Editorial Special Issues

Fluid instabilities, waves and non-equilibrium dynamics of interacting particles: a short overview

  • Received: 27 April 2022 Revised: 27 April 2022 Accepted: 27 April 2022 Published: 12 May 2022
  • Citation: Roberta Bianchini, Chiara Saffirio. Fluid instabilities, waves and non-equilibrium dynamics of interacting particles: a short overview[J]. Mathematics in Engineering, 2023, 5(2): 1-5. doi: 10.3934/mine.2023033

    Related Papers:



  • 加载中


    [1] G. B. Apolinário, L. Chevillard, Space-time statistics of a linear dynamical energy cascade model, Mathematics in Engineering, 5 (2023), 1–23. http://doi.org/10.3934/mine.2023025 doi: 10.3934/mine.2023025
    [2] G. Basile, D. Benedetto, E. Caglioti, L. Bertini, Large deviations for a binary collision model: energy evaporation, Mathematics in Engineering, 5 (2023), 1–12. http://doi.org/10.3934/mine.2023001 doi: 10.3934/mine.2023001
    [3] J. Bedrossian, N. Masmoudi, Inviscid damping and the asymptotic stability of planar shear flows in the 2D Euler equations, Publ. math. IHES, 122 (2015), 195–300. http://doi.org/10.1007/s10240-015-0070-4 doi: 10.1007/s10240-015-0070-4
    [4] G. Bevilacqua, Symmetry break in the eight bubble compaction, Mathematics in Engineering, 4 (2022), 1–24. http://doi.org/10.3934/mine.2022010 doi: 10.3934/mine.2022010
    [5] T. Buckmaster, C. De Lellis, L. Székelyhidi Jr., Dissipative Euler flows with Onsager-critical spatial regularity, Commun. Pure Appl. Math., 69 (2016), 1613–1670. http://doi.org/10.1002/cpa.21586 doi: 10.1002/cpa.21586
    [6] C. Collot, P. Germain, Derivation of the kinetic wave equation for quadratic dispersive problems in the inhomogeneous setting, 2021, arXiv: 2107.11819.
    [7] G. Crippa, C. Schulze, Sub-exponential mixing of generalized cellular flows with bounded palenstrophy, Mathematics in Engineering, 5 (2023), 1–12. http://doi.org/10.3934/mine.2023006 doi: 10.3934/mine.2023006
    [8] Y. C. de Verdière, L. Saint-Raymond, Attractors for two-dimensional waves with homogeneous Hamiltonians of degree 0, Commun. Pure Appl. Math., 73 (2020), 421–462. http://doi.org/10.1002/cpa.21845 doi: 10.1002/cpa.21845
    [9] D. Del Santo, F. Fanelli, G. Sbaiz, A. Wróblewska-Kamińska, On the influence of gravity in the dynamics of geophysical flows, Mathematics in Engineering, 5 (2023), 1–33. http://doi.org/10.3934/mine.2023008 doi: 10.3934/mine.2023008
    [10] C. De Lellis, L. Székelyhidi Jr., Dissipative Euler flows and Onsager's conjecture, J. Eur. Math. Soc., 16 (2014), 1467–1505. http://doi.org/10.4171/JEMS/466 doi: 10.4171/JEMS/466
    [11] Y. Deng, Z. Hani, Full derivation of the wave kinetic equation, 2021, arXiv: 2104.11204.
    [12] M. Duerinckx, On nonlinear Schrödinger equations with random initial data, Mathematics in Engineering, 4 (2022), 1–14. http://doi.org/10.3934/mine.2022030 doi: 10.3934/mine.2022030
    [13] G. E. Fal'kovich, A. V. Shafarenko, Nonstationary wave turbulence, J. Nonlinear Sci., 1 (1991), 457–480.
    [14] S. Federico, G. Staffilani, Sharp Strichartz estimates for some variable coefficient Schrödinger operators on $\mathbb{R}\times \mathbb{T}^2$, Mathematics in Engineering, 4 (2022), 1–23. http://doi.org/10.3934/mine.2022033 doi: 10.3934/mine.2022033
    [15] R. Feola, F. Iandoli, F. Murgante, Long-time stability of the quantum hydrodynamic system on irrational tori, Mathematics in Engineering, 4 (2022), 1–24. http://doi.org/10.3934/mine.2022023 doi: 10.3934/mine.2022023
    [16] R. P. Feynman, R. Leighton, M. Sands, The Feynman lectures on physics, Volume I, 2015.
    [17] F. Flandoli, E. Luongo, Heat diffusion in a channel under white noise modeling of turbulence, Mathematics in Engineering, 4 (2022), 1–21. http://doi.org/10.3934/mine.2022034 doi: 10.3934/mine.2022034
    [18] L. E. Hientzsch, On the low Mach number limit for 2D Navier–Stokes–Korteweg systems, Mathematics in Engineering, 5 (2023), 1–26. http://doi.org/10.3934/mine.2023023 doi: 10.3934/mine.2023023
    [19] J. Lukkarinen, H. Spohn, Weakly nonlinear Schrödinger equation with random initial data, Invent. Math., 183 (2011), 79–188. http://doi.org/10.1007/s00222-010-0276-5 doi: 10.1007/s00222-010-0276-5
    [20] S. Nazarenko, Wave turbulence, Berlin, Heidelberg: Springer, 2011. http://doi.org/10.1007/978-3-642-15942-8
    [21] C. Nobili, The role of boundary conditions in scaling laws for turbulent heat transport, Mathematics in Engineering, 5 (2023), 1–41. http://doi.org/10.3934/mine.2023013 doi: 10.3934/mine.2023013
    [22] A. Nota, J. J. L. Velázquez, Homoenergetic solutions of the Boltzmann equation: the case of simple-shear deformations, Mathematics in Engineering, 5 (2023), 1–25. http://doi.org/10.3934/mine.2023019 doi: 10.3934/mine.2023019
    [23] D. Varma, M. Mathur, T. Dauxois, Instabilities in internal gravity waves, Mathematics in Engineering, 5 (2023), 1–34. http://doi.org/10.3934/mine.2023016 doi: 10.3934/mine.2023016
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1833) PDF downloads(215) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog