Hyperspectral images contain abundant spectral and spatial information of the surface of the earth, but there are more difficulties in processing, analyzing, and sample-labeling these hyperspectral images. In this paper, local binary pattern (LBP), sparse representation and mixed logistic regression model are introduced to propose a sample labeling method based on neighborhood information and priority classifier discrimination. A new hyperspectral remote sensing image classification method based on texture features and semi-supervised learning is implemented. The LBP is employed to extract features of spatial texture information from remote sensing images and enrich the feature information of samples. The multivariate logistic regression model is used to select the unlabeled samples with the largest amount of information, and the unlabeled samples with neighborhood information and priority classifier discrimination are selected to obtain the pseudo-labeled samples after learning. By making full use of the advantages of sparse representation and mixed logistic regression model, a new classification method based on semi-supervised learning is proposed to effectively achieve accurate classification of hyperspectral images. The data of Indian Pines, Salinas scene and Pavia University are selected to verify the validity of the proposed method. The experiment results have demonstrated that the proposed classification method is able to gain a higher classification accuracy, a stronger timeliness, and the generalization ability.
Citation: Ansheng Ye, Xiangbing Zhou, Kai Weng, Yu Gong, Fang Miao, Huimin Zhao. Image classification of hyperspectral remote sensing using semi-supervised learning algorithm[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 11502-11527. doi: 10.3934/mbe.2023510
Hyperspectral images contain abundant spectral and spatial information of the surface of the earth, but there are more difficulties in processing, analyzing, and sample-labeling these hyperspectral images. In this paper, local binary pattern (LBP), sparse representation and mixed logistic regression model are introduced to propose a sample labeling method based on neighborhood information and priority classifier discrimination. A new hyperspectral remote sensing image classification method based on texture features and semi-supervised learning is implemented. The LBP is employed to extract features of spatial texture information from remote sensing images and enrich the feature information of samples. The multivariate logistic regression model is used to select the unlabeled samples with the largest amount of information, and the unlabeled samples with neighborhood information and priority classifier discrimination are selected to obtain the pseudo-labeled samples after learning. By making full use of the advantages of sparse representation and mixed logistic regression model, a new classification method based on semi-supervised learning is proposed to effectively achieve accurate classification of hyperspectral images. The data of Indian Pines, Salinas scene and Pavia University are selected to verify the validity of the proposed method. The experiment results have demonstrated that the proposed classification method is able to gain a higher classification accuracy, a stronger timeliness, and the generalization ability.
[1] | H. Chen, F. Miao, Y. Chen, A hyperspectral image classification method using multifeature vectors and optimized KELM, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14 (2021), 2781–2795. https://doi.org/10.1109/JSTARS.2021.3059451 doi: 10.1109/JSTARS.2021.3059451 |
[2] | G. Y. Chen, Multiscale filter-based hyperspectral image classification with PCA and SVM, J. Electr. Eng., 72 (2021), 40–45. https://doi.org/10.2478/jee-2021-0006 doi: 10.2478/jee-2021-0006 |
[3] | Z. Dou, K. Gao, X. Zhang, H. Wang, L. Han, Band selection of hyperspectral images using attention-based autoencoders, IEEE Geosci. Remote Sens. Lett., 18 (2020), 147–151. https://doi.org/10.1109/LGRS.2020.2967815 doi: 10.1109/LGRS.2020.2967815 |
[4] | M. Z. Chen, H. D. Shao, H. X. Dou, W. Li, B. Liu, Data augmentation and intelligent fault diagnosis of planetary gearbox using ILoFGAN under extremely limited samples, IEEE Trans. Reliab., 2022. https://doi.org/10.1109/TR.2022.3215243 doi: 10.1109/TR.2022.3215243 |
[5] | C. Chen, Y. Ma, G. Ren, Hyperspectral classification using deep belief networks based on conjugate gradient update and pixel-centric spectral block features, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13 (2021), 4060–4069. https://doi.org/10.1109/JSTARS.2020.3008825 doi: 10.1109/JSTARS.2020.3008825 |
[6] | X. Zhang, H. Wang, C. Du, X. Y. Fan, L. Cui, H. M. Chen, et al., Custom-molded offloading footwear effectively prevents recurrence and amputation, and lowers mortality rates in high-risk diabetic foot patients, a multicenter, prospective observational study, Diabetes, Metab. Syndr. Obesity, Targets Ther., 15 (2022), 103–109. https://doi.org/10.2147/DMSO.S341364 doi: 10.2147/DMSO.S341364 |
[7] | T. Jin, Y. Zhu, Y. Shu, J. Cao, H. Y. Yan, D. P. Jiang, Uncertain optimal control problem with the first hitting time objective and application to a portfolio selection model, J. Intell. Fuzzy Syst., 44 (2022), 1585–1599. https://doi.org/10.3233/JIFS-222041. doi: 10.3233/JIFS-222041 |
[8] | X. B. Zhou, H. J. Ma, J. G. Gu, H. L. Chen, W. Deng, Parameter adaptation-based ant colony optimization with dynamic hybrid mechanism, Eng. Appl. Artif. Intell., 114 (2022), 105139. https://doi.org/10.1016/j.engappai.2022.105139 doi: 10.1016/j.engappai.2022.105139 |
[9] | C. Yu, B. Gong, M. Song, E. Y. Zhao, C. I. Chang, Multiview calibrated prototype learning for few-shot hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 60 (2022), 5544713. https://doi.org/10.1109/TGRS.2022.3225947. doi: 10.1109/TGRS.2022.3225947 |
[10] | H. D. Shao, W. Li, B. P. Cai, J. F. Wan, Y. M. Xiao, S. Yan, Dual-threshold attention-guided GAN and limited infrared thermal images for rotating machinery fault diagnosis under speed fluctuation, IEEE Trans. Ind. Inf., 2022. https://doi.org/10.1109/TⅡ.2022.3232766. doi: 10.1109/TⅡ.2022.3232766 |
[11] | H. Y. Chen, M. Fang, S. Xu, Hyperspectral remote sensing image classification with CNN based on quantum genetic-optimized sparse representation, IEEE Access, 8 (2020), 99900–99909. https://doi.org/10.1109/ACCESS.2020.2997912 doi: 10.1109/ACCESS.2020.2997912 |
[12] | Y. M. Xiao, H. D. Shao, S. Y. Han, Z. Q. Huo, J. F. Wan, Novel joint transfer network for unsupervised bearing fault diagnosis from simulation domain to experimental domain, IEEE/ASME Trans. Mechatron., 27 (2022), 5254–5263. https://doi.org/10.1109/TMECH.2022.3177174 doi: 10.1109/TMECH.2022.3177174 |
[13] | I. Dumke, M. Ludvigsen, S. L. Ellefmo, F. Soreide, G. Johnsen, B. Murton, Underwater hyperspectral imaging using a stationary platform in the transatlantic geotraverse hydrothermal field, IEEE Trans. Geosci. Remote Sens., 57 (2019), 2947–2962. https://doi.org/10.1109/TGRS.2018.2878923 doi: 10.1109/TGRS.2018.2878923 |
[14] | W. Huang, Y. Huang, H. Wang, Y. Liu, H. J. Shim, Local binary patterns and superpixel-based multiple kernels for hyperspectral image classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 13 (2020), 4550–4563. https://doi.org/10.1109/JSTARS.2020.3014492 doi: 10.1109/JSTARS.2020.3014492 |
[15] | T. Jin, S. Gao, H. Xia, Reliability analysis for the fractional-order circuit system subject to the uncertain random fractional-order model with Caputo type, J. Adv. Res., 32 (2021), 15–26. https://doi.org/10.1016/j.jare.2021.04.008 doi: 10.1016/j.jare.2021.04.008 |
[16] | X. Jiang, W. Liu, Y. Zhang, Spectral-spatial hyperspectral image classification using dual-channel capsule networks, IEEE Geosci. Remote Sens. Lett., 18 (2020), 1094–1098. https://doi.org/10.1109/LGRS.2020.2991405 doi: 10.1109/LGRS.2020.2991405 |
[17] | M. Seifi, H. Ghassemian, A probabilistic SVM approach for hyperspectral image classification using spectral and texture features, Int. J. Remote Sens., 38 (2017), 4265–4284. https://doi.org/10.1080/01431161.2017.1317941 doi: 10.1080/01431161.2017.1317941 |
[18] | Y. Song, X. Cai, X. Zhou, Dynamic hybrid mechanism-based differential evolution algorithm and its application, Expert Syst. Appl., 213 (2022), 118834. https://doi.org/10.1016/j.eswa.2022.118834 doi: 10.1016/j.eswa.2022.118834 |
[19] | X. Yang, W. Cao, Y. Lu, Hyperspectral image transformer classification networks, IEEE Trans. Geosci. Remote Sens., 60 (2022). https://doi.org/10.1109/TGRS.2022.3171551 doi: 10.1109/TGRS.2022.3171551 |
[20] | C. Yu, C. Liu, H. Yu, Unsupervised domain adaptation with dense-based compaction for hyperspectral imagery, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14 (2021), 12287–12299. https://doi.org/10.1109/JSTARS.2021.3128932 doi: 10.1109/JSTARS.2021.3128932 |
[21] | H. M. Zhao, X. X. Yang, B. J. Chen, H. Y. Chen, W. Deng, Bearing fault diagnosis using transfer learning and optimized deep belief network, Meas. Sci. Technol., 33 (2022), 065009. https://doi.org/10.1088/1361-6501/ac543a doi: 10.1088/1361-6501/ac543a |
[22] | X. B. Zhou, X. Cai, H. Zhang, Multi-strategy competitive-cooperative co-evolutionary algorithm and its application, Inf. Sci., 2023. https://doi.org/10.1016/j.ins.2023.03.142. doi: 10.1016/j.ins.2023.03.142 |
[23] | C. Xie, L. Zhou, S. Ding, Experimental and numerical investigation on self-propulsion performance of polar merchant ship in brash ice channel, Ocean Eng., 269 (2023), 113424. https://doi.org/10.1016/j.oceaneng.2022.113424 doi: 10.1016/j.oceaneng.2022.113424 |
[24] | X. Shang, M. Song, C. I. Chang, An iterative random training sample selection approach to constrained energy minimization for hyperspectral image classification, IEEE Geosci. Remote Sens. Lett., 18 (2020), 1625–1629. https://doi.org/10.1109/LGRS.2020.3005078 doi: 10.1109/LGRS.2020.3005078 |
[25] | M. Li, J. Zhang, J. Song, A clinical-oriented non severe depression diagnosis method based on cognitive behavior of emotional conflict, IEEE Trans. Comput. Social Syst., 2022. http://dx.doi.org/10.1109/TCSS.2022.3152091 doi: 10.1109/TCSS.2022.3152091 |
[26] | M. Li, W. Zhang, B. Hu, Automatic assessment of depression and anxiety through encoding pupil-wave from HCI in VR scenes, ACM Trans. Multimedia Comput. Commun. Appl., 2022. http://dx.doi.org/10.1145/3513263 doi: 10.1145/3513263 |
[27] | C. Shi, C. M. Pun, Multiscale superpixel-based hyperspectral image classification using recurrent neural networks with stacked autoencoders, IEEE Trans. Multimedia, 22 (2019), 487–501. https://doi.org/10.1109/TMM.2019.2928491 doi: 10.1109/TMM.2019.2928491 |
[28] | X. Ye, J. Ma, H. Xiong, Local affine preservation with motion consistency for feature matching of remote sensing images, IEEE Trans. Geosci. Remote Sens., 60 (2021), 1–12. https://doi.org/10.1109/TGRS.2021.3128292 doi: 10.1109/TGRS.2021.3128292 |
[29] | J. Yin, C. Qi, Q. Chen, Spatial-spectral network for hyperspectral image classification, A 3-D CNN and Bi-LSTM framework, Remote Sens., 13 (2021), 353. https://doi.org/10.3390/rs13122353 doi: 10.3390/rs13122353 |
[30] | C. Yu, S. Zhou, M. Song, Semisupervised hyperspectral band selection based on dual-constrained low-rank representation, IEEE Geosci. Remote Sens. Lett., 19 (2021), 1–5. https://doi.org/10.1109/lgrs.2021.3049267 doi: 10.1109/lgrs.2021.3049267 |
[31] | H. L. Chen, C. Y. Li, M. Mafarja, Slime mould algorithm, A comprehensive review of recent variants and applications, Int. J. Syst. Sci., 54 (2023), 204–235. https://doi.org/10.1080/00207721.2022.2153635 doi: 10.1080/00207721.2022.2153635 |
[32] | G. Camps-Valls, T. Bandos, D. Zhou, Semi-supervised graph-based hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 45 (2007), 3044–3054. https://doi.org/10.1109/TGRS.2007.895416 doi: 10.1109/TGRS.2007.895416 |
[33] | C. Yang, S. C. Liu, L. Bruzzone, A semisupervised feature metric-based band selection method for hyperspectral image classification, in 2012 4th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), IEEE, 2012. https://doi.org/10.1109/WHISPERS.2012.6874326 |
[34] | K. Tan, E. Li, D. Qian, An efficient semi-supervised classification approach for hyperspectral imagery, ISPRS J. Photogramm. Remote Sens., 97 (2014), 36–45. https://doi.org/10.1016/j.isprsjprs.2014.08.003 doi: 10.1016/j.isprsjprs.2014.08.003 |
[35] | S. Samiappan, R. J. Moorhead, Semi-supervised co-training and active learning framework for hyperspectral image classification, in 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, (2015), 401–404. https://doi.org/10.1109/IGARSS.2015.7325785 |
[36] | J. Zhang, Z. Meng, F. Zhao, Convolution transformer mixer for hyperspectral image classification, IEEE Geosci. Remote Sens. Lett., 2022. https://doi.org/10.1109/LGRS.2022.3208935. doi: 10.1109/LGRS.2022.3208935 |
[37] | H. M. Zhao, P. P. Zhang, R. C. Zhang, A novel performance trend prediction approach using ENBLS with GWO, Meas. Sci. Technol., 34 (2023), 025018. https://doi.org/10.1088/1361-6501/ac9a61 doi: 10.1088/1361-6501/ac9a61 |
[38] | S. Zhou, Z. Xue, P. Du, Semisupervised stacked autoencoder with cotraining for hyperspectral image classification, IEEE Trans. Geosci. Remote Sensi., 57 (2019), 3813–3826. https://doi.org/10.1109/TGRS.2018.2888485 doi: 10.1109/TGRS.2018.2888485 |
[39] | K. Zhong, G. Zhou, W. Deng, MOMPA, Multi-objective marine predator algorithm, Comput. Methods Appl. Mech. Eng., 385 (2021), 114029. https://doi.org/10.1016/j.cma.2021.114029 doi: 10.1016/j.cma.2021.114029 |
[40] | C. Huang, X. Zhou, X. Ran, Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization problem, Inf. Sci., 619 (2023), 2–18. https://doi.org/10.1016/j.ins.2022.11.019 doi: 10.1016/j.ins.2022.11.019 |
[41] | Z. Duan, P. Song, C. Yang, The impact of hyperglycaemic crisis episodes on long-term outcomes for inpatients presenting with acute organ injury: A prospective, multicentre follow-up study, Front. Endocrinol., 13 (2022). https://doi.org/10.3389/fendo.2022.1057089 doi: 10.3389/fendo.2022.1057089 |
[42] | J. Xu, Y. Zhao, H. Chen, ABC-GSPBFT, PBFT with grouping score mechanism and optimized consensus process for flight operation data-sharing, Inf. Sci., 624 (2023), 110–127. https://doi.org/10.1016/j.ins.2022.12.068 doi: 10.1016/j.ins.2022.12.068 |
[43] | W. Deng, J. Xu, X. Gao, An enhanced MSIQDE algorithm with novel multiple strategies for global optimization problems, IEEE Trans. Syst. Man Cybern. Syst., 52 (2022), 1578–1587. https://doi.org/10.1109/TSMC.2020.3030792 doi: 10.1109/TSMC.2020.3030792 |
[44] | J. Cai, S. Ding, Q. Zhang, Broken ice circumferential crack estimation via image techniques, Ocean Eng., 259 (2022), 111735. https://doi.org/10.1016/j.oceaneng.2022.111735 doi: 10.1016/j.oceaneng.2022.111735 |
[45] | X. Zhang, H. Wang, C. Du, Custom-molded offloading footwear effectively prevents recurrence and amputation, and lowers mortality rates in high-risk diabetic foot patients: A multicenter, prospective observational study, Diabetes Metab. Syndr. Obes. Targets Ther., 15 (2022), 103–109. https://doi.org/10.2147/DMSO.S341364 doi: 10.2147/DMSO.S341364 |
[46] | X. D. Zhao, M. M. Zhang, R. Tao, Fractional Fourier image transformer for multimodal remote sensing data classification, IEEE Trans. Neural Networks Learn. Syst., 2022. https://doi.org/10.1109/TNNLS.2022.3189994 doi: 10.1109/TNNLS.2022.3189994 |
[47] | Z. Zhang, M. Crawford, Semi-supervised multi-metric active learning for classification of hyperspectral images, in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), IEEE, (2016), 1843–1847. https://doi.org/10.1109/IGARSS.2016.7729473 |
[48] | F. Melgani, L. Bruzzone, Classification of hyperspectral remote sensing images with support vector machines, IEEE Trans. Geosci. Remote Sens., 42 (2004), 1778–1790. https://doi.org/10.1109/TGRS.2004.831865 doi: 10.1109/TGRS.2004.831865 |
[49] | T. Z. Ratle, R. Kanevski, Learning manifolds in forensic data, in Artificial Neural Networks–ICANN 2006: 16th International Conference, Springer, Berlin, Heidelberg, (2006), 894–903. |
[50] | Y. Chen, M. N. Nasser, T. D. Tran, Hyperspectral image classification using dictionary-based sparse representation, IEEE Trans. Geosci. Remote Sens., 49 (2011), 3973–3985. https://doi.org/10.1109/TGRS.2011.2129595 doi: 10.1109/TGRS.2011.2129595 |
[51] | Y. Chen, M. N. Nasser, T. D. Tran, Hyperspectral image classification via kernel sparse representation, IEEE Trans. Geosci. Remote Sens., 51 (2013), 217–231. https://doi.org/10.1109/TGRS.2012.2201730 doi: 10.1109/TGRS.2012.2201730 |
[52] | M. Cui, S. Prasad, Multiscale sparse representation classification for robust hyperspectral image analysis, in 2013 IEEE Global Conference on Signal and Information Processing, (2013), 969–972. https://doi.org/10.1109/GlobalSIP.2013.6737054 |
[53] | Y. Y. Tang, H. Yuan, L. Li, Manifold-based sparse representation for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 52 (2014), 7606–7618. https://doi.org/10.1109/TGRS.2014.2315209 doi: 10.1109/TGRS.2014.2315209 |
[54] | C. Wang, H. Wang, B. Hu, A novel spatial-spectral sparse representation for hyperspectral image classification based on neighborhood segmentation, Spectrosc. Spectral Anal., 36 (2016), 2919–2924. |
[55] | H. R. Wang, T. Celik, Sparse representation-based hyperspectral image classification, Signal Image Video Process., 12 (2018), 1009–1017. https://doi.org/10.1007/s11760-018-1249-1 doi: 10.1007/s11760-018-1249-1 |
[56] | S. Hu, C. Xu, J. Peng, Weighted Kernel joint sparse representation for hyperspectral image classification, IET Image Process., 13 (2019), 254–260. https://doi.org/10.1049/iet-ipr.2018.0124 doi: 10.1049/iet-ipr.2018.0124 |
[57] | Z. H. Xue, P. J. Du, J. Li, Sparse graph regularization for hyperspectral remote sensing image classification, IEEE Trans. Geosci. Remote Sens., 55 (2017), 2351–2366. https://doi.org/10.1109/TGRS.2016.2641985 doi: 10.1109/TGRS.2016.2641985 |
[58] | M. Yang, C. H. Li, J. Guan, A supervised-learning p-norm distance metric for hyperspectral remote sensing image classification, IEEE Geosci. Remote Sens. Lett., 15 (2018), 1432–1436. https://doi.org/10.1109/LGRS.2018.2841023 doi: 10.1109/LGRS.2018.2841023 |
[59] | C. J. Zhang, G. D. Li, S. H. Du, Multi-scale dense networks for hyperspectral remote sensing image classification, IEEE Trans. Geosci. Remote Sens., 57 (2019), 9201–9222. https://doi.org/10.1109/TGRS.2019.2925615 doi: 10.1109/TGRS.2019.2925615 |
[60] | Z. X. Liu, L. Ma, Q. Du, Class-wise distribution adaptation for unsupervised classification of hyperspectral remote sensing images, IEEE Trans. Geosci. Remote Sens., 59 (2021), 508–521. https://doi.org/10.1109/TGRS.2020.2997863 doi: 10.1109/TGRS.2020.2997863 |
[61] | Q. Y. Wang, Q. Zhang, J. P. Zhang, Graph-based semisupervised learning with weighted features for hyperspectral remote sensing image classification, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 15 (2022), 6356–6370. https://doi.org/10.1109/JSTARS.2022.3195639 doi: 10.1109/JSTARS.2022.3195639 |
[62] | J. Bi, G. Zhou, Y. Zhou, Artificial electric field algorithm with greedy state transition strategy for spherical multiple traveling salesmen problem, Int. J. Comput. Intell. Syst., 15 (2022), 5. https://doi.org/10.1007/s44196-021-00059-0 doi: 10.1007/s44196-021-00059-0 |
[63] | C. Chang, Y. Kuo, S. Chen, Self-Mutual information-based band selection for hyperspectral image classification, IEEE Trans. Geosci. Remote Sens., 59 (2021), 5979–5997. https://doi.org/10.1109/TGRS.2020.3024602 doi: 10.1109/TGRS.2020.3024602 |
[64] | W. Deng, L. Zhang, X. Zhou, Multi-strategy particle swarm and ant colony hybrid optimization for airport taxiway planning problem, Inf. Sci., 612 (2022), 576–593. https://doi.org/10.1016/j.ins.2022.08.115 doi: 10.1016/j.ins.2022.08.115 |
[65] | Y. Gu, L. Zhou, S. Ding, Numerical simulation of ship maneuverability in level ice considering ice crushing failure, Ocean Eng., 251 (2022), 111110. https://doi.org/10.1016/j.oceaneng.2022.111110 doi: 10.1016/j.oceaneng.2022.111110 |
[66] | C. Huang, X. Zhou, X. Ran, Adaptive cylinder vector particle swarm optimization with differential evolution for UAV path planning, Eng. Appl. Artif. Intell., 121 (2023), 105942. https://doi.org/10.1016/j.engappai.2023.105942 doi: 10.1016/j.engappai.2023.105942 |
[67] | T. Jin, H. Xia, Lookback option pricing models based on the uncertain fractional-order differential equation with Caputo type, J. Ambient Intell. Hum. Comput., 2021 (2021), 1–14. https://doi.org/10.1007/s12652-021-03516-y3 doi: 10.1007/s12652-021-03516-y3 |
[68] | Z. Ren, X. Zhen, Z. Jiang, Underactuated control and analysis of single blade installation using a jackup installation vessel and active tugger line force control, Mar. struct., 88 (2023), 103338. https://doi.org/10.1016/j.marstruc.2022.103338 doi: 10.1016/j.marstruc.2022.103338 |
[69] | Y. Song, G. Zhao, B. Zhang, An enhanced distributed differential evolution algorithm for portfolio optimization problems, Eng. Appl. Artif. Intell., 121 (2023), 106004. https://doi.org/10.1016/j.engappai.2023.106004 doi: 10.1016/j.engappai.2023.106004 |
[70] | H. Zhao, C. Wang, H. Chen, A hybrid classification method with dual-channel CNN and KELM for hyperspectral remote sensing images, Int. J. Remote Sens., 44 (2023), 289–310. https://doi.org/10.1080/01431161.2022.2162352 doi: 10.1080/01431161.2022.2162352 |
[71] | X. Zhao, M. Zhang, R. Tao, Fractional Fourier image transformer for multimodal remote sensing data classification, IEEE Trans. Neural Networks Learn. Syst., (2022), 1–13. https://doi.org/10.1109/TNNLS.2022.3189994 doi: 10.1109/TNNLS.2022.3189994 |
[72] | T. Ojala, I. Harwood, A comparative study of texture measures with classification based on feature distributions, Pattern Recognit., 29 (1996), 51–59. https://doi.org/10.1016/0031-3203(95)00067-4 doi: 10.1016/0031-3203(95)00067-4 |