We study the asymptotic behavior as $ p\to\infty $ of the Gelfand problem
$ \begin{equation*} \left\{ \begin{aligned} -&\Delta_{p} u = \lambda\,e^{u}&& \text{in}\ \Omega\subset \mathbb{R}^n\\ &u = 0 && \text{on}\ \partial\Omega. \end{aligned} \right. \end{equation*} $
Under an appropriate rescaling on $ u $ and $ \lambda $, we prove uniform convergence of solutions of the Gelfand problem to solutions of
$ \left\{ \begin{aligned} &\min\left\{|\nabla{}u|-\Lambda\,e^{u}, -\Delta_{\infty}u\right\} = 0&& \text{in}\ \Omega,\\ &u = 0\ &&\text{on}\ \partial\Omega. \end{aligned} \right. $
We discuss existence, non-existence, and multiplicity of solutions of the limit problem in terms of $ \Lambda $.
Citation: Fernando Charro, Byungjae Son, Peiyong Wang. The Gelfand problem for the Infinity Laplacian[J]. Mathematics in Engineering, 2023, 5(2): 1-28. doi: 10.3934/mine.2023022
We study the asymptotic behavior as $ p\to\infty $ of the Gelfand problem
$ \begin{equation*} \left\{ \begin{aligned} -&\Delta_{p} u = \lambda\,e^{u}&& \text{in}\ \Omega\subset \mathbb{R}^n\\ &u = 0 && \text{on}\ \partial\Omega. \end{aligned} \right. \end{equation*} $
Under an appropriate rescaling on $ u $ and $ \lambda $, we prove uniform convergence of solutions of the Gelfand problem to solutions of
$ \left\{ \begin{aligned} &\min\left\{|\nabla{}u|-\Lambda\,e^{u}, -\Delta_{\infty}u\right\} = 0&& \text{in}\ \Omega,\\ &u = 0\ &&\text{on}\ \partial\Omega. \end{aligned} \right. $
We discuss existence, non-existence, and multiplicity of solutions of the limit problem in terms of $ \Lambda $.
[1] | B. Abdellaoui, I. Peral, Existence and nonexistence results for quasilinear elliptic equations involving the $p$-Laplacian with a critical potential, Ann. Mat. Pura Appl. IV. Ser., 182 (2003), 247–270. https://doi.org/10.1007/s10231-002-0064-y doi: 10.1007/s10231-002-0064-y |
[2] | A. Anane, J. L. Lions, Simplicitè et isolation de la premiere valeur propre du $p$-laplacien avec poids, C. R. Acad. Sci. Paris Sér. I Math., 305 (1987), 725–728. |
[3] | T. Bhattacharya, E. DiBenedetto, J. Manfredi, Limit as $p\rightarrow \infty$ of $\Delta_{p}u_p = f$ and related extremal problems, Rend. Sem. Mat. Univ. Politec. Torino, 1989, 15–68. |
[4] | M. Bocea, M. Mihǎilescu, Existence of nonnegative viscosity solutions for a class of problems involving the $\infty$-Laplacian, Nonlinear Differ. Equ. Appl., 23 (2016), 11. https://doi.org/10.1007/s00030-016-0373-2 doi: 10.1007/s00030-016-0373-2 |
[5] | G. Bratu, Sur les équations intégrales non linéaires, Bulletin de la S. M. F., 42 (1914), 113–142. |
[6] | H. Brezis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal. Theor., 10 (1986), 55–64. https://doi.org/10.1016/0362-546X(86)90011-8 doi: 10.1016/0362-546X(86)90011-8 |
[7] | X. Cabré, M. Sanchón, Semi-stable and extremal solutions of reaction equations involving the $p$-Laplacian, Commun. Pure Appl. Anal., 6 (2007), 43–67. https://doi.org/10.3934/cpaa.2007.6.43 doi: 10.3934/cpaa.2007.6.43 |
[8] | S. Chandrasekhar, An introduction to the study of stellar structures, New York: Dover, 1957. |
[9] | S. Chanillo, M. Kiessling, Surfaces with prescribed Gauss curvature, Duke Math. J., 105 (2000), 309–353. https://doi.org/10.1215/S0012-7094-00-10525-X doi: 10.1215/S0012-7094-00-10525-X |
[10] | F. Charro, E. Parini, Limits as $p\to\infty$ of $p$-laplacian problems with a superdiffusive power-type nonlinearity: positive and sign-changing solutions, J. Math. Anal. Appl., 372 (2010), 629–644. https://doi.org/10.1016/j.jmaa.2010.07.005 doi: 10.1016/j.jmaa.2010.07.005 |
[11] | F. Charro, E. Parini, Limits as $p\to\infty$ of $p$-laplacian eigenvalue problems perturbed with a concave or convex term, Calc. Var., 46 (2013), 403–425. https://doi.org/10.1007/s00526-011-0487-7 doi: 10.1007/s00526-011-0487-7 |
[12] | F. Charro, I. Peral, Limit branch of solutions as $p\rightarrow \infty$ for a family of sub-diffusive problems related to the p-laplacian, Commun. Part. Diff. Eq., 32 (2007), 1965–1981. https://doi.org/10.1080/03605300701454792 doi: 10.1080/03605300701454792 |
[13] | F. Charro, I. Peral, Limits as $p\to\infty$ of $p$-Laplacian concave-convex problems, Nonlinear Anal. Theor., 75 (2012), 2637–2659. https://doi.org/10.1016/j.na.2011.11.009 doi: 10.1016/j.na.2011.11.009 |
[14] | M. G. Crandall, H. Ishii, P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67. https://doi.org/10.1090/S0273-0979-1992-00266-5 doi: 10.1090/S0273-0979-1992-00266-5 |
[15] | J. Dávila, Singular solutions of semi-linear elliptic problems, In: Handbook of differential equations: stationary partial differential equations, Amsterdam: Elsevier/North-Holland, 2008, 83–176. https://doi.org/10.1016/S1874-5733(08)80019-8 |
[16] | M. Del Pino, J. Dolbeault, M. Musso, Multiple bubbling for the exponential nonlinearity in the slightly supercritical case, Commun. Pure Appl. Anal., 5 (2006), 463–482. https://doi.org/10.3934/cpaa.2006.5.463 doi: 10.3934/cpaa.2006.5.463 |
[17] | R. Emden, Gaskugeln: Anwendungen der mechanischen Wärmetheorie auf kosmologische und meteorologische Probleme (German), Germany: B. G. Teubner, 1907. |
[18] | N. Fukagai, M. Ito, K. Narukawa, Limit as $p\rightarrow \infty$ of $p$-Laplace eigenvalue problems and $L^\infty$-inequality of the Poincare type, Differ. Integral Equ., 12 (1999), 183–206. |
[19] | J. P. García Azorero, I. Peral, Existence and nonuniqueness for the p-laplacian: nonlinear eigenvalues, Commun. Part. Diff. Eq., 12 (1987), 1389–1430. |
[20] | J. García Azorero, I. Peral Alonso, On a Emden-Fowler type equation, Nonlinear Anal. Theor., 18 (1992), 1085–1097. https://doi.org/10.1016/0362-546X(92)90197-M doi: 10.1016/0362-546X(92)90197-M |
[21] | J. García Azorero, I. Peral Alonso, J. P. Puel, Quasilinear problems with exponential growth in the reaction term, Nonlinear Anal. Theor., 22 (1994), 481–498. https://doi.org/10.1016/0362-546X(94)90169-4 doi: 10.1016/0362-546X(94)90169-4 |
[22] | I. M. Gel'fand, Some problems in the theory of quasilinear equations, Amer. Math. Soc. Trans., 29 (1963), 295–381. |
[23] | J.-F. Grosjean, $p$-Laplace operator and diameter of manifolds, Ann. Glob. Anal. Geom., 28 (2005), 257–270. https://doi.org/10.1007/s10455-005-6637-4 doi: 10.1007/s10455-005-6637-4 |
[24] | J. Jacobsen, K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Differ. Equations, 184 (2002), 283–298. https://doi.org/10.1006/jdeq.2001.4151 doi: 10.1006/jdeq.2001.4151 |
[25] | R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Arch. Rational Mech. Anal., 123 (1993), 51–74. https://doi.org/10.1007/BF00386368 doi: 10.1007/BF00386368 |
[26] | D. D. Joseph, T. S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal., 49 (1973), 241–269. https://doi.org/10.1007/BF00250508 doi: 10.1007/BF00250508 |
[27] | P. Juutinen, Minimization problems for Lipschitz functions via viscosity solutions, Helsinki: Suomalainen Tiedeakatemia, 1998. |
[28] | P. Juutinen, Principal eigenvalue of a badly degenerate operator, J. Differ. Equations, 236 (2007), 532–550. https://doi.org/10.1016/j.jde.2007.01.020 doi: 10.1016/j.jde.2007.01.020 |
[29] | P. Juutinen, P. Lindqvist, On the higher eigenvalues for the $\infty$-eigenvalue problem, Calc. Var., 23 (2005), 169–192. https://doi.org/10.1007/s00526-004-0295-4 doi: 10.1007/s00526-004-0295-4 |
[30] | P. Juutinen, P. Lindqvist, J. Manfredi, The $\infty$-eigenvalue problem, Arch. Rational Mech. Anal., 148 (1999), 89–105. https://doi.org/10.1007/s002050050157 doi: 10.1007/s002050050157 |
[31] | B. Kawohl, On a family of torsional creep problems, J. Reine Angew. Math., 410 (1990), 1–22. |
[32] | P. Lindqvist, On the equation $ \text{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u = 0$, Proc. Amer. Math. Soc., 109 (1990), 157–164. https://doi.org/10.1090/S0002-9939-1990-1007505-7 doi: 10.1090/S0002-9939-1990-1007505-7 |
[33] | P. Lindqvist, Addendum: "On the equation $ \text{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda|u|^{p-2} u = 0$'' [Proc. Amer. Math. Soc. 109 (1990), no. 1,157–164; MR1007505 (90h: 35088)], Proc. Amer. Math. Soc., 116 (1992), 583–584. https://doi.org/10.1090/S0002-9939-1992-1139483-6 |
[34] | P. Lindqvist, J. Manfredi, The Harnack inequality for $\infty$-harmonic functions, Electron. J. Diff. Eqns., 5 (1995), 1–5. |
[35] | P. Lindqvist, J. Manfredi, Note on $\infty$-superharmonic functions, Revista Matemática de la Universidad Complutense de Madrid, 10 (1997), 471–480. |
[36] | P. L. Lions, On the existence of positive solutions of semilinear elliptic equations, SIAM Rev., 24 (1982), 441–467. https://doi.org/10.1137/1024101 doi: 10.1137/1024101 |
[37] | J. Liouville, Sur l'équation aux différences partielles $\frac{d^2\log\lambda}dudv\pm \frac{\lambda}{2a^2} = 0$, Journal de mathématiques pures et appliquées 1re série, 18 (1853), 71–72. |
[38] | M. Mihǎilescu, D. Stancu-Dumitru, C. Varga, The convergence of nonnegative solutions for the family of problems $-\Delta_p u = \lambda e^u$ as $p\to\infty$, ESAIM: COCV, 24 (2018), 569–578. https://doi.org/10.1051/cocv/2017048 doi: 10.1051/cocv/2017048 |
[39] | I. Peral, Some results on quasilinear elliptic equations: growth versus shape, In: Proceedings of the second school of nonlinear functional analysis and applications to differential equations, Trieste: World Scientific, 1998,153–202. |
[40] | O. W. Richardson, The emission of electricity from hot Bodies, India: Longmans, Green and Company, 1921. |
[41] | M. Sanchón, Regularity of the extremal solution of some nonlinear elliptic problems involving the $p$-Laplacian, Potential Anal., 27 (2007), 217–224. https://doi.org/10.1007/s11118-007-9053-5 doi: 10.1007/s11118-007-9053-5 |
[42] | G. W. Walker, Some problems illustrating the forms of nebulae, Proc. R. Soc. Lond. A, 91 (1915), 410–420. https://doi.org/10.1098/rspa.1915.0032 doi: 10.1098/rspa.1915.0032 |
[43] | Y. Yu, Some properties of the ground states of the infinity Laplacian, Indiana Univ. Math. J., 56 (2007), 947–964. |