How to improve the robustness to resist attacks and how to adaptively match the key parameters of the watermarking algorithm with the performance requirements to achieve the best performance in different applications are two hot issues in the research of audio watermarking algorithms. An adaptive and blind audio watermarking algorithm based on dither modulation and butterfly optimization algorithm (BOA) is proposed. Based on the convolution operation, a stable feature is designed to carry the watermark, which will improve the robustness by means of the stability of this feature to prevent the watermark loss. Blind extraction will be achieved only by comparing the feature value and the quantized value without the original audio. The BOA is used to optimize the key parameters of the algorithm which can be matched with the performance requirements by coding the population and constructing the fitness function. Experimental results confirm that this proposed algorithm can adaptively search for the optimal key parameters that match the performance requirements. Compared with other related algorithms in recent years, it exhibits strong robustness against various signal processing attacks and synchronization attacks.
Citation: Qiuling Wu, Dandan Huang, Jiangchun Wei, Wenhui Chen. Adaptive and blind audio watermarking algorithm based on dither modulation and butterfly optimization algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11482-11501. doi: 10.3934/mbe.2023509
How to improve the robustness to resist attacks and how to adaptively match the key parameters of the watermarking algorithm with the performance requirements to achieve the best performance in different applications are two hot issues in the research of audio watermarking algorithms. An adaptive and blind audio watermarking algorithm based on dither modulation and butterfly optimization algorithm (BOA) is proposed. Based on the convolution operation, a stable feature is designed to carry the watermark, which will improve the robustness by means of the stability of this feature to prevent the watermark loss. Blind extraction will be achieved only by comparing the feature value and the quantized value without the original audio. The BOA is used to optimize the key parameters of the algorithm which can be matched with the performance requirements by coding the population and constructing the fitness function. Experimental results confirm that this proposed algorithm can adaptively search for the optimal key parameters that match the performance requirements. Compared with other related algorithms in recent years, it exhibits strong robustness against various signal processing attacks and synchronization attacks.
[1] | M. Yamni, H. Karmouni, H. Qjidaa, Robust zero-watermarking scheme based on novel quaternion radial fractional Charlier moments, Multimedia Tools Appl., 80 (2021), 21679–21708. https://doi.org/10.1007/s11042-021-10717-2 doi: 10.1007/s11042-021-10717-2 |
[2] | S. Z. Xiao, X. Y. Zuo, Z. G. Zhang, F. F. Li, Large-capacity reversible image watermarking based on improved DE, Math. Biosci. Eng., 19 (2022), 1108–1127. https://doi.org/10.3934/mbe.2022051 doi: 10.3934/mbe.2022051 |
[3] | D. Singh, S. K. Singh, DWT-SVD and DCT based robust and blind watermarking scheme for copyright protection, Multimedia Tools Appl., 76 (2017), 13001–13024. https://doi.org/10.1007/s11042-016-3706-6 doi: 10.1007/s11042-016-3706-6 |
[4] | Y. Hong, J. Kim, Autocorrelation modulation-based audio blind watermarking robust against high efficiency advanced audio coding, Appl. Sci., 9 (2019), 1–17. https://doi.org/10.3390/app9142780 doi: 10.3390/app9142780 |
[5] | S. Q. Zhang, X. Y. Guo, X. H. Xu, A video watermark algorithm based on tensor decomposition, Math. Biosci. Eng., 16 (2019), 3435–3449. https://doi.org/10.3390/app9142780 doi: 10.3390/app9142780 |
[6] | E. Salah, A. Khaldi, K. Redouane, A Fourier transform based audio watermarking algorithm, Appl. Acoust., 172 (2021), 1–7. https://doi.org/10.1016/j.apacoust.2020.107652 doi: 10.1016/j.apacoust.2020.107652 |
[7] | K. V. Bhat, A. K. Das, J. H. Lee, Design of a blind quantization-based audio watermarking scheme using singular value decomposition, Concurr. Comput. Pract. Exper., 32 (2020), 1–11. https://doi.org/10.1002/cpe.5851 doi: 10.1002/cpe.5851 |
[8] | H. T. Hu, L. Y. Hsu, Incorporating spectral shaping filtering into DWT based vector modulation to improve blind audio watermarking, Wireless Pers. Commun., 94 (2017), 221–240. https://doi.org/10.1007/s11277-016-3178-z doi: 10.1007/s11277-016-3178-z |
[9] | M. J. Hwang, J. S. Lee, M. S. Lee, SVD based adaptive QIM watermarking on stereo audio signals, IEEE Trans. Multimedia, 20 (2017), 45–54. https://doi.org/10.1109/TMM.2017.2721642 doi: 10.1109/TMM.2017.2721642 |
[10] | A. Merrad, S. Saadi, Blind speech watermarking using hybrid scheme based on DWT/DCT and sub-sampling, Multimedia Tools Appl., 77 (2018), 27589–27615. https://doi.org/10.1007/s11042-018-5939-z doi: 10.1007/s11042-018-5939-z |
[11] | M. Yamni, H. Karmouni, M. Sayyouri, H. Qjidaa, Efficient watermarking algorithm for digital audio/speech signal, Digital Signal Process., 120 (2022), 103251. https://doi.org/10.1016/j.dsp.2021.103251 doi: 10.1016/j.dsp.2021.103251 |
[12] | M. Yamni, H. Karmouni, H. Qjidaa, Robust audio watermarking scheme based on fractional Charlier moment transform and dual tree complex wavelet transform, Expert Syst. Appl., 203 (2022), 117325. https://doi.org/10.1016/j.eswa.2022.117325 doi: 10.1016/j.eswa.2022.117325 |
[13] | M. M. Yao, Q. Z. Du, LWT domain adaptive audio watermarking algorithm based on norm ratio, Commun. Technol., 54 (2021), 1478–1485. |
[14] | A. A. Attari, A. A. B. Shirazi, Robust audio watermarking algorithm based on DWT using Fibonacci numbers, Multimedia Tools Appl., 77 (2018), 25607–25627. https://doi.org/10.1007/s11042-018-5809-8 doi: 10.1007/s11042-018-5809-8 |
[15] | M. Mahdi, S. Saeed, B. Behrang, High-capacity, transparent and robust audio watermarking based on synergy between DCT transform and LU decomposition using genetic algorithm, Analog Integr. Circuits Signal Process., 100 (2019), 513–525. https://doi.org/10.1007/s10470-019-01464-4 doi: 10.1007/s10470-019-01464-4 |
[16] | W. Z. Jiang, X. H. Huang, Y. J. Quan, Audio watermarking algorithm against synchronization attacks using global characteristics and adaptive frame division, Signal Process., 162 (2019), 153–160. https://doi.org/10.1016/j.sigpro.2019.04.017 doi: 10.1016/j.sigpro.2019.04.017 |
[17] | H. T. Hu, J. R. Chang, S. J. Lin, Synchronous blind audio watermarking via shape configuration of sorted LWT coefficient magnitudes, Signal Process., 147 (2018), 190–202. https://doi.org/10.1016/j.sigpro.2018.02.001 doi: 10.1016/j.sigpro.2018.02.001 |
[18] | Z. H. Liu, Y. K. Huang, J. W. Huang, Patchwork-based audio watermarking robust against de-synchronization and recapturing attacks, IEEE Trans. Inf. Foren. Sec., 14 (2019), 1171–1180. https://doi.org/10.1109/TIFS.2018.2871748 doi: 10.1109/TIFS.2018.2871748 |
[19] | J. J. He, Z. H. Liu, K. Lin, Q. Qian, A novel audio watermarking algorithm robust against recapturing attacks, Multimedia Tools Appl., 80 (2022). |
[20] | V. Sharma, A. K. Tripathi, A systematic review of meta-heuristic algorithms in IoT based application, Array, 14 (2022), 100164. https://doi.org/10.1016/j.array.2022.100164 doi: 10.1016/j.array.2022.100164 |
[21] | Q. L. Wu, A. Y. Qu, D. D. Huang, Robust and blind audio watermarking scheme based on genetic algorithm in dual transform domain, Math. Problems Eng., 8 (2021), 1–14. https://doi.org/10.18280/mmep.080101 doi: 10.18280/mmep.080101 |
[22] | A. Kaur, M. K. Dutta, An optimized high payload audio watermarking algorithm based on LU-factorization, Multimedia Syst., 24 (2018), 341–353. https://doi.org/10.1007/s00530-017-0545-x doi: 10.1007/s00530-017-0545-x |
[23] | A. Daoui, H. Karmouni, O. Ogri, M. Sayyouri, H. Qjidaa, Robust image encryption and zero-watermarking scheme using SCA and modified logistic map, Expert Syst. Appl., 190 (2022), 116193. https://doi.org/10.1016/j.eswa.2021.116193 doi: 10.1016/j.eswa.2021.116193 |
[24] | A. Daoui, H. Karmouni, M. Sayyouri, New robust method for image copyright protection using histogram features and sine cosine algorithm, Expert Syst. Appl., 177 (2021), 114978. https://doi.org/10.1016/j.eswa.2021.114978 doi: 10.1016/j.eswa.2021.114978 |
[25] | T. K. Tewari, V. Saxena, J. P. Gupta, A digital audio watermarking algorithm using selective mid band DCT coefficients and energy threshold, Int. J. Audio Technol., 17 (2014), 365–371. https://doi.org/10.1007/s10772-014-9234-8 doi: 10.1007/s10772-014-9234-8 |
[26] | Z. H. Liu, D. Luo, J. W. Huang, Tamper recovery algorithm for digital speech signal based on DWT and DCT, Multimedia Tools Appl., 76 (2017), 12481–12504. https://doi.org/10.1007/s11042-016-3664-z doi: 10.1007/s11042-016-3664-z |
[27] | Q. L. Wu, R. Y. Ding, J. C. Wei, Audio watermarking algorithm with a synchronization mechanism based on spectrum distribution, Secur. Commun. Networks, 9 (2022), 1–13. https://doi.org/10.1155/2022/2617107 doi: 10.1155/2022/2617107 |
[28] | Y. Q. Fan, J. P. Shao, G. T. Sun, X. Shao, A self-adaption butterfly optimization algorithm for numerical optimization problems, IEEE Access, 8 (2020), 88026–88041. https://doi.org/10.1109/ACCESS.2020.2993148 doi: 10.1109/ACCESS.2020.2993148 |