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Abstract: Hyperspectral images contain abundant spectral and spatial information of the surface of 
the earth, but there are more difficulties in processing, analyzing, and sample-labeling these 
hyperspectral images. In this paper, local binary pattern (LBP), sparse representation and mixed 
logistic regression model are introduced to propose a sample labeling method based on neighborhood 
information and priority classifier discrimination. A new hyperspectral remote sensing image 
classification method based on texture features and semi-supervised learning is implemented. The LBP 
is employed to extract features of spatial texture information from remote sensing images and enrich 
the feature information of samples. The multivariate logistic regression model is used to select the 
unlabeled samples with the largest amount of information, and the unlabeled samples with 
neighborhood information and priority classifier discrimination are selected to obtain the pseudo-
labeled samples after learning. By making full use of the advantages of sparse representation and mixed 
logistic regression model, a new classification method based on semi-supervised learning is proposed 
to effectively achieve accurate classification of hyperspectral images. The data of Indian Pines, Salinas 
scene and Pavia University are selected to verify the validity of the proposed method. The experiment 
results have demonstrated that the proposed classification method is able to gain a higher classification 
accuracy, a stronger timeliness, and the generalization ability. 
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1. Introduction 

Hyperspectral Image (HSI) is the simultaneous imaging of target areas in dozens to hundreds of 
continuous spectral bands [1–4]. It effectively integrates the spatial and spectral information in the 
imaging scene, with strong target detection ability and better material identification ability [5–8]. It is 
widely used in agriculture and forestry, geological exploration, marine exploration, Environmental 
monitoring and other fields [9–12]. However, HSI is characterized by high data dimension, large 
information redundancy and high correlation between bands, which brings great difficulties to its 
processing and classification [13–23]. Therefore, how to reduce the redundant information of the data, 
extract the features of the hyperspectral images effectively, and realize the accurate classification of 
the hyperspectral images are the hot and difficult issues in the current hyperspectral image processing 
and classification research.  

Sample labeling of hyperspectral images often requires expert knowledge and experience, so the 
cost of sample labeling is high [24–26]. When the labeled samples are limited, semi-supervised 
learning can explore the useful information of the unlabeled samples to participate in the model 
training and reduce the labeling cost [27,28]. In the field of machine learning, semi-supervised 
learning acquires knowledge and experience from a small number of labeled samples. The usable 
information is mined from a large number of unlabeled samples, which can improve the classification 
accuracy [29–31]. Therefore, a large number of scholars have studied the semi-supervised learning for 
remote sensing images. Camps-Valls et al. [32] proposed a graph-based hyperspectral image 
classification method, and constructed the graph structure through the graph method. The data context 
information based on the composite kernel is integrated, and the Nystrom method is used to speed up 
classification. Yang et al. [33] proposed a semi-supervised band selection technique for hyperspectral 
image classification. A metric learning method has been used to measure the features of hyperspectral 
images, and a semi-supervised learning method has been used to select a subset of valid bands from 
the original bands. Tan et al. [34] proposed a hyperspectral image classification method based on 
segmentation integration and semi-supervised support vector machine. The spatial information of the 
tag samples is extracted by using a segmentation algorithm to filter the samples, and classified based 
on semi-supervised learning. Samiappan et al. [35] combined active learning and co-training to 
perform semi-supervised classification of hyperspectral images. The initial classification model is 
trained according to the labeled samples, and the heuristic active learning is performed on the unlabeled 
samples. Combined with the original data, the labeled samples are divided into views, and the 
unlabeled samples with high heuristic values are selected to join the training samples. Zhang et al. [36] 
used a semi-supervised classification method based on hierarchical segmentation and active learning 
to extract spatial information from hyperspectral images, the training set is updated iteratively by using 
the information of a large number of unlabeled samples to complete the hyperspectral image 
classification. In addition, some other methods are also proposed in recent years [37–45].  

In hyperspectral images, each pixel corresponds to a spectral curve that reflects its inherent 
physical, chemical and optical properties. The main basis of hyperspectral image classification is to 
use the feature information of different pixels to label the pixels belonging to different landmarks and 
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obtain the corresponding classification maps [46,47]. Therefore, a large number of scholars have 
studied hyperspectral image classification. Melgani et al. [48] proposed a hyperspectral image 
classification method based on support vector machines (SVM). The kernel function is introduced to 
solve the nonlinear separable problem and avoid the curse of dimensionality. Ratle et al. [49] 
introduced neural networks into hyperspectral image classification. In the training phase, the loss 
function is optimized to avoid local optimization. Chen et al. [50] constructed a hyperspectral image 
classification model based on sparse representation, and compared the classification results of common 
machine learning methods. In order to improve the shortcomings of sparse representation in dealing 
with nonlinear problems, Chen et al. [51] proposed a kernel sparse representation technique. In 
addition, Cui et al. [52] proposed a multiscale sparse representation algorithm for robust hyperspectral 
image classification. Automatic and adaptive weight allocation schemes based on spectral angle ratio 
are incorporated into the multi-classifier framework to fuse sparse representation information at all 
scales. Tang et al. [53] proposed two sparse representation algorithms based on manifolds to solve the 
instability problem of sparse algorithms. The regularization and local invariance techniques are used, 
and two manifold-based regularization items are merged into the 𝑙 -based objective function. Wang 
et al. [54] applied the neighborhood-cutting technique to sparse representation, and combined the joint 
spatial and spectral sparse representation classification method. Wang and Celik [55] improved the 
classification accuracy of hyperspectral images by combining context information in the sparse 
coefficient domain. Hu et al. [56] proposed two weighted kernel joint sparse representation methods, 
which determine the calculation weight by calculating the kernel similarity between adjacent pixels. 
Xue et al. [57] presented two novel sparse graph regularization methods, SGR and SGR with total 
variation. Yang et al. [58] studied the effect of the p-norm distance metric on the minimum distance 
technique, and proposed a supervised-learning p-norm distance metric to optimize the value of p. 
Zhang et al. [59] proposed a multi-scale dense network for HSI classification that made full use of 
different scale information in the network structure and combined scale information throughout the 
network. Liu et al. [60] proposed a class-wise adversarial adaptation method in conjunction with the 
class-wise probability MMD as the class-wise distribution adaptation network. Wang et al. [61] 
proposed the graph-based semi-supervised learning with weighted features for HSI classification. In 
addition, some new other methods are also proposed by a lot of researchers [62–71].  

To sum up, hyperspectral images contain rich spectral and spatial information of earth surface 
features, which increases the processing and analysis difficulties. In addition, the training samples of 
actual hyperspectral images are small and there is a sample labeling problem. The local binary pattern, 
sparse representation and mixed logistic regression model are used in this paper. A new hyperspectral 
image feature extraction method based on local binary pattern is proposed to obtain texture features of 
hyperspectral images and enrich hyperspectral image sample information. A sample selection strategy 
based on active learning is designed to determine the unlabeled samples. Based on these, a new sample 
labeling method based on neighborhood information and priority classifier discrimination is deeply 
studied to expand the training samples. And a novel classification method based on texture features 
and semi-supervised learning is studied to improve the classification accuracy of remote sensing images. 

The main contributions of this paper are described as follows. 
(i) A novel a classification method of hyperspectral remote sensing images based on texture 

features and semi-supervised learning is proposed by using local binary pattern, sparse representation, 
hybrid logistic regression. 

(ii) The local binary pattern is used to effectively extract the features of spatial texture information 
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of remote sensing images and enrich the feature information of samples. 
(iii) A multiple logistic regression model is used to optimally select unlabeled samples, which are 

labeled by using neighbourhood information and priority classifier discrimination to achieve pseudo-
labeling of unlabeled samples. 

(iv) A novel classification method of hyperspectral remote sensing images based on semi-
supervised learning is proposed to effectively achieve accurate classification of hyperspectral images. 

2. Basic methods 

In here, the local binary pattern (LBP) and sparse expression are introduced in order to clearly 
describe the basic theories of these methods. 

2.1. Local binary pattern (LBP) 

LBP is a feature extraction method, which can extract spatial texture information of images. 
Texture, which is widely used in image processing and image analysis, represents the slow change or 
periodic change of the surface structure of the object [72]. LBP is also widely used in feature extraction 
of hyperspectral images due to the simple structure and easy calculation. Give the center pixel 
𝑔 𝑥 , 𝑦  and the neighborhood pixel 𝑔 , which are described as follow. 

𝑔 𝑥 𝑅𝑐𝑜𝑠 , 𝑦 𝑅𝑠𝑖𝑛                       (1) 

where, ( 0,1,..., 1)pg p P  represents the coordinate values of P pixels uniformly distributed on the 
circular domain with cg  as the centre and R as the radius. The quantized texture feature form of one 
region is shown in Figure 1. 

 

Figure 1. The quantized texture feature form of one region. 

𝐿𝐵𝑃 2 ∑ 𝑠 𝑔 𝑔                            (2) 

𝑠 𝑥
1,
0,

𝑥 0
𝑥 0

                                 (3) 
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2.2. Sparse expression 

Sparse representation means that the signal can be approximately represented by using linear 

combination of the atoms in the dictionary. Now, 1 2[ , ,..., ] D
cX X X X R   is given as the HSI pixel and 

D  is the number of image bands. In here, 
1 2[ , ,..., ]

c

D
i i i iNX x x x R  ,

cN  represents the number of samples 

in the class i . 
For samples in the class i , it can be approximated as follow. 
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                          (4) 

where, iX represents a sparse sub-dictionary of the samples in the class i . i  represents the sparse 
vector of test samples y , which contains only a few non-zero values. 

In order to obtain the sparsest vector i , the following formula is solved. 

0
arg min , . .i is t y A                                 (5) 

where, 
0

 .  is a 0l  norm, which represents the number of non-zero atoms in the vector, also known 
as sparsity. A is a sparse dictionary. It is a NP-hard problem to solve the Eq (5) directly. Under some 
conditions, the minimization solving problem ( 0l  ) is approximated by the minimization solving 
problem ( 1l ), which can be relaxed. 

1
arg min , . .i is t y A                                (6) 

Furthermore, the solution can be converted to the following expression. 

2

0 2
arg min , . .i is t A y                               (7) 

where,   represents the refactoring error. Orthogonal matching pursuit (OMP) algorithm is used to 
solve the expression (7). After the sparsity coefficient is calculated, the reconstruction residual for each 
class of the test samples y can be calculated. 

2
( )i ir y y A                                   (8) 

where, there is {1,2,..., }i C . 
Finally, the reconstruction residuals of all dictionaries are compared. The minimum residual is 

the classification y. 

( ) arg min( ( )), 1,2,...iclass y r y i C                          (9) 



11507 

Mathematical Biosciences and Engineering  Volume 20, Issue 6, 11502-11527. 

3. A sample labelling method based on neighborhood information and priority classifier 
discrimination 

In hyperspectral remote sensing image classification, the attribute characteristics of each ground 
feature are subordinated to a specific distribution. If the number of training samples does not reach the 
amount that depicts the distribution of the ground feature, it will affect the subsequent classification 
results. In practical applications, there are difficulties, such as fewer labeled samples, difficulty in 
manual labeling, and time-consuming and labor-intensive problems and so on. Therefore, a new 
sample labeling method based on neighborhood information and priority classifier discrimination is 
proposed to obtain the learned pseudo labeled samples in order to expand the labeled samples and 
improve the classification accuracy of model.  

3.1. A sample selection method based on multiple logistic regression 

Before the samples are labeled, sample selection is required. This is because if all unlabeled 
samples are labeled directly, all unlabeled samples need to be labeled, which will cost a lot of 
computation time. Moreover, due to the small number of initial labeled samples and the limited 
available information, it is difficult to label some samples with a certain accuracy. The mislabeled 
samples obviously affect the classification accuracy of model. The main objective of the sample 
selection strategy is to select the unlabeled samples with the largest amount of information. These 
unlabeled samples can construct a valuable training set after labeling, which can effectively promote 
the improvement of classification results. Therefore, a sample selection method based on multiple 
logistic regression is proposed to realize the selection of samples. 

The classified probability matrix 𝑝 𝑦 |𝑥  of each sample by using multiple logistic regression 
model has a large amount of information that can be mined. The multiple logistic regression classifier 
is modeled by discriminant Bayesian decision model. According to the generalized linear model, it can 
be obtained as follow. 

𝑃 𝑦; 𝛿 𝑏 𝑦 exp 𝛿 𝑇 𝑦 𝑎 𝛿                            (10) 

The specific expression of multiple logistic regression is described as follow. 

𝑝 𝑦 𝑘|𝑥 , 𝜂 exp 𝜂 𝑔 𝑥
∑ exp 𝜂 𝑔 𝑥                 (11) 

where,𝑔 𝑥 𝑔 𝑥 , 𝑔 𝑥 , … , 𝑔 𝑥  is the feature vectors of the input, and 𝜂 𝜂 , 𝜂 , … 𝜂  
represents the regression parameter vector of the classifier. It is worth noting that the feature vector is 
often represented by introducing the kernel, which is not only used to improve the indivisibility, but 
also obtain the better classifier by training samples. Generally, the kernel function is radial basis 
function (RBF), which is described as follow. 

𝐾 𝑥 , 𝑥 𝑒
|| ||

                              (12) 

After the feature vector is determined, the regression parameter 𝜂 of model is only determined, 
and the probability matrix 𝑝 𝑦 |𝑥  of each unlabeled sample belonging to each class is determined. 
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The sample amount of information is determined by the Breaking Ties (BT) and the Least Confidence 
(LC). In this paper, the BT is selected to determine the amount of information. 

The BT shows the similarity between the two classifications by comparing the difference between 
the maximum category probability and the sub-maximum category probability. The difference is 
smaller, the similarity between the two types of samples is greater. The uncertainty is greater, the 
amount of information is greater. 𝑆  is the similarity between classifications, which is described as 
follow. 

𝑆 𝑚𝑎𝑥𝑝 𝑦 |𝑥 𝑠𝑒𝑐𝑜𝑛𝑑𝑚𝑎𝑥 𝑝 𝑦 |𝑥                    (13) 

The 𝑆  is finally sorted in ascending order. 𝑝 𝑦 |𝑥  is the obtained probability matrix of each 
sample by multiple logistic regression classifier. 𝑚𝑎𝑥𝑝 𝑦 |𝑥  represents the largest value in the 
obtained probability matrix, 𝑠𝑒𝑐𝑜𝑛𝑑𝑚𝑎𝑥 𝑝 𝑦 |𝑥  represents the second largest value in the 
obtained probability matrix. 𝑘 is the number of regression parameters. 

3.2. A sample labeling method based on neighborhood information and priority classifier 
discrimination 

The features of hyperspectral remote sensing images have some correlation. The ground objects 
are closer, the correlation is stronger. In the research of sample labeling, spatial neighborhood 
information based on training samples is widely used. However, due to the unknown central pixel and 
the lack of sufficient information, the neighborhood information of unlabeled samples is relatively less 
in the research of sample labeling. Generally, each pixel label on hyperspectral image must be 
consistent with one pixel label in its neighborhood. This property can be used to label the unlabeled 
samples. The label information of training samples around the unlabeled samples can be used to 
discriminate the unlabeled samples. The labeling discrimination method based on neighborhood 
information centers on the sample to be labeled. The unlabeled samples are labeled with a block 
diagram. All the occurrences of sample labels are recorded and denoted as the neighborhood 
information. The labeled samples are used to train the classifier and classify the unlabeled samples. 
Determine whether the predicted sample label by the classifier appears in the neighborhood 
information of the unlabeled samples. If it appears, the predicted label by the classifier is the sample 
label. Otherwise, the samples are put into the unlabeled samples. One of the most important problems 
is whether the unlabeled samples which satisfy the neighborhood information can be reliably labeled 
by the classifier. At present, some studies use multiple classifiers to discriminate together and achieve 
good classification effect. However, how to determine the determination of labels, when the predicted 
labels by multiple classifiers are inconsistent, but all appear in the neighborhood information of 
unlabeled samples. 

Therefore, a sample labeling method based on neighborhood information and priority classifier 
discrimination is proposed in this paper. For unlabeled samples with the neighborhood information, 
the classifier with the highest priority is used for prediction. If the obtained prediction marker appears 
in the neighborhood information, its marker is determined. Otherwise, the classifier with the lowest 
priority is used for prediction. Determine whether the label can be determined until the sample labeling 
is ended. The sample labeling process based on neighborhood information and priority classifier 
discrimination is shown in Figure 2. 
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Figure 2. The sample labeling process based on neighborhood information and priority 
classifier discrimination. 

The sample labeling method is an iterative process. Although it cannot ensure enough training 
samples around all unlabeled samples at the initial stage of sample labeling, it can ensure that some 
unlabeled samples are sufficient. The unlabeled samples are labeled and extended to the training set. 
With each iteration, the training set grows. Those unlabeled samples whose neighborhood training 
samples are not sufficient may reach the label condition at a certain labeling. The sample labeling 
method with replacement ensures the sample labeling accuracy to a certain extent, and improves the 
performance of classifier. 

4. Hyperspectral image classification method based on texture features and semi-supervised 
learning 

4.1. The idea of hyperspectral image classification 

Hyperspectral remote sensing images consist of pairs of continuous spectral bands, which contain 
rich spectral and spatial information of earth surface features. Some objects that cannot be identified 
by conventional remote sensing means can be identified in hyperspectral images. However, the 
abundant data information increases the processing and analysis difficulties, and there are some 
problems of fewer labeled samples, difficulty in manual labeling and time-consuming and so on. In 
order to improve the classification accuracy of hyperspectral remote sensing images, a new 
classification method of hyperspectral remote sensing images based on texture features and semi-
supervised learning is proposed in this paper. Firstly, aiming at the problems of high correlation 
between bands, information redundancy, high dimension and complex processing, LBP is employed 
to deal with the hyperspectral images. The texture features of hyperspectral images are effectively 
extracted to enrich the feature information. To solve the problem of limited label samples, a new 
sample labeling method based on neighborhood information and priority classifier discrimination is 
proposed in here. Secondly, a sample selection strategy is designed to find some samples from a large 
number of unlabeled samples. Finally, the sparse representation and mixed logistic regression are 
applied to achieve a new classification method to effectively achieve accurate classification of 
hyperspectral images. 
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4.2. The model of hyperspectral image classification  

The model of hyperspectral image classification method based on texture features and semi-
supervised learning is shown in Figure 3. 

   

Figure 3. The flow of hyperspectral image classification method based on texture features 
and semi-supervised learning. 

The detailed implementation steps of hyperspectral image classification method based on texture 
features and semi-supervised learning are described as follows. 

Step 1. Normalize the hyperspectral images. Principal component analysis is used to perform 
dimensionality reduction. 

Step 2. Calculate the texture for each principal component by using LBP. The histogram statistics 
are performed according to the symmetric rotation invariant equivalence mode. D-dimensional feature 
data for each layer is used to obtain feature information for each pixel and retain pixel coordinates. 

Step 3. The original hyperspectral images are performed by linear discriminant analysis to obtain 
a projection matrix. 

Step 4. The hyperspectral images are mapped into low dimensional images for suitable Euclidean 
distance analysis by using a projection matrix. 

Step 5. Training sample sets and test sample sets are randomly selected from each type of sample 
according to a certain proportion of low-dimensional images. 

Step 6. Calculate the Euclidean distance from all training samples by using 
2k i kL y A   to 

maintain K training coordinates that are close to the Euclidean distance of each test sample as the 
sparse dictionary for the test samples. 

Step 7. The extracted feature information is loaded into the test samples and corresponding sparse 
dictionary according to the corresponding coordinates to obtain the test sample set and sparse dictionary. 
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Step 8. The sparse representation is solved. Orthogonal matching pursuit (OMP) has been used 
to calculate the sparse coefficient, and the classifications of the test samples is obtained.  

5. Case analysis 

5.1. Experimental data 

1) Indian Pines data 
The images of Indian pines in northwest Indiana were collected by AVIRIS sensor. The images 

consist of 145 × 145 pixels and 224 spectral reflection bands with a wavelength range of 0.4~2.5 nm, 
including 16 types of feature elements. The false color map and real ground object distribution are 
shown in Figure 4. 

       

(a) False color image               (b) Ground truth 

Figure 4. Hyperspectral remote sensing images of Indian Pines.  

2) Salinas Scene data 
The AVIRIS spectrometer collects images of the Salinas Valley in California, USA, with a size 

of 512 × 217 pixels and a total of 224 bands. After the bands covering the water absorption area are 
removed, 204 bands are used, including 16 types of ground feature elements. The false color map and 
the real ground object distribution are shown in Figure 5. 

3) Pavia University data 
Images of the Italian University of Pavia campus taken by the Rosis Spectrometer. It is 610 × 340 

pixels in size and has a total of 115 wavebands. The 103 wavebands after the wavebands covering the 
water-absorbing region contain a total of 9 types of features are removed. The false color map and the 
real ground object distribution are shown in Figure 6. 

In the experiment, 10% of each type of ground object of the three kinds of data is randomly 
selected as the training samples, and the rest is the test samples. 
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(a) False color images     (b) Ground truth 

Figure 5. Hyperspectral remote sensing image of Salinas Scene.  

         

(a) False color image        (b) Ground truth 

Figure 6. Hyperspectral remote sensing image of Pavia University.  

5.2. Evaluation criteria 

Confusion Matrix (CM) is usually used in the classification and evaluation of hyperspectral 
images. A confusion matrix is generally defined as follow. 

𝑃

𝑝
𝑝

𝑝 …
𝑝 …

𝑝
𝑝

… … … …
𝑝 𝑝 … 𝑝

                                    (14) 

where, n denotes the number of objects in the category, 𝑝  represents the number of samples 
belonging to the class i that are assigned to the class j. The total amount of data in each row denotes 
the true number of objects in the category. The total amount of data in each column represents the total 
number of samples. 
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Based on the confusion matrix, three classification indexes can be obtained, which are Overall 
Accuracy (OA), Average Accuracy (AA) and Kappa coefficient. 

𝑂𝐴
∑

                                  (15) 

where, N represents the total number of samples in the classification. 𝑝  represents the number of 
correctly classified samples of the class i. OA represents the probability that the classified result 
corresponds to its true label for each random sample. 

𝐶𝐴                                   (16) 

where, 𝑁  represents the total number of samples for the first category in the class i. 𝐶𝐴  represents 
the probability that category i is correctly classified. 

𝐾𝑎𝑝𝑝𝑎＝
∑ ∑ ∑ ∑

∑ ∑ ∑
                     (17) 

The Kappa coefficient comprehensively considers the number of correctly classified objects and 
the error of misclassified objects on the confusion matrix. 

5.3. Parameter determination and analysis 

5.3.1. Parameter settings 

In the experiment, a large number of alternative values are tested, and some classical values are 
selected from literatures, these parameter values are experimentally modified until the most reasonable 
parameter values are determined. These selected parameter values have obtained the optimal solution, 
so that they can accurately and efficiently verify the effectiveness. 

5.3.2. Sample selection methods 

The quality of sample selection directly affects the efficiency of the experiment, and also affects 
the performance of classifier. In order to select the best samples, the experimental results of 
Information Entropy (IE), Min Error (ME), Breaking Ties (BT) and Least Confidence (LC) on three 
kinds of hyperspectral images are compared. The experiment is 10 initial samples for each class, and 
all remaining samples are test samples. Two hundred unlabeled samples are selected by four sample 
selection methods in each iteration. The label samples are used to expand the training samples, train 
the classifier and classify the test samples. The quality of the selection samples is determined according 
to the classification results after each iteration is executed. The classification accuracy of different 
sample selection methods on different data sets is shown in Table 1. 

From Table 1, it can be seen that the classification accuracies of ME, BT and LC are greatly 
improved on the three data sets with the increase of the number of iterations. The results of the BT 
method are significantly better than those of the other methods. The accuracy can be improved in the 
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first few iterations, which indicate that the BT method can select samples with greater classification 
improvement. Therefore, the BT method is chosen as the sample selection method in this paper. 

Table 1. The classification accuracy of different methods on different data sets (%). 

Data  Selection method 1 2 3 4 5 6 7 8 9 10 

Indian 

Pines 

IE 78.39 79.10 79.99 80.71 82.11 83.47 84.10 85.51 86.48 87.23

ME 80.33 86.83 91.08 92.92 95.28 97.02 98.00 98.45 98.90 99.13

BT 91.47 95.47 98.22 98.36 98.64 98.59 98.66 98.71 99.34 99.29

LC 84.74 88.95 91.63 94.33 95.27 96.46 98.15 98.55 98.62 98.66

Pavia 

University 

IE 69.87 71.31 71.75 71.74 72.04 72.40 73.25 73.36 73.76 74.45

ME 73.01 75.23 78.74 82.78 89.14 92.82 95.14 96.10 97.13 97.82

BT 87.54 92.63 94.51 95.24 95.84 96.10 96.39 96.50 96.69 96.71

LC 74.91 76.33 80.76 84.45 87.23 89.89 90.27 90.67 90.56 91.47

Salinas 

Scene 

IE 84.16 84.60 84.65 85.02 85.09 85.25 85.50 85.65 85.91 85.98

ME 85.14 89.29 92.81 94.31 96.48 97.41 98.04 98.20 98.66 98.88

BT 95.30 96.98 98.26 98.71 98.95 98.90 99.03 99.21 99.25 99.24

LC 88.60 91.19 92.84 93.58 93.80 95.74 97.56 97.72 98.56 98.86

5.3.3. Determination of sample size 

In the labeling process, the samples are not completely labeled correctly. The more samples are 
screened, the more samples may be misclassified. This will make the training set noisier and affects 
the generalization ability of the classifier. If the number of samples is too small, the number of labeled 
samples will not improve the classification accuracy of the classifier or will reduce the classification 
efficiency. The results of classification accuracy under different sample sizes are shown in Table 2. 

It can be seen from Table 2 that the sample selection screening quantity in different data sets 
presents different rules. Indian Pines datasets have the highest classification accuracy after 10 
iterations are finished. Pavia University datasets have the highest classification accuracy after 8–10 
iterations are finished. Salinas Scene datasets have the highest classification accuracy after 2–4 
iterations are finished. The sample screening quantity with the highest accuracy is regarded as the 
experiment parameter, which are 1600 for Indian Pines, 1400 for Pavia University and 600 for 
Salinas Scene. 

5.3.4. Determination of block window size 

The size of the block window determines the neighborhood information of the samples, which 
directly affect the accuracy of the pseudo-tagging method. Due to the different size of data, the optimal 
block window size is also determined by a large number of experiments. The classification accuracy 
under different block window sizes is shown in Table 3. 

As can be seen from Table 3, there have different changes in classification accuracy for different 
datasets. Compared with the other two data sets, the size of Indian Pines is the smallest, so its 
experimental block window side length values are from 3 to 10. With the increase of the number of 
iterations, the classification accuracy showed a trend of gradual increase, and the optimal accuracy is 
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obtained when the side length is 7. When the side length of the block window for Pavia and Salinas 
datasets is too small, the classification accuracy will not improve with the increase of iterations. This 
indicates that the neighborhood information cannot distinguish the category at this time. 

With the increase of the side length of the block window, the number of iterations to achieve the 
optimal classification accuracy is advanced, but the optimal accuracy decreases. The block window 
size is larger, the more noise information will be introduced, and it will affect the sample labeling 
accuracy. Therefore, the block window size of the Indian Pines dataset is 7 × 7, and the block window 
sizes of the Pavia and Salinas datasets are 25 × 25 and 20 × 20, respectively. 

Table 2. The classification accuracy results under different sample sizes (%). 

Data Quantity 1 2 3 4 5 6 7 8 9 10 

Indian 

Pines 

200 77.30 77.57 78.32 77.97 78.59 78.97 78.96 79.28 79.51 79.23

400 77.54 78.60 79.80 80.80 82.13 82.20 83.03 83.77 83.83 83.85

600 77.52 79.54 79.37 79.27 80.08 81.99 83.89 83.60 84.30 84.48

800 77.75 79.84 80.87 80.22 82.11 83.91 84.41 84.57 85.12 85.94

1000 77.85 80.49 80.28 82.74 81.35 82.60 84.18 85.88 86.77 87.84

1200 77.85 79.95 79.79 80.38 81.59 84.41 84.72 85.74 87.48 88.85

1400 78.18 80.20 80.09 83.96 85.00 85.78 87.93 89.90 91.07 91.20

1600 78.55 80.56 80.59 84.12 86.90 87.82 89.02 90.87 91.49 91.83

1800 78.34 79.76 79.23 82.64 85.39 87.32 88.81 89.97 90.69 91.46

2000 78.01 79.16 80.24 82.55 86.02 87.48 88.66 89.63 90.02 90.46

Pavia 

University 

200 68.75 73.93 76.73 78.18 79.23 80.92 81.85 82.40 82.74 83.60

400 66.41 73.11 75.45 78.20 81.18 82.13 82.57 83.39 84.07 83.98

600 68.88 76.35 78.22 80.73 82.59 83.29 83.68 84.57 84.95 84.98

800 69.89 77.50 80.31 81.91 83.22 84.85 84.99 84.79 85.16 85.31

1000 70.28 76.35 79.92 82.68 83.83 84.48 84.84 85.21 85.37 85.04

1200 70.24 75.18 80.32 83.13 84.14 85.04 85.30 85.55 85.04 84.90

1400 70.34 76.23 80.57 82.46 83.92 84.71 85.59 85.77 85.87 86.47

1600 70.40 75.87 80.64 83.06 83.93 84.69 85.28 86.02 86.19 85.83

1800 69.77 76.12 80.18 82.99 85.19 85.04 84.89 85.26 85.68 85.68

2000 69.71 75.90 82.29 83.40 84.41 85.23 85.59 85.77 85.86 85.87

Salinas 

Scene 

200 85.09 87.26 89.04 89.35 89.24 89.22 88.85 88.47 88.14 88.03

400 84.94 88.34 89.88 89.26 89.12 88.88 88.26 87.68 87.40 87.25

600 85.69 90.85 90.80 90.42 89.71 89.04 88.63 87.84 87.12 86.60

800 85.36 89.17 88.87 87.96 87.46 86.85 86.42 85.69 85.13 84.58

1000 85.35 88.93 89.88 89.04 88.34 87.58 87.03 85.49 85.08 85.08

1200 85.04 89.66 90.08 88.98 87.67 87.14 86.13 85.30 85.09 84.85

1400 85.07 88.46 89.39 88.63 88.10 88.06 87.34 86.81 86.69 86.58

1600 85.47 89.54 89.88 88.87 87.68 86.21 85.00 84.34 83.89 83.70

1800 85.50 90.16 90.15 89.45 88.58 87.71 86.79 86.52 86.31 85.93

2000 85.48 89.40 89.38 88.60 87.73 85.98 85.67 85.12 85.39 85.34
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Table 3. The classification accuracy under different block window sizes (%). 

Data Block window size 1 2 3 4 5 6 7 8 9 10 

Indian 

Pines 

3 77.62 77.86 78.35 78.65 78.91 79.14 79.09 79.12 79.56 79.56

4 77.73 78.24 78.65 78.75 78.70 78.66 79.14 79.18 79.70 79.74

5 78.41 79.61 79.41 81.28 81.11 81.73 82.67 82.84 84.18 84.68

6 77.85 80.14 80.41 80.91 80.90 83.54 84.91 85.09 86.42 88.30

7 78.86 80.58 82.58 84.90 86.55 86.99 88.47 88.87 89.58 90.98

8 78.33 78.95 81.00 84.24 85.44 86.37 87.60 88.13 88.57 89.19

9 79.61 81.00 83.39 85.51 85.71 86.34 86.78 86.86 87.07 87.86

10 78.61 79.32 83.45 85.45 85.59 85.69 86.12 87.00 87.17 87.32

Pavia 

University 

5 68.39 68.38 68.38 68.38 68.38 68.38 68.38 68.38 68.38 68.38

10 68.20 67.67 69.05 69.06 68.30 68.13 68.06 67.98 67.89 67.62

15 70.91 70.59 70.96 70.50 71.89 73.54 73.80 74.58 75.25 75.32

20 71.47 71.63 73.60 76.12 75.99 75.61 77.18 77.51 77.81 78.14

25 71.25 74.57 78.52 79.15 81.95 82.32 83.66 84.88 85.45 85.51

30 70.28 76.35 79.92 82.68 83.83 84.48 84.84 85.21 85.37 85.04

35 71.48 77.43 80.15 81.75 83.18 83.62 84.11 83.65 83.23 83.17

40 73.40 77.50 80.36 81.92 83.15 82.68 82.23 82.38 82.18 82.04

Salinas 

Scene 

5 83.94 83.94 83.94 83.94 83.94 83.94 83.94 83.94 83.94 83.94

10 83.61 84.16 84.95 85.03 84.77 84.68 84.59 84.82 84.61 85.48

15 83.86 83.17 85.51 87.04 87.70 88.44 89.77 89.60 91.01 91.09

20 84.16 86.84 89.41 90.56 90.22 90.69 91.02 91.13 90.87 90.68

25 84.11 88.22 89.46 89.68 89.35 88.77 87.86 87.49 86.71 86.78

30 85.35 88.93 89.88 89.04 88.34 87.58 87.03 85.49 85.08 85.08

35 86.17 88.80 88.67 87.67 86.63 85.84 85.26 84.87 83.95 83.06

40 86.86 89.25 89.02 87.78 86.37 84.74 83.60 82.83 81.69 80.92

5.3.5. Determination of priority classifier 

In fact, the determination of pseudo-tags of samples mainly depends on the determination of 
classifiers. K-Nearest Neighbor (KNN), Sparse Representation-Based Classifier (SRC), Neighbor 
Rough Set (NRS) and mixed logistic regression (MLR) are employed to determine the pseudo-tags. 
The experimental results of single classifier and different combination classifiers on different datasets 
are shown in Tables 4–6. 

As can be seen in Table 4, with the increase of iterations, the classification accuracy of each 
category samples increased gradually. Compared with the results of the single classifier, the SRC has 
the largest number of samples after 10 iterations are finished, but the classification effect is not the 
best value. The classifier with the best classification effect is NRS. The number of samples and 
classification accuracy of the combination classifiers are mostly better than that of single classifier. 
The experiment results are different for combination classifiers with different priority. The classifier 
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with NRS can achieve more than 90% classification effect after 10 iterations are finished. The number 
of combinations with MLR is more than 6600 after 10 iterations are finished, and the best combination 
is MLR + NRS after 10 iterations are finished. 

Table 4. The experimental results of different classifier combinations in Indian Pines data set. 

Classifier Index 1 2 3 4 5 6 7 8 9 10 

KNN 
NUM 314 673 1139 1630 2178 2680 3324 4063 4820 5474 

OA (%) 78.69 79.93 81.20 82.05 82.49 84.38 85.70 86.52 87.33 87.77

SRC 
NUM 311 648 1068 1525 2032 2606 3248 3899 4668 5522 

OA (%) 78.64 80.42 80.10 81.56 82.87 84.39 85.83 87.04 87.92 88.19

NRS 
NUM 315 673 1116 1597 2136 2697 3265 3815 4437 5016 

OA (%) 78.82 81.02 80.96 83.71 84.94 85.57 86.87 88.01 89.25 89.42

MLR 
NUM 133 295 580 936 1296 1790 2396 3077 3858 4648 

OA (%) 77.55 79.31 82.21 83.91 83.99 85.75 87.36 87.68 88.27 88.41

KNN + SRC 
NUM 317 706 1120 1702 2294 2967 3728 4494 5233 5950 

OA (%) 78.71 80.96 81.99 83.97 84.96 85.82 86.99 87.75 87.93 88.10

KNN + NRS 
NUM 317 707 1198 1691 2308 2954 3625 4450 5374 6305 

OA (%) 78.78 80.27 80.73 82.51 83.82 85.45 87.56 89.06 89.95 90.19

KNN + MLR 
NUM 318 712 1206 1794 2555 3398 4292 5072 5783 6678 

OA (%) 78.79 80.56 82.57 86.08 87.10 87.87 88.50 88.88 89.18 89.31

SRC + KNN 
NUM 317 706 1134 1673 2223 2875 3658 4317 5011 5748 

OA (%) 78.71 81.09 81.51 83.17 84.27 85.84 86.94 87.54 88.26 88.64

SRC + NRS 
NUM 318 730 1205 1778 2372 3091 3969 4813 5787 6641 

OA (%) 78.81 80.79 82.37 85.03 86.81 88.45 88.93 89.86 90.49 90.78

SRC + MLR 
NUM 315 708 1153 1744 2457 3322 4231 5042 5800 6735 

OA (%) 78.80 80.92 82.16 85.16 86.24 87.61 88.39 88.71 89.07 89.19

NRS + KNN 
NUM 317 707 1202 1712 2385 3021 3700 4538 5399 6333 

OA (%) 78.74 80.67 81.33 83.36 84.46 86.35 87.93 89.23 90.03 90.43

NRS + SRC 
NUM 318 734 1207 1728 2378 3061 3959 4799 5691 6739 

OA (%) 78.77 81.01 82.56 84.52 86.37 87.43 88.95 90.11 90.61 90.90

NRS + MLR 
NUM 318 694 1148 1690 2446 3194 4102 4950 5768 6792 

OA (%) 78.91 81.39 81.62 85.51 87.21 89.63 90.28 90.92 91.28 91.88

MLR + KNN 
NUM 318 677 1166 1689 2429 3246 4018 4737 5677 6672 

OA (%) 78.30 81.13 81.85 85.94 87.22 88.28 88.77 88.98 89.20 89.29

MLR + SRC 
NUM 315 704 1258 1741 2439 3286 4097 4867 5775 6760 

OA (%) 78.31 81.81 82.55 85.09 86.86 88.30 89.01 89.44 90.21 90.71

MLR + NRS 
NUM 318 683 1154 1701 2458 3301 4219 5057 5997 6889 

OA (%) 78.46 81.49 82.11 86.14 87.86 89.70 90.68 91.58 92.15 92.42

As can be seen in Table 5, compared with the experimental results by single classifier, the number 
of labeled samples with SRC is the largest value after 10 iterations are finished, which is higher than 
the other three methods. However, the MLR obtained best classification results. After 10 iterations are 
finished, the number of labeled samples of two classifiers is more than that of the single classifier. 
KNN, SRC and NRS are considered as the first priority classifiers, the classification results of the 
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sample set after 10 iterations are not as good as those of MLR. The combination of MLR as the first 
priority classifier has better classification effect than single MLR after 10 iterations are finished. 

Table 5. The experimental results of different classifiers for Pavia University data. 

Classifier Index 1 2 3 4 5 6 7 8 9 10 

KNN 
NUM 236 444 661 965 1210 1466 1812 2254 2762 3251 

OA (%) 71.19 73.36 74.70 75.69 76.10 76.16 77.28 78.48 77.60 77.69 

SRC 
NUM 225 477 733 1080 1492 2047 2793 3654 4605 5631 

OA (%) 72.21 72.19 76.97 79.12 80.08 81.77 83.09 84.07 84.95 85.27 

NRS 
NUM 225 438 763 1007 1256 1487 1726 1893 1991 2179 

OA (%) 71.22 73.74 75.14 76.59 76.15 76.47 76.41 76.20 75.68 75.40 

MLR 
NUM 100 244 396 605 829 1035 1304 1587 1872 2183 

OA (%) 72.36 76.37 77.18 79.04 79.40 81.16 82.21 82.18 83.36 85.85 

KNN + SRC 
NUM 248 473 787 1118 1509 1996 2552 3111 3975 4837 

OA (%) 71.48 72.82 74.61 76.59 78.38 80.08 80.82 81.62 82.40 83.99 

KNN + NRS 
NUM 240 491 775 1067 1382 1850 2403 3040 3794 4415 

OA (%) 71.11 73.83 77.44 78.83 79.50 79.58 79.39 80.11 80.74 81.48 

KNN + MLR 
NUM 244 515 822 1176 1616 2162 2905 3698 4745 5682 

OA (%) 71.37 75.03 77.84 78.08 79.73 79.59 81.30 83.88 84.90 85.08 

SRC + KNN 
NUM 248 476 795 1215 1725 2298 3055 3967 4977 5913 

OA (%) 71.38 72.54 75.26 78.09 79.19 80.21 81.88 83.31 83.35 83.51 

SRC + NRS 
NUM 242 511 867 1385 1889 2513 3201 3988 4910 5794 

OA (%) 71.40 74.12 77.56 80.80 82.19 82.55 83.02 83.80 84.34 85.09 

SRC + MLR 
NUM 236 507 841 1289 1731 2261 3016 3928 4939 6015 

OA (%) 71.52 73.62 76.47 78.45 79.51 81.54 83.10 84.37 84.68 84.66 

NRS + KNN 
NUM 240 486 803 1119 1541 1992 2557 3190 3939 4611 

OA (%) 71.05 74.37 76.57 77.77 78.06 77.21 76.75 77.35 78.88 79.28 

NRS + SRC 
NUM 242 501 803 1296 1792 2433 3089 3839 4776 5798 

OA (%) 71.44 74.50 76.72 79.93 81.44 81.90 82.85 83.81 85.00 85.48 

NRS + MLR 
NUM 234 517 828 1237 1796 2446 3354 4220 5061 5857 

OA (%) 71.49 75.47 77.89 80.86 83.68 84.43 84.93 85.12 85.57 85.46 

MLR + KNN 
NUM 244 486 746 1170 1658 2300 3205 4208 5336 6514 

OA (%) 71.47 75.30 76.67 78.76 80.35 82.97 85.05 86.05 86.88 87.02 

MLR + SRC 
NUM 236 504 903 1310 1708 2207 3009 4024 5098 6234 

OA (%) 71.71 74.01 79.30 79.81 80.40 83.03 86.27 86.93 87.97 88.53 

MLR + NRS 
NUM 234 524 787 1205 1738 2374 3116 3953 4754 5586 

OA (%) 71.63 75.94 79.83 80.66 82.75 84.64 85.98 86.19 86.37 86.87 

For Salinas Scene data, the number of labeled samples by MLR after 10 iterations is the smallest 
result, but the classification accuracy of the labeled samples is the highest result. After 10 iterations 
are finished, the number of iterations of the two classifiers is also higher than that of the single classifier. 
However, from the perspective of the performance of labeled samples in classification, MLR+SRC 
has higher classification accuracy than MLR, which indicates that the addition of classifiers improves 
the classification accuracy. 
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Table 6. The experimental results of different classifiers for Salinas Scene data. 

Classifier Index 1 2 3 4 5 6 7 8 9 10 

KNN 
NUM 133 251 443 684 963 1304 1672 2047 2425 2857 

OA (%) 83.38 86.46 86.46 86.65 87.26 87.31 87.79 87.92 87.66 87.15 

SRC 
NUM 144 275 441 666 937 1255 1606 1968 2391 2811 

OA (%) 83.10 83.56 85.11 85.83 85.81 86.63 86.50 86.64 86.95 86.96 

NRS 
NUM 148 271 423 668 952 1263 1569 1940 2351 2799 

OA (%) 84.04 86.06 87.62 87.63 87.10 87.48 88.44 88.43 88.32 87.92 

MLR 
NUM 102 177 302 451 621 867 1176 1518 1848 2217 

OA (%) 82.88 85.41 87.11 88.36 88.73 90.68 91.52 92.20 91.70 92.02 

KNN + SRC 
NUM 146 294 479 694 976 1330 1691 2106 2520 2985 

OA (%) 83.60 84.65 85.38 86.76 87.39 87.39 88.00 88.11 87.53 87.23 

KNN + NRS 
NUM 150 297 500 761 1108 1466 1891 2354 2834 3316 

OA (%) 83.53 86.43 87.14 87.49 87.64 87.37 88.06 88.03 87.95 88.03 

KNN + MLR 
NUM 143 285 508 768 1132 1546 2026 2526 3049 3590 

OA (%) 83.38 85.50 86.34 88.35 88.80 90.07 90.24 90.08 89.86 89.79 

SRC + KNN 
NUM 146 287 472 686 957 1281 1673 2061 2485 2892 

OA (%) 83.25 84.70 85.79 85.88 86.70 86.92 86.89 86.93 86.85 86.90 

SRC + NRS 
NUM 150 280 493 755 1017 1328 1708 2114 2539 2982 

OA (%) 83.07 85.55 86.28 85.47 86.66 86.97 87.52 87.05 87.19 87.16 

SRC + MLR 
NUM 150 271 483 720 1108 1499 1958 2451 2969 3487 

OA (%) 83.15 84.27 87.25 87.88 88.88 89.29 89.36 89.85 89.70 89.85 

NRS + KNN 
NUM 150 298 519 814 1148 1556 2037 2538 3027 3522 

OA (%) 84.01 87.12 87.79 87.30 87.54 88.38 88.09 88.25 87.95 87.88 

NRS + SRC 
NUM 150 284 488 803 1158 1539 1988 2482 2955 3423 

OA (%) 83.91 87.23 86.98 87.73 88.30 88.97 89.57 89.57 89.60 89.43 

NRS + MLR 
NUM 153 293 509 762 1104 1509 1940 2441 2934 3452 

OA (%) 83.87 85.82 88.25 89.93 90.40 90.51 90.75 90.48 90.12 89.61 

MLR + KNN 
NUM 143 299 521 825 1187 1602 2046 2514 2993 3407 

OA (%) 82.80 85.42 87.67 88.79 89.68 90.06 90.54 90.92 91.27 91.32 

MLR + SRC 
NUM 150 292 521 799 1123 1537 2007 2448 2929 3367 

OA (%) 82.91 85.45 88.89 90.12 90.21 90.93 90.99 91.83 92.08 92.64 

MLR + NRS 
NUM 153 315 564 841 1197 1605 2064 2561 3060 3500 

OA (%) 82.81 84.87 88.16 89.34 89.69 90.03 90.42 90.52 91.19 91.43 

From three experiment results, it can be seen that the method with the largest number of labeled 
samples does not necessarily achieve the best classification results. The labeled samples are needed to 
improve the classification accuracy of the classifier, so the obtained labeled samples after 10 iterations 
are taken as the evaluation criteria. The Indian Pines dataset uses a combination of classifiers MLR + 
NRS. The Pavia University and Salinas Scene data sets use MLR + SRC. 

5.4. Experimental results and analysis 

Based on the analysis, the settings of the related parameters are shown in Table 7. 
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Table 7. The settings of the related parameters.  

Data set Indian Pines Pavia University Salinas Scene 
Selection policy BT BT BT 
Number of selections 1600 1400 600 
Window size 7 × 7 25 × 25 20 × 20 
Combination of classifiers MLR + NRS MLR + SRC MLR + SRC 
Number of labeled samples 6889 6234 3367 

Firstly, the LBP is used to extract the features of spatial texture information of hyperspectral 
remote sensing images. Secondly, the sample labeling method based on neighborhood information and 
priority classifier discrimination is used to obtain the learned pseudo-labeled samples. The SRC 
classifier is trained with the labeled samples, and the test samples are predicted. The obtained 
classification results are compared with those of the SRC classifier on the training data, and the 
classification results of training models with different training dataset are shown in Table 8. 

Table 8. The classification results of training models with different training dataset. 

Training samples Index Initial samples Labeling samples 

Indian Pines 
AA 67.93%  84.70%  
OA 77.38%  92.42%  
KAPPA 0.746 0.914 

Pavia University 
AA 60.53%  81.87%  
OA 69.00%  88.53%  
KAPPA 0.609 0.848 

Salinas Scene 
AA 82.59%  87.76%  
OA 84.00%  92.64%  
KAPPA 0.823 0.918 

It can be seen from Table 8, for Indian Pines dataset, the classification results of AA, OA and 
KAPPA are 84.7%, 94.42% and 0.914, respectively. For Pavia University dataset, the classification 
results of AA, OA and KAPPA are 81.87%, 88.53% and 0.848, respectively. For Salinas Scene dataset, 
the classification results of AA, OA and KAPPA are 87.76%, 92.64% and 0.918, respectively. 
Therefore, the proposed classification method obtains higher classification accuracy. 

The classification visualizations of the proposed classification method for the initial samples and 
labeled samples are shown in Figures 7 and 8. 

By comparing with the results of the experiments, it can find that the classification results of the 
trained classifier with expanded samples on the three datasets are better than those of the trained 
classifier with initial samples. Moreover, from the classification visualization, it can also see that the 
obtained classification results by the classifier and the labeled samples is smoother and has fewer 
discrete points, which indicates that the generalization ability of the classifier is improved by labeling 
the samples. 
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(a) Indian Pines          (b) Pavia University        (c) Salinas Scene 

Figure 7. The classification results of the initial samples. 

          

(a) Indian Pines          (b) Pavia University        (c) Salinas Scene 

Figure 8. The classification results of the labeling samples. 

6. Conclusions 

For the processing and analysis difficulties of hyperspectral images, a new sample labeling 
method based on neighborhood information and priority classifier discrimination is developed to 
implement a new classification method of hyperspectral remote sensing images based on texture 
features and semi-supervised learning by introducing LBP, sparse representation and mixed logistic 
regression. The LBP is employed to extract the texture features of the hyperspectral remote sensing 
images. The multivariate logistic regression model is used to select the unlabeled samples with the 
largest amount of information, and the unlabeled samples with neighborhood information and priority 
classifier tags are selected to obtain the pseudo-labeled samples after learning. The problem of limited 
labeled samples of hyperspectral images is solved. The Indian Pines dataset, Salinas scene dataset and 
Pavia University dataset are selected in here. The experiment results show that the block window of 
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Indian Pines dataset is 7 × 7, and the block windows of Pavia University and Salinas scene are 25 × 25 
and 20 × 20, respectively. The combination of MLR and SRC can obtain better classification results. 
The obtained classification results are smoother and have fewer discrete points, which indicate that the 
generalization ability of the classifier is improved by labeling the samples. For Indian Pines dataset, 
the classification results of AA, OA and KAPPA are 84.7%, 94.42% and 0.914, respectively. For Pavia 
University dataset, the classification results of AA, OA and KAPPA are 81.87%, 88.53% and 0.848, 
respectively. For Salinas Scene dataset, the classification results of AA, OA and KAPPA are 87.76%, 
92.64% and 0.918, respectively. Therefore, the proposed classification method obtains higher 
classification accuracy by comparing with the other methods. 

However, the proposed classification method has the more computing time, so the next step 
should be more in-depth research to reduce the time complexity. 
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