/10.1081/PDE-120020499 doi: 10.1081/PDE-120020499
    [20] D. Bresch, M. Gisclon, I. Lacroix-Violet, On Navier-Stokes-Korteweg and Euler-Korteweg systems: application to quantum fluids models, Arch. Rational Mech. Anal., 233 (2019), 975–1025. https://doi.org/10.1007/s00205-019-01373-w doi: 10.1007/s00205-019-01373-w
    [21] D. Bresch, A. Vasseur, C. Yu, Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities, 2019, arXiv: 1905.02701.
    [22] H. Brezis, E. H. Lieb, Minimum action solutions of some vector field equations, Commun. Math. Phys., 96 (1984), 97–113. https://doi.org/10.1007/BF01217349 doi: 10.1007/BF01217349
    [23] S. Brull, F. Méhats, Derivation of viscous correction terms for the isothermal quantum Euler model, ZAMM-Z. Angew. Math. Mech., 90 (2010), 219–230. https://doi.org/10.1002/zamm.200900297 doi: 10.1002/zamm.200900297
    [24] R. Danchin, Low Mach number limit for viscous compressible flows, ESAIM: M2AN, 39 (2005), 459–475. https://doi.org/10.1051/m2an:2005019 doi: 10.1051/m2an:2005019
    [25] B. Desjardins, E. Grenier, Low Mach number limit of viscous compressible flows in the whole space, Proc. R. Soc. Lond. A, 455 (1999), 2271–2279. https://doi.org/10.1098/rspa.1999.0403 doi: 10.1098/rspa.1999.0403
    [26] D. Donatelli, P. Marcati, Low Mach number limit for the quantum hydrodynamics system, Res. Math. Sci., 3 (2016), 13. https://doi.org/10.1186/s40687-016-0063-z doi: 10.1186/s40687-016-0063-z
    [27] J. E. Dunn, J. Serrin, On the thermomechanics of interstitial working, Arch. Rational Mech. Anal., 88 (1985), 95–133. https://doi.org/10.1007/BF00250907 doi: 10.1007/BF00250907
    [28] E. Feireisl, A. Novotný, Singular limits in thermodynamics of viscous fluids, 2 Eds., Cham: Birkhäuser, 2017. https://doi.org/10.1007/978-3-319-63781-5
    [29] E. Feireisl, A. Novotný, H. Petzeltová, On the existence of globally defined weak solutions to the Navier-Stokes equations, J. Math. Fluid. Mech., 3 (2001), 358–392. https://doi.org/10.1007/PL00000976 doi: 10.1007/PL00000976
    [30] C. L. Gardner, The quantum hydrodynamic model for semiconductor devices, SIAM J. Appl. Math., 54 (1994), 409–427. https://doi.org/10.1137/S0036139992240425 doi: 10.1137/S0036139992240425
    [31] J. Ginibre, G. Velo, Scattering theory in the energy space for a class of nonlinear Schrödinger equations, J. Math. Pures Appl. (9), 64 (1985), 363–401.
    [32] S. Gustafson, K. Nakanishi, T.-P. Tsai, Scattering for the Gross-Pitaevskii equation, Math. Res. Lett., 13 (2006), 273–285. https://doi.org/10.4310/MRL.2006.v13.n2.a8 doi: 10.4310/MRL.2006.v13.n2.a8
    [33] M. Heida, J. Málek, On compressible Korteweg fluid-like materials, Int. J. Eng. Sci., 48 (2010), 1313–1324. https://doi.org/10.1016/j.ijengsci.2010.06.031 doi: 10.1016/j.ijengsci.2010.06.031
    [34] L. E. Hientzsch, Nonlinear Schrödinger equations and quantum fluids non vanishing at infinity: incompressible limit and quantum vortices, PhD thesis of Gran Sasso Science Institute, 2019.
    [35] N. Jiang, N. Masmoudi, Low Mach number limits and acoustic waves, In: Handbook of mathematical analysis in mechanics of viscous fluids, Cham: Springer, 2018, 2721–2770. https://doi.org/10.1007/978-3-319-13344-7_69
    [36] A. Jüngel, Dissipative quantum fluid models, Riv. Math. Univ. Parma, 3 (2012), 217–290.
    [37] A. Jüngel, J.-P. Milišić, Full compressible Navier-Stokes equations for quantum fluids: derivation and numerical solution, Kinet. Relat. Mod., 4 (2011), 785–807. https://doi.org/10.3934/krm.2011.4.785 doi: 10.3934/krm.2011.4.785
    [38] M. Keel, T. Tao, Endpoint Strichartz estimates, Amer. J. Math., 120 (1998), 955–980. https://doi.org/10.1353/ajm.1998.0039 doi: 10.1353/ajm.1998.0039
    [39] I. M. Khalatnikov, An introduction to the theory of superfluidity, CRC Press, 2018.
    [40] D. J. Korteweg, Sur la forme que prennent les équations du mouvements des fluides si l'on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l'hypothése d'une variation continue de la densité, Arch. Neerl. Sci. Exactes, 6 (1901), 1–24.
    [41] Y.-S. Kwon, F. Li, Incompressible limit of the degenerate quantum compressible Navier-Stokes equations with general initial data, J. Differ. Equations, 264 (2018), 3253–3284. https://doi.org/10.1016/j.jde.2017.11.018 doi: 10.1016/j.jde.2017.11.018
    [42] I. Lacroix-Violet, A. Vasseur, Global weak solutions to the compressible quantum Navier-Stokes equation and its semi-classical limit, Journal de Mathématiques Pures et Appliquées, 114 (2018), 191–210. https://doi.org/10.1016/j.matpur.2017.12.002 doi: 10.1016/j.matpur.2017.12.002
    [43] O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, New York-London-Paris: Gordon and Breach, Science Publishers, 1969.
    [44] J. Leray, Sur le mouvement d'un liquide visqueux emplissant l'espace, Acta Math., 63 (1934), 193–248. https://doi.org/10.1007/BF02547354 doi: 10.1007/BF02547354
    [45] J. Li, Z. Xin, Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities, 2015, arXiv: 1504.06826.
    [46] J. L. Lions, Sur la régularité et l'unicité des solutions turbulentes des équations de Navier Stokes, Rendiconti del Seminario Matematico della Università di Padova, 30 (1960), 16–23.
    [47] P.-L. Lions, N. Masmoudi, Incompressible limit for a viscous compressible fluid, Journal de Mathématiques Pures et Appliquées, 77 (1998), 585–627. https://doi.org/10.1016/S0021-7824(98)80139-6 doi: 10.1016/S0021-7824(98)80139-6
    [48] P.-L. Lions, Mathematical topics in fluid mechanics, New York: Oxford University Press, 1998.
    [49] Q.-H. Nguyen, P.-T. Nguyen, B. Q. Tang, Energy equalities for compressible Navier-Stokes equations, Nonlinearity, 32 (2019), 4206–4231. https://doi.org/10.1088/1361-6544/ab28ae doi: 10.1088/1361-6544/ab28ae
    [50] L. Pitaevskii, S. Stringari, Bose-Einstein condensation and superfluidity, Oxford: Oxford University Press, 2018. https://doi.org/10.1093/acprof:oso/9780198758884.001.0001
    [51] G. Prodi, Un teorema di unicità per le equazioni di Navier-Stokes, Annali di Matematica, 48 (1959), 173–182. https://doi.org/10.1007/BF02410664 doi: 10.1007/BF02410664
    [52] J. Serrin, The initial value problem for the Navier-Stokes equations, In: Nonlinear problems, Madison: University of Wisconsin Press, 1963, 69–98.
    [53] J. Simon, Compact sets in the space $L^p(0, T;B)$, Annali di Matematica pura ed applicata, 146 (1987), 65–96. https://doi.org/10.1007/BF01762360 doi: 10.1007/BF01762360
    [54] M. Slemrod, Admissibility criteria for propagating phase boundaries in a van der Waals fluid, Arch. Rational Mech. Anal., 81 (1983), 301–315. https://doi.org/10.1007/BF00250857 doi: 10.1007/BF00250857
    [55] M. Slemrod, Dynamic phase transitions in a van der Waals fluid, J. Differ. Equations, 52 (1984), 1–23. https://doi.org/10.1016/0022-0396(84)90130-X doi: 10.1016/0022-0396(84)90130-X
    [56] A. F. Vasseur, C. Yu, Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations, Invent. Math., 206 (2016), 935–974. https://doi.org/10.1007/s00222-016-0666-4 doi: 10.1007/s00222-016-0666-4
    [57] J. Yang, Q. Ju, Y.-F. Yang, Asymptotic limits of Navier-Stokes equations with quantum effects, Z. Angew. Math. Phys., 66 (2015), 2271–2283. https://doi.org/10.1007/s00033-015-0554-6 doi: 10.1007/s00033-015-0554-6
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1704) PDF downloads(229) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog