Research article

The fractional Malmheden theorem ${ }^{\dagger}$

Serena Dipierro*, Giovanni Giacomin and Enrico Valdinoci

Department of Mathematics and Statistics, University of Western Australia, 35 Stirling Highway, WA6009 Crawley, Australia

\dagger This contribution is part of the Special Issue: Nonlinear PDEs and geometric analysis Guest Editors: Julie Clutterbuck; Jiakun Liu Link: www. aimspress.com/mine/article/6186/special-articles

* Correspondence: Email: serena.dipierro@uwa.edu.au.

Abstract

We provide a fractional counterpart of the classical results by Schwarz and Malmheden on harmonic functions. From that we obtain a representation formula for s-harmonic functions as a linear superposition of weighted classical harmonic functions which also entails a new proof of the fractional Harnack inequality. This proof also leads to optimal constants for the fractional Harnack inequality in the ball.

Keywords: fractional Laplacian; Malmheden theorem; Schwarz theorem; Harnack inequality; Poisson kernel; geometric properties of harmonic functions
To Neil, the Master of us all.

1. Introduction

In 1934, Harry William Malmheden [13] proved a simple algorithm to compute the value of a harmonic function at a point of B_{1}, knowing its value on the boundary.

The Malmheden theorem makes use of two fundamental geometric ingredients:

1) the notion of affine interpolation between the values of a given function at two different points of the space,
2) the projections of a point inside a ball to the boundary in a given direction.

Hence, to state the Malmheden theorem explicitly, we now formalize these two notions into a precise mathematical setting. We start by introducing a notation for the affine interpolation between the values
of some given function. That is, given a set $K \subseteq \mathbb{R}^{n}$, a function $f: K \rightarrow \mathbb{R}$, two distinct points a, $b \in K$, and a point x on the segment L joining a and b, we define $\mathcal{L}_{f}^{a, b}(x)$ as the affine function on L such that $\mathcal{L}_{f}^{a, b}(a)=f(a)$ and $\mathcal{L}_{f}^{a, b}(b)=f(b)$.

Of course, one can write this affine function explicitly by using the analytic expression

$$
\begin{equation*}
\mathcal{L}_{f}^{a, b}(x)=\frac{(x-a) \cdot e}{|b-a|} f(b)+\frac{(b-x) \cdot e}{|b-a|} f(a), \quad \text { where } \quad e:=\frac{b-a}{|b-a|} . \tag{1.1}
\end{equation*}
$$

One can call $\mathcal{L}_{f}^{a, b}(x)$ the "affine function of f with extrema a and b evaluated at the point x ".
Now we discuss the notation regarding the projections of a point inside a ball to the boundary of the ball in a given direction. For this, given a point $x \in B_{1}$ and a direction $e \in \partial B_{1}$ we consider the intersections $Q_{+}^{x}(e)$ and $Q_{-}^{x}(e)$ of ∂B_{1} with the straight line passing through $x \in B_{1}$ with direction e, with the convention that $Q_{+}^{x}(e)-Q_{-}^{x}(e)$ has the same orientation of e, see Figure 1.

Figure 1. The projections $Q_{ \pm}^{x}(e)$ used in the Malmheden theorem.
Clearly, from the analytic point of view, one can write explicitly these projections in the form

$$
\begin{array}{ll}
& Q_{+}^{x}(e):=x+r_{+}^{x}(e) e \tag{1.2}\\
\text { and } & Q_{-}^{x}(e):=x+r_{-}^{x}(e) e
\end{array}
$$

where

$$
\begin{align*}
& r_{+}^{x}(e) & =-x \cdot e+\sqrt{(x \cdot e)^{2}-|x|^{2}+1} \\
\text { and } \quad & r_{-}^{x}(e) & =-x \cdot e-\sqrt{(x \cdot e)^{2}-|x|^{2}+1} \tag{1.3}
\end{align*}
$$

We note from Eqs (1.2) and (1.3) that $Q_{ \pm}^{x}(e)$ are continuous functions in $(x, e) \in B_{1} \times \partial B_{1}$. Moreover,

$$
\begin{equation*}
\lim _{x \rightarrow 0} Q_{ \pm}^{x}(e)= \pm e \tag{1.4}
\end{equation*}
$$

for each $e \in \partial B_{1}$. This tells us that the maps $Q_{ \pm}^{x}$ simply reduce to $\pm i d_{\partial B_{1}}$ when $x=0$.
Given a boundary datum $f: \partial B_{1} \rightarrow \mathbb{R}$, the core of the Malmheden Theorem is thus to consider, for every point $x \in B_{1}$ and every direction $e \in \partial B_{1}$, the affine function of f with extrema $Q_{-}^{x}(e)$ and $Q_{+}^{x}(e)$, namely the function

$$
\begin{equation*}
\mathcal{L}_{f}^{Q_{-}^{x}(e), Q_{+}^{x}(e)}(x) \tag{1.5}
\end{equation*}
$$

and then to average in all directions e.

The remarkable result by Malmheden is that this averaging procedure of linear interpolations produces precisely the solution of the classical Dirichlet problem in B_{1} with boundary datum f, according to the following classical statement (see [13]):

Theorem 1.1 (Malmheden theorem). Let $n \geqslant 2$ and $f: \partial B_{1} \rightarrow \mathbb{R}$ be continuous. Then

$$
\begin{equation*}
u_{f}(x):=f_{\partial B_{1}} \mathcal{L}_{f}^{Q_{-}^{x}(e), Q_{+}^{x}(e)}(x) d H_{e}^{n-1} \tag{1.6}
\end{equation*}
$$

is the harmonic function in B_{1} with boundary datum f.
As usual, here above and in the rest of this paper, we denoted by H^{n-1} the ($n-1$)-Hausdorff measure (hence, the integral on the right hand side of (1.6) is simply the spherical integral along ∂B_{1}; we kept the explicit notation with the Hausdorff measure to have a typographical evidence of the surface integrals, to be distinguished by the classical volume ones).

We remark that Theorem 1.1 contains the Mean Value Theorem for harmonic functions as a particular case: indeed, in light of (1.1) and (1.4), if we take $x:=0$ then (1.6) reduces to

$$
\begin{equation*}
u_{f}(0)=f_{\partial B_{1}} \mathcal{L}_{f}^{-e, e}(0) d H_{e}^{n-1}=f_{\partial B_{1}}\left(\frac{f(e)}{2}+\frac{f(-e)}{2}\right) d H_{e}^{n-1}=f_{\partial B_{1}} f(e) d H_{e}^{n-1}, \tag{1.7}
\end{equation*}
$$

which is the content of the Mean Value Theorem.
We also stress that an elegant result such as Theorem 1.1 is specific for balls and cannot be extended in general to other domains, as pointed out in [1].

Interestingly, Theorem 1.1 contains as a particular case a classical result due to Hermann Amandus Schwarz [18] about the Dirichlet problem in the plane and related to conformal mappings in the complex framework.

To state Schwarz result it is convenient to introduce the reflection of a point $\omega \in \partial B_{1}$ through a point $x \in B_{1}$, see Figure 2. More precisely, given $x \in B_{1}$ and $\omega \in \partial B_{1}$ we define

$$
\begin{equation*}
Q^{x}(\omega):=\omega-2 \frac{(x-\omega) \cdot \omega}{|x-\omega|^{2}}(x-\omega) \tag{1.8}
\end{equation*}
$$

Comparing with (1.2), one sees that if $e:=\frac{\omega-x}{|\omega-x|}$ then $Q_{+}^{x}(e)=\omega$ and $Q_{-}^{x}(e)=Q^{x}(\omega)$.

Figure 2. The reflection $Q^{x}(\omega)$ used in the Schwarz theorem.

In this setting, the result by Schwarz is that the average of the boundary datum composed with the above reflection returns the solution of the Dirichlet problem in the ball. More explicitly:

Theorem 1.2 (Schwarz theorem). Let $n=2$ and $f: \partial B_{1} \rightarrow \mathbb{R}$ be continuous. Then

$$
\begin{equation*}
u_{f}(x):=f_{\partial B_{1}} f\left(Q^{x}(e)\right) d H_{e}^{n-1} \tag{1.9}
\end{equation*}
$$

is the harmonic function in B_{1} with external datum f.
Theorem 1.2 can be proved in several ways using either complex or real analysis (see e.g., [9, 15, 17]), but it is also a direct consequence of Theorem 1.1, see e.g., [8] for a detailed presentation of this classical argument.

Example 1.3. A very neat application of Theorem 1.2 (see e.g., [16]) consists in the determination of the stationary temperature u at a point x in a plate (say B_{1}) when the temperature along the boundary of the plate is 1 along some arc Σ and 0 outside. In this case, the reflection in (1.8) sends Σ into an $\operatorname{arc} \Sigma^{\prime}$ (the symmetric of Σ through x, see Figure 3) and it therefore follows from Theorem 1.2 that

$$
u(x)=\frac{\left|\Sigma^{\prime}\right|}{2 \pi},
$$

where $\left|\Sigma^{\prime}\right|$ is the length of the arc Σ^{\prime}, thus providing an elementary geometric construction to solve a problem of physical relevance.

Figure 3. The geometric construction to detect the temperature of a plate at the point x.
The objective of this paper is to obtain a fractional counterpart for the Malmheden and Schwarz theorems.

We will thus replace the notion of harmonic functions in B_{1} with that of s-harmonic functions, namely functions whose fractional Laplacian vanishes in B_{1}, that is, for all $x \in B_{1}$,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \frac{u(x)-u(y)}{|x-y|^{n+2 s}} d y=0, \tag{1.10}
\end{equation*}
$$

where the integral above is intended in the principal value sense. Here above and throughout the paper the fractional parameter $s \in(0,1)$.

Rather than a boundary value along ∂B_{1}, as usual in the nonlocal setting, we complement (1.10) with an external condition of the type $u=f$ in $\mathbb{R}^{n} \backslash B_{1}$.

We recall that in general s-harmonic functions behave way more wildly that their classical counterparts, see e.g., [7]. Therefore, in principle one cannot easily expect that a "simple formulation"
such as the one in Theorems 1.1 and 1.2 accounts for all the complex situations arising in the fractional setting.

However, we will prove that a counterpart of Theorems 1.1 and 1.2 carries over to the case of the fractional Laplacian, considering the following structural modifications:

1) the classical spherical averages are replaced by suitable weighted averages on spheres of radius larger than 1 ,
2) the geometric transformations in (1.2) and (1.8) are scaled in dependence of the radius of each of these spheres.

To clarify these points, and thus reconsider (1.5) in a nonlocal setting, given $\rho>1$ and $f: \mathbb{R}^{n} \backslash B_{1} \rightarrow$ \mathbb{R}, for all $x \in \partial B_{1}$ we define

$$
\begin{equation*}
f_{\rho}(x):=f(\rho x) . \tag{1.11}
\end{equation*}
$$

Hence, in the notation of (1.1), we define

$$
\begin{equation*}
\mathcal{L}_{f, e, \rho}(x):=\mathcal{L}_{f_{\rho}}^{Q^{x / \rho}(e), Q_{+}^{x / \rho}(e)}\left(\frac{x}{\rho}\right) . \tag{1.12}
\end{equation*}
$$

Notice that when $\rho=1$ the above setting reduces to (1.5), otherwise one is considering here a similar framework but for a rescaled version of the function f and rescaled points.

To detect the long-range effect of the fractional Laplacian, it is also useful to consider the kernel

$$
\begin{equation*}
B_{1} \times(1,+\infty) \ni(x, \rho) \longmapsto \mathcal{E}(x, \rho):=c(n, s) \frac{\rho\left(1-|x|^{2}\right)^{s}}{\left(\rho^{2}-1\right)^{s}\left(\rho^{2}-|x|^{2}\right)}, \tag{1.13}
\end{equation*}
$$

where

$$
\begin{equation*}
c(n, s):=\frac{\Gamma\left(\frac{n}{2}\right) \sin (\pi s)}{\pi^{\frac{n}{2}+1}} . \tag{1.14}
\end{equation*}
$$

For our purposes, the kernel \mathcal{E} will play the role of a suitable spherical average* of a fractional Poisson kernel and the constant $c(n, s)$ is merely needed for normalization purposes.

We also define the space

$$
\begin{equation*}
L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right):=\left\{f: \mathbb{R}^{n} \rightarrow \mathbb{R} \text { measurable }: \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{|f(x)|}{|x|^{n+2 s}} d x<\infty\right\} \tag{1.15}
\end{equation*}
$$

With this, we can state the main result of this paper as follows:
Theorem 1.4 (fractional Malmheden theorem). Let $n \geqslant 2, s \in(0,1), R>1$ and $f \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap$ $L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$.
${ }^{*}$ More precisely, the intuition behind \mathcal{E} is that it satisfies, for each $x \in B_{1}$ and $\rho \in(1,+\infty)$,

$$
\mathcal{E}(x, \rho)=\rho^{n-1} f_{\partial B_{\rho}} P(x, y) d H_{y}^{n-1},
$$

where P is the fractional Poisson kernel.
This relation can be obtained as a consequence of our fractional Malmheden theorem. Though our approach does not pass explicitly through this identity, for the sake of completeness we provide an independent proof in Appendix A.1.

Then, the unique solution (up to a zero measure subset of $\mathbb{R}^{n} \backslash B_{1}$) to the problem

$$
\left\{\begin{align*}
(-\Delta)^{s} u & =0 \text { in } B_{1}, \tag{1.16}\\
u & =f \text { in } \mathbb{R}^{n} \backslash B_{1}
\end{align*}\right.
$$

can be written, for each $x \in B_{1}$, as

$$
\begin{equation*}
u_{f}^{(s)}(x):=\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}\right) d \rho \tag{1.17}
\end{equation*}
$$

As a fractional counterpart of the observation in (1.7), we point out that Theorem 1.4 entails as a straightforward consequence the Mean Value Formula for s-harmonis functions. Indeed, by the changes of variable $e:=\omega /|\omega|$ and $y:=\rho \omega /|\omega|$,

$$
\begin{aligned}
u_{f}^{(s)}(0) & =\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(0, \rho) \mathcal{L}_{f, e, \rho}(0) d H_{e}^{n-1}\right) d \rho \\
& =c(n, s) \int_{1}^{\infty}\left(\int_{\partial B_{1}} \frac{1}{\rho\left(\rho^{2}-1\right)^{s}} \mathcal{L}_{f_{\rho}}^{-e, e}(0) d H_{e}^{n-1}\right) d \rho \\
& =c(n, s) \int_{1}^{\infty}\left(\int_{\partial B_{1}} \frac{1}{\rho\left(\rho^{2}-1\right)^{s}}\left(\frac{f(\rho e)}{2}+\frac{f(-\rho e)}{2}\right) d H_{e}^{n-1}\right) d \rho \\
& =c(n, s) \int_{1}^{\infty}\left(\int_{\partial B_{\rho}} \frac{1}{\rho^{n}\left(\rho^{2}-1\right)^{s}}\left(\frac{f(\omega)}{2}+\frac{f(-\omega)}{2}\right) d H_{\omega}^{n-1}\right) d \rho \\
& =c(n, s) \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{1}{|y|^{n}\left(|y|^{2}-1\right)^{s}}\left(\frac{f(y)}{2}+\frac{f(-y)}{2}\right) d y \\
& =c(n, s) \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{f(y)}{|y|^{n}\left(|y|^{2}-1\right)^{s}} d y
\end{aligned}
$$

which is the Mean Value Formula for s-harmonis functions, see e.g., formula (1.3) in [4].
We consider Theorem 1.4 as the natural fractional counterpart of Theorem 1.1 and we mention that indeed one can "recover" Theorem 1.1 in the limit as $s \nearrow 1$, according to the following result:
Proposition 1.5. Let $n \geqslant 2, s_{0} \in(0,1), R>1$ and $f \in C\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ for each $s \in\left(s_{0}, 1\right]$. Then, for each $x \in B_{1}$, it holds that

$$
\lim _{s \nearrow 1} u_{f}^{(s)}(x)=u_{f}(x),
$$

where $u_{f}^{(s)}$ and u_{f} are defined in (1.17) and (1.6), respectively.
As a straightforward consequence of the classical Malmheden theorem (Theorem 1.1) and its fractional formulation theorem (Theorem 1.4), we deduce the following result.

Theorem 1.6 (An s-harmonic function is the superposition of classical harmonic functions). Let $n \geqslant 2$, $s \in(0,1)$ and $f \in C\left(\mathbb{R}^{n} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$. For each $\rho>1$ we define $u_{f_{\rho}}$ as the unique solution to the Dirichlet problem

$$
\left\{\begin{align*}
\Delta u & =0 \text { in } B_{1} \tag{1.18}\\
\left.u\right|_{\partial B_{1}} & =\left.f_{\rho}\right|_{\partial B_{1}}
\end{align*}\right.
$$

where f_{ρ} is defined in (1.11).
Then the unique solution $u_{f}^{(s)}$ to (1.16) can be written as

$$
\begin{equation*}
u_{f}^{(s)}(x)=\left|\partial B_{1}\right| \int_{1}^{\infty} \mathcal{E}(x, \rho) u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho \tag{1.19}
\end{equation*}
$$

The interest of Theorem 1.6 is that it allows us to write an s-harmonic function in B_{1} as a weighted integral of classical harmonic functions, where the weight coincide with $\mathcal{E}(x, \rho)$. Besides being interesting in itself, this result is very useful to deduce properties of s-harmonic functions, as the Harnack inequality (see Section 4), starting from their local counterpart.

As a matter of fact, as a consequence of Theorem 1.6 one obtains a new proof of the Harnack inequality for s-harmonic functions in B_{1}. The result goes as follows:

Theorem 1.7 (Harnack inequality). Let $n \geqslant 2, s \in(0,1), R>1$ and u be non negative, s-harmonic in B_{1} and such that $u \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$.

Then, for each $r \in(0,1)$ and $x \in B_{r}$,

$$
\begin{equation*}
\frac{\left(1-r^{2}\right)^{s}}{(1+r)^{n}} u(0) \leqslant u(x) \leqslant \frac{\left(1-r^{2}\right)^{s}}{(1-r)^{n}} u(0) \tag{1.20}
\end{equation*}
$$

The constants in (1.20) are optimal, and for s $\nearrow 1$ they converge to the optimal constants of the classical Harnack inequality in B_{r} for harmonic functions in B_{1}.

For different proofs of the fractional Harnack inequality see $[6,11,12]$ and the references therein.
Another consequence of Theorem 1.4 is the fractional version of Schwarz result:
Theorem 1.8 (fractional Schwarz theorem). Let $n=2, s \in(0,1), R>1$ and $f \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{2} \backslash\right.$ B_{1}). Then, the unique solution (up to a zero measure subset of $\mathbb{R}^{2} \backslash B_{1}$) to the problem

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =0 \text { in } B_{1}, \\
u & =f \text { in } \mathbb{R}^{2} \backslash B_{1}
\end{aligned}\right.
$$

can be written, for each $x \in B_{1}$, as

$$
\begin{equation*}
u_{f}^{(s)}(x):=\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) f_{\rho}\left(Q^{x / \rho}(e)\right) d H_{e}^{1}\right) d \rho \tag{1.21}
\end{equation*}
$$

This is a fractional counterpart of Theorem 1.2, in the sense of Proposition 1.9 below. Proposition 1.9 is a straightforward consequence of Theorems 1.2 and 1.8 and Proposition 1.5.

Proposition 1.9. Let $n=2, s_{0} \in(0,1), R>1$ and $f \in C\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{2} \backslash B_{1}\right)$ for each $s \in\left(s_{0}, 1\right]$. Then, for each $x \in B_{1}$, it holds that

$$
\lim _{s \nearrow 1} u_{f}^{(s)}(x)=u_{f}(x)
$$

where $u_{f}^{(s)}, u_{f}$ are defined in (1.21) and (1.9), respectively.

Remark 1.10. It is worth pointing out that from Theorem 1.4 we can evince the identity

$$
\begin{equation*}
\int_{1}^{\infty} \mathcal{E}(x, \rho) d \rho=\frac{1}{\left|\partial B_{1}\right|}, \tag{1.22}
\end{equation*}
$$

for each $x \in B_{1}$. Indeed, if we consider as external data $f=1$ in $\mathbb{R}^{n} \backslash B_{1}$, then the unique solution to the problem (1.16) is $u=1$ in \mathbb{R}^{n}. Therefore, according to (1.17) and the fact that in this case the linear interpolation $\mathcal{L}_{1, e, \rho}(x)=1$ for each $x \in B_{1}$, we obtain that

$$
1=\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{1, e, \rho}(x) d H_{e}^{n-1}\right) d \rho=\int_{1}^{\infty}\left|\partial B_{1}\right| \mathcal{E}(x, \rho) d \rho
$$

which gives (1.22).
As an application of Theorem 1.8, we have:
Example 1.11. Let $n=2$ and take an $\operatorname{arc} \Sigma \subset \partial B_{1}$. Consider the function defined on $\mathbb{R}^{2} \backslash B_{1}$ as

$$
\tilde{\chi}_{\Sigma}(y):= \begin{cases}1 & \text { if } \frac{y}{|y|} \in \Sigma, \tag{1.23}\\ 0 & \text { if } \frac{y}{|y|} \in \partial B_{1} \backslash \Sigma .\end{cases}
$$

It is clear that $\tilde{\chi}_{\Sigma}$ is positively homogeneous of degree zero, and furthermore $\tilde{\chi}_{\Sigma} \in L^{\infty}\left(\mathbb{R}^{2} \backslash B_{1}\right) \subset$ $L_{s}^{1}\left(\mathbb{R}^{2} \backslash B_{1}\right)$. Then by Theorem 1.8 we get that for each $x \in B_{1}$

$$
\begin{equation*}
u_{\tilde{\chi} \Sigma}^{(s)}(x)=\int_{1}^{\infty} \mathcal{E}(x, \rho)\left|\Sigma_{x / \rho}^{\prime}\right| d \rho \tag{1.24}
\end{equation*}
$$

where $\Sigma_{x / \rho}^{\prime}$ is the projected arc of Σ on ∂B_{1} through the focal point x / ρ, as constructed in Example 1.3. We denoted with $\left|\Sigma_{x / \rho}^{\prime}\right|$ its length.

This gives a simple geometrical procedure to compute the solution of

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =0 \text { in } B_{1}, \\
u & =\tilde{\chi}_{\Sigma} \text { in } \mathbb{R}^{2} \backslash B_{1}
\end{aligned}\right.
$$

at a point x of the two dimensional disc when the non local boundary condition is given by (1.23). Note that as ρ is getting larger, the measure of $\Sigma_{x / \rho}^{\prime}$ reaches the one of Σ, or more precisely

$$
\lim _{\rho \rightarrow \infty}\left|\Sigma_{x / \rho}^{\prime}\right|=|\Sigma| .
$$

If $x=0$, formula (1.24) boils down to

$$
\begin{equation*}
u_{\tilde{X} \Sigma}^{(s)}(0)=c(n, s)|\Sigma| \int_{1}^{\infty} \frac{1}{\rho\left(\rho^{2}-1\right)^{s}} d \rho=\frac{|\Sigma|}{2 \pi} \tag{1.25}
\end{equation*}
$$

where we have applied identity (1.22). This example can be seen as the fractional counterpart of Example 1.3.

This paper is organized as follows. In Section 2 we give some preliminary results on the s-harmonic function written as a convolution with the fractional Poisson kernel.

Section 3 is devoted to the proofs of the fractional Malmheden and Schwarz results, that is Theorems 1.4 and 1.8, and of the convergence result in Proposition 1.5.

In Section 4 we use these results to provide a proof of the well-known Harnack inequality for s harmonic functions under some regularity assumptions on the external datum $f: \mathbb{R}^{n} \backslash B_{1} \rightarrow \mathbb{R}$, that is we prove Theorem 1.7.

2. Preliminary results on the fractional Poisson kernel

In this section, we revisit the well-established result according to which fractional harmonic functions can be represented as an integral of the datum outside the domain against a suitable Poisson kernel. For completeness, we extend this result to the case in which the datum is not necessarily continuous, so to be able to present the results of this paper in a suitable generality. Notice that the extension to functions that are not necessarily continuous is also useful for us to comprise situations as in Example 1.11.

The framework that we consider is the following. For $n \geqslant 2$ and $s \in(0,1)$, we consider the space $L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ as defined in (1.15). Given $f \in L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$, we denote the norm on $L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ by

$$
\|f\|_{L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)}:=\int_{\mathbb{R}^{n} \backslash B_{1} \mid} \frac{|f(x)|}{|x|^{n+2 s}} d x
$$

Furthermore, we define the following fractional Poisson kernel in the unit ball

$$
\begin{equation*}
P(x, y):=c(n, s)\left(\frac{1-|x|^{2}}{|y|^{2}-1}\right)^{s} \frac{1}{|x-y|^{n}} \tag{2.1}
\end{equation*}
$$

for $x \in B_{1}$ and $y \in \mathbb{R}^{n} \backslash B_{1}$, and $c(n, s)$ is the normalizing constant in (1.14).
As customary, the role of the constant $c(n, s)$ is to normalize the Poisson kernel, namely we have that

$$
\begin{equation*}
\int_{\mathbb{R}^{n} \backslash B_{1}} P(x, y) d y=1, \tag{2.2}
\end{equation*}
$$

see e.g., formula (1.14) and Lemma A. 5 in [3].
We also remark that

$$
P(\cdot, y) \in C^{\infty}\left(B_{1}\right)
$$

and, for every $\rho \in(0,1), \alpha \in \mathbb{N}^{n}$ and $y \in \mathbb{R}^{n} \backslash B_{1}$,

$$
\begin{equation*}
\sup _{x \in B_{\rho}}\left|D_{x}^{\alpha} P(x, y)\right| \leqslant \frac{C_{\rho}}{(|y|-1)^{s}|y|^{n+s+|\alpha|}}, \tag{2.3}
\end{equation*}
$$

where $C_{\rho}>0$ depends only on ρ, n and s and, as usual, we have denoted the length of the multi-index α as $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$.

Then, we define

$$
u_{f}^{(s)}(x):=\left\{\begin{array}{cl}
\int_{\mathbb{R}^{n} \backslash B_{1}} P(x, y) f(y) d y & \text { if } x \in B_{1}, \tag{2.4}\\
f(x) & \text { if } x \in \mathbb{R}^{n} \backslash B_{1},
\end{array}\right.
$$

and we have the following result on the representation of s-harmonic functions:
Theorem 2.1. Let $n \geqslant 2, s \in(0,1)$ and $f \in C\left(\mathbb{R}^{n} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$. Then the function in (2.4) is the unique pointwise continuous solution to the problem

$$
\left\{\begin{align*}
(-\Delta)^{s} u_{f}^{(s)} & =0 \text { in } B_{1}, \tag{2.5}\\
u_{f}^{(s)} & =f \text { in } \mathbb{R}^{n} \backslash B_{1} .
\end{align*}\right.
$$

For a proof of Theorem 2.1 see e.g. Theorem 2.10 in [3].
We now generalize Theorem 2.1 by allowing external data that are not necessarily continuous:
Proposition 2.2. Let $n \geqslant 2, s \in(0,1), R>1$ and $f \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$. Then the function defined in (2.4) is the unique solution (up to a zero measure subset of $\mathbb{R}^{n} \backslash B_{1}$) to the problem in (2.5).
Proof. We argue by approximation, owing to Theorem 2.1. The gist is indeed to take a sequence of continuous functions f_{k} approaching f as $k \rightarrow+\infty$, use Theorem 2.1 and then pass to the limit. To implement this idea, one needs to take care of some regularity issues.

The details of this technical argument go as follows. By (2.3), for each $x \in B_{1}$ and multi-index α we have that

$$
D_{x}^{\alpha} P(x, \cdot) f(\cdot) \in L^{1}\left(\mathbb{R}^{n} \backslash \bar{B}_{1}\right)
$$

As a consequence, we obtain that $u_{f}^{(s)}(x)$ in (2.4) is well defined and smooth inside B_{1}.
To complete the proof of Proposition 2.2, we need to show that $u_{f}^{(s)}$, as defined in (2.4), is the unique solution of (2.5). To do so, we start by checking that $u_{f}^{(s)}$ is s-harmonic in B_{1}. We consider a sequence $\left\{f_{k}\right\}_{k} \subset C\left(\mathbb{R}^{n} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$, such that

$$
\begin{equation*}
f_{k} \rightarrow f \text { in } L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right) \text { as } k \rightarrow+\infty . \tag{2.6}
\end{equation*}
$$

More specifically, we take $f_{k}:=\left(\chi_{B_{k}} \tilde{f}\right) * \eta_{\frac{1}{k}}$ with $k \geqslant 2$, where \tilde{f} is defined as

$$
\tilde{f}(x):=\left\{\begin{array}{rll}
f(x) & \text { if } & x \in \mathbb{R}^{n} \backslash B_{1} \\
0 & \text { if } & x \in B_{1}
\end{array}\right.
$$

and $\eta_{\frac{1}{k}}$ is a mollifier of radius $\frac{1}{k}$, while $\chi_{B_{k}}$ is the characteristic function of B_{k}. We also let $u_{f_{k}}^{(s)}$ be the unique pointwise continuous solution to the problem (2.5), according to Theorem 2.1.

Then we have that for each multi-index α

$$
\begin{equation*}
\left\|D^{\alpha} u_{f_{k}}^{(s)}-D^{\alpha} u_{f}^{(s)}\right\|_{L_{\text {loc }}^{\infty}\left(B_{1}\right)} \rightarrow 0 \quad \text { as } k \rightarrow+\infty . \tag{2.7}
\end{equation*}
$$

Indeed for each multi-index α and $g \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ one finds that

$$
D^{\alpha} u_{g}(x)=\int_{\mathbb{R}^{n} \backslash B_{1}} D_{x}^{\alpha} P(x, y) g(y) d y
$$

for each $x \in B_{1}$, and therefore, choosing $R_{0} \in(1, R)$, we see that, for every $x \in B^{\prime}$ with $B^{\prime} \Subset B_{1}$,

$$
\begin{align*}
& \left|D^{\alpha} u_{f_{k}}^{(s)}(x)-D^{\alpha} u_{f}^{(s)}(x)\right| \\
& \quad \leqslant \int_{\mathbb{R}^{n} \backslash B_{R_{0}}}\left|D_{x}^{\alpha} P(x, y)\left\|f_{k}(y)-f(y)\left|d y+\int_{B_{R_{0}} \backslash B_{1}}\right| D_{x}^{\alpha} P(x, y)\right\| f_{k}(y)-f(y)\right| d y \tag{2.8}\\
& \quad \leqslant c \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{\left|f_{k}(y)-f(y)\right|}{|y|^{n+2 s}} d y+\int_{B_{R_{0}} \backslash B_{1}}\left|D_{x}^{\alpha} P(x, y) \| f_{k}(y)-f(y)\right| d y,
\end{align*}
$$

where c is a positive constant depending on α, R_{0}, n, s and B^{\prime}. The first term in the third line in (2.8) converges to zero as $k \rightarrow+\infty$, thanks to (2.6). We also observe that, if $y \in B_{R_{0}} \backslash B_{1}$, then

$$
\left|f_{k}(y)-f(y)\right| \leqslant 2\|f\|_{L^{\infty}\left(B_{\overparen{ }} \backslash B_{1}\right)}
$$

and therefore, by the dominated convergence theorem, we have that also the second term in the third line in (2.8) converges to zero as $k \rightarrow+\infty$. These considerations prove (2.7).

Furthermore note that if $\alpha=0$, taking $R_{0} \in(1, R)$ and using also (2.2), we have that, for all $x \in B_{1}$,

$$
\begin{align*}
\left|u_{f_{k}}^{(s)}(x)\right| & \leqslant \int_{\mathbb{R}^{n} \backslash B_{R_{0}}}\left|P(x, y)\left\|f_{k}(y)\left|d y+\int_{B_{R_{0}} \backslash B_{1}}\right| P(x, y)\right\| f_{k}(y)\right| d y \\
& \leqslant C \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{\left|f_{k}(y)\right|}{|y|^{n+2 s}} d y+\int_{B_{R_{0} \backslash B_{1}}}\left|P(x, y) \| f_{k}(y)\right| d y \tag{2.9}\\
& \leqslant C\left\|f_{k}\right\|_{L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)}+\|f\|_{L^{\infty}\left(B_{R} \backslash B_{1}\right)},
\end{align*}
$$

where C is a positive constant depending on R_{0}, n and s. Now, we observe that the sequence $\left\|f_{k}\right\|_{L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)}$ is uniformly bounded, thanks to (2.6). Accordingly, from (2.9) we see that

$$
\begin{equation*}
u_{f_{k}}^{(s)} \text { is uniformly bounded in } B_{1} \text {. } \tag{2.10}
\end{equation*}
$$

Now, if $x \in B_{1}$, taking $\delta \in(0,1-|x|)$, we have that

$$
\begin{align*}
(-\Delta)^{s} u_{f_{k}}^{(s)}(x)-(-\Delta)^{s} u_{f}^{(s)}(x) & =\int_{\mathbb{R}^{n}} \frac{u_{f_{k}}^{(s)}(x)-u_{f_{k}}^{(s)}(y)-u_{f}^{(s)}(x)+u_{f}^{(s)}(y)}{|x-y|^{n+2 s}} d y \tag{2.11}\\
& =A+B+C+D+E+F,
\end{align*}
$$

where

$$
\begin{aligned}
& A:=\int_{\mathbb{R}^{n} \backslash B_{1}} \frac{u_{f_{k}}^{(s)}(x)-u_{f}^{(s)}(x)}{|x-y|^{n+2 s}} d y, \quad B:=\int_{\mathbb{R}^{n} \backslash B_{1}} \frac{u_{f_{k}}^{(s)}(y)-u_{f}^{(s)}(y)}{|x-y|^{n+2 s}} d y, \\
& C:=\int_{B_{\delta}(x)} \frac{u_{f_{k}}^{(s)}(x)-u_{f_{k}}^{(s)}(y)}{|x-y|^{n+2 s}} d y, \quad D:=\int_{B_{\delta}(x)} \frac{u_{f}^{(s)}(y)-u_{f}^{(s)}(x)}{|x-y|^{n+2 s}} d y \text {, } \\
& E:=\int_{B_{1} \backslash B_{\delta}(x)} \frac{u_{f_{k}}^{(s)}(x)-u_{f}^{(s)}(x)}{|x-y|^{n+2 s}} d y \quad \text { and } \quad F:=\int_{B_{1} \backslash B_{\delta}(x)} \frac{u_{f}^{(s)}(y)-u_{f_{k}}^{(s)}(y)}{|x-y|^{n+2 s}} d y .
\end{aligned}
$$

Notice that

$$
|A+E| \leqslant \int_{\mathbb{R}^{n} \backslash B_{\delta}(x)} \frac{\left|u_{f_{k}}^{(s)}(x)-u_{f}^{(s)}(x)\right|}{|x-y|^{n+2 s}} d y \leqslant\left|u_{f_{k}}^{(s)}(x)-u_{f}^{(s)}(x)\right| \int_{\mathbb{R}^{n} \backslash B_{\delta}} \frac{d z}{|z|^{n+2 s}} \leqslant \frac{C}{\delta^{2 s}}\left|u_{f_{k}}^{(s)}(x)-u_{f}^{(s)}(x)\right|,
$$

which converges to zero as $k \rightarrow+\infty$, thanks to (2.7).
Furthermore, we observe that if $y \in \mathbb{R}^{n} \backslash B_{1}$ then

$$
|x-y| \geqslant|y|-|x|=\delta|y|+(1-\delta)|y|-|x| \geqslant \delta|y|+1-\delta-|x| \geqslant \delta|y|,
$$

and thus

$$
|B| \leqslant \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{\left|f_{k}(y)-f(y)\right|}{|x-y|^{n+2 s}} d y \leqslant \frac{1}{\delta^{n+2 s}} \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{\left|f_{k}(y)-f(y)\right|}{|y|^{n+2 s}} d y
$$

which, in light of (2.6), converges to zero as $k \rightarrow+\infty$.

Moreover, from (2.7) and the dominated convergence theorem, we see that the quantity $C+D$ converges to zero as $k \rightarrow+\infty$.

Finally, recalling (2.10) and making again use of the dominated convergence theorem, we have that F converges to zero as $k \rightarrow+\infty$.

These considerations and (2.11) give that $(-\Delta)^{s} u_{f_{k}}^{(s)}(x)$ converges to $(-\Delta)^{s} u_{f}^{(s)}(x)$ as $k \rightarrow+\infty$ for every $x \in B_{1}$. Since, by Theorem 2.1 , we know that $(-\Delta)^{s} u_{f_{k}}^{(s)}(x)=0$ for each $x \in B_{1}$, we conclude that $(-\Delta)^{s} u_{f}^{(s)}(x)=0$. This proves that $u_{f}^{(s)}$ solves (2.5).

It is only left to show the uniqueness statement. Suppose that there exists $u_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ satisfying

$$
\left\{\begin{aligned}
(-\Delta)^{s} u_{1} & =0 \text { in } B_{1}, \\
u_{1} & =f \text { in } \mathbb{R}^{n} \backslash B_{1} .
\end{aligned}\right.
$$

Then both $v:=u_{f}^{(s)}-u_{1}$ and $-v=u_{1}-u_{f}^{(s)}$ are solutions to

$$
\left\{\begin{aligned}
(-\Delta)^{s} u & =0 \text { in } B_{1}, \\
u & =0 \text { in } \mathbb{R}^{n} \backslash B_{1},
\end{aligned}\right.
$$

and therefore by the maximum principle for the fractional Laplacian (see e.g., Theorem 2.3.2. in [5]) we have that $v=0$ in B_{1}, leading to uniqueness.

3. Proof of the fractional Malmheden and Schwarz theorems

In this section we provide the proofs of the fractional Malmheden and Schwarz results, as stated in Theorems 1.4 and 1.8, and of the convergence result in Proposition 1.5.

We start with the main argument to prove Theorem 1.4. For this, we employ the following change of variable result (see Lemma 2.13.3 in [8] for the proof of it):

Lemma 3.1. Let $n \geqslant 2, x \in B_{1}$ and $Q_{ \pm}^{x}$ and $r_{ \pm}^{x}$ be defined as in (1.2) and (1.3), respectively. Then for each $e \in \partial B_{1}$ it holds that

$$
\left|\operatorname{det} D Q_{ \pm}^{x}(e)\right|=\frac{\left(\pm r_{ \pm}^{x}(e)\right)^{n}}{1-|x|^{2}-r_{ \pm}^{x}(e) x \cdot e},
$$

and for each continuous $f: \partial B_{1} \rightarrow \mathbb{R}$ we have that

$$
\int_{\partial B_{1}} f(e) d H_{e}^{n-1}=\int_{\partial B_{1}} f\left(Q_{ \pm}^{x}(e)\right) \frac{\left(\pm r_{ \pm}^{x}(e)\right)^{n}}{1-|x|^{2}-r_{ \pm}^{x}(e) x \cdot e} d H_{e}^{n-1}
$$

With this notation, Theorem 1.4 will be a consequence of the following statement.
Theorem 3.2. Let $n \geqslant 2$, $s \in(0,1), R>1$ and $f \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$. Let $u_{f}^{(s)}$ be as in (2.4). Then, for each $x \in B_{1}$,

$$
\begin{equation*}
u_{f}^{(s)}(x)=\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}\right) d \rho \tag{3.1}
\end{equation*}
$$

where the notation in (1.12) and (1.13) has been used.
Furthermore, if f is positively homogeneous of degree γ for some $\gamma \geqslant 0$, then we have that

$$
\begin{equation*}
u_{f}^{(s)}(x)=\int_{1}^{\infty}\left(\int_{\partial B_{1}} \rho^{\gamma} \mathcal{E}(x, \rho) \mathcal{L}_{f, e, 1}\left(\frac{x}{\rho}\right) d H_{e}^{n-1}\right) d \rho \tag{3.2}
\end{equation*}
$$

Proof. We first suppose that $f \in C\left(\mathbb{R}^{n} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$. Let $x \in B_{1}$, then, using polar coordinates, from (2.1) and (2.4) we get that

$$
\begin{align*}
u_{f}^{(s)}(x) & =\int_{\mathbb{R}^{n} \backslash B_{1}} P(x, y) f(y) d y \\
& =c(n, s)\left(1-|x|^{2}\right)^{s} \int_{\mathbb{R}^{n} \mid B_{1}} \frac{1}{\left(|y|^{2}-1\right)^{s}} \frac{f(y)}{|x-y|^{n}} d y \\
& =c(n, s)\left(1-|x|^{2}\right)^{s} \int_{1}^{\infty} \frac{1}{\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{\rho}} \frac{f(\omega)}{|x-\omega|^{n}} d H_{\omega}^{n-1}\right) d \rho \\
& =c(n, s)\left(1-|x|^{2}\right)^{s} \int_{1}^{\infty} \frac{\rho^{n-1}}{\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} \frac{f(\rho e)}{|x-\rho e|^{n}} d H_{e}^{n-1}\right) d \rho \tag{3.3}\\
& =c(n, s)\left(1-|x|^{2}\right)^{s} \int_{1}^{\infty} \frac{1}{\rho\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} \frac{f(\rho e)}{\left|\frac{x}{\rho}-e\right|^{n}} d H_{e}^{n-1}\right) d \rho \\
& =c(n, s)\left(1-|x|^{2}\right)^{s} \int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} \frac{f(\rho e)}{\left|\frac{x}{\rho}-e\right|^{n}}\left(1-\frac{|x|^{2}}{\rho^{2}}\right) d H_{e}^{n-1}\right) d \rho \\
& =: \mathcal{J} .
\end{align*}
$$

Hence, defining

$$
g(e):=\frac{f(\rho e)}{\left|\frac{x}{\rho}-e\right|^{n}}\left(1-\frac{|x|^{2}}{\rho^{2}}\right)
$$

and applying Lemma 3.1 we obtain that

$$
\begin{align*}
& \frac{\mathcal{J}}{c(n, s)\left(1-|x|^{2}\right)^{s}} \\
& =\int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} g(e) d H_{e}^{n-1}\right) d \rho \\
& =\int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} g\left(Q_{-}^{x / \rho}(e)\right) \frac{\left(-r_{-}^{x / \rho}(e)\right)^{n}}{1-|x / \rho|^{2}-(x / \rho \cdot e) r_{-}^{x / \rho}(e)} d H_{e}^{n-1}\right) d \rho \tag{3.4}\\
& =\int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} \frac{f\left(\rho Q_{-}^{x / \rho}(e)\right)}{\left|\frac{x}{\rho}-Q_{-}^{x / \rho}(e)\right|^{n}} \frac{\left(1-|x / \rho|^{2}\right)\left(-r_{-}^{x / \rho}(e)\right)^{n}}{1-|x / \rho|^{2}-(x / \rho \cdot e) r_{-}^{x / \rho}(e)} d H_{e}^{n-1}\right) d \rho .
\end{align*}
$$

From Eqs (1.2) and (1.3) we deduce that

$$
\left|\frac{x}{\rho}-Q_{-}^{x / \rho}(e)\right|=\left|r_{-}^{x / \rho}(e)\right|=-r_{-}^{x / \rho}(e),
$$

and also (see formula (2.13.25) in [8])

$$
\frac{1-|x / \rho|^{2}}{1-|x / \rho|^{2}-(x / \rho \cdot e) r_{-}^{x / \rho}(e)}=\frac{2 r_{+}^{x / \rho}(e)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)}
$$

which, together with (3.4), gives that

$$
\begin{equation*}
\mathcal{J}=c(n, s)\left(1-|x|^{2}\right)^{s} \int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} \frac{2 r_{+}^{x / \rho}(e) f\left(\rho Q_{-}^{x / \rho}(e)\right)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)} d H_{e}^{n-1}\right) d \rho . \tag{3.5}
\end{equation*}
$$

We now observe that

$$
\begin{align*}
& \int_{\partial B_{1}} \frac{2 r_{+}^{x / \rho}(e) f\left(\rho Q_{-}^{x / \rho}(e)\right)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)} d H_{e}^{n-1} \\
= & \int_{\partial B_{1}} \frac{r_{+}^{x / \rho}(e) f\left(\rho Q_{-}^{x / \rho}(e)\right)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)} d H_{e}^{n-1}-\int_{\partial B_{1}} \frac{\left.r_{-}^{x / \rho}(e) f\left(\rho Q_{+}^{x / \rho}(e)\right)\right)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)} d H_{e}^{n-1} \tag{3.6}\\
= & \int_{\partial B_{1}} \frac{r_{+}^{x / \rho}(e) f\left(\rho Q_{-}^{x / \rho}(e)\right)-r_{-}^{x / \rho}(e) f\left(\rho Q_{+}^{x \rho}(e)\right)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)} d H_{e}^{n-1} .
\end{align*}
$$

From (1.2), (1.3), (1.11) and (1.12) we also deduce that

$$
\begin{aligned}
& \frac{r_{+}^{x / \rho}(e) f\left(\rho Q_{-}^{x / \rho}(e)\right)-r_{-}^{x / \rho}(e) f\left(\rho Q_{+}^{x / \rho}(e)\right)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)} \\
= & \frac{r_{+}^{x / \rho}(e) f_{\rho}\left(Q_{-}^{x / \rho}(e)\right)-r_{-}^{x / \rho}(e) f_{\rho}\left(Q_{+}^{x / \rho}(e)\right)}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} \\
= & \frac{\left(Q_{+}^{x / \rho}(e)-\frac{x}{\rho}\right) \cdot e f_{\rho}\left(Q_{-}^{x \rho}(e)\right)+\left(\frac{x}{\rho}-Q_{-}^{x / \rho}(e)\right) \cdot e f_{\rho}\left(Q_{+}^{x / \rho}(e)\right)}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} \\
= & \mathcal{L}_{f_{\rho}}^{Q_{\rho}^{x / \rho}(e), Q_{+}^{x / \rho}(e)}\left(\frac{x}{\rho}\right) \\
= & \mathcal{L}_{f, e, \rho}(x) .
\end{aligned}
$$

Plugging this information into (3.6) we find that

$$
\int_{\partial B_{1}} \frac{2 r_{+}^{x / \rho}(e) f\left(\rho Q_{-}^{x / \rho}(e)\right)}{r_{+}^{x / \rho}(e)-r_{-}^{x / \rho}(e)} d H_{e}^{n-1}=\int_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1},
$$

which in turn, together with (3.5), gives that

$$
\mathcal{J}=c(n, s)\left(1-|x|^{2}\right)^{s} \int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}\right) d \rho .
$$

Thus, recalling (1.13), this and (3.3) establish the desired result in (3.1) under the additional assumption that f is continuous in $\mathbb{R}^{n} \backslash B_{1}$.

Now we remove the continuity assumption on f by an approximation argument. Given $f \in L^{\infty}\left(B_{R} \backslash\right.$ $\left.B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$, we consider a sequence of functions $\left\{f_{k}\right\}_{k} \subset C\left(\mathbb{R}^{n} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ as in (2.6) and we let $u_{f_{k}}^{(s)}$ be the unique pointwise continuous solution to the problem (2.5), according to Theorem 2.1.

Вy (2.7),

$$
\begin{equation*}
\left\|u_{f_{k}}^{(s)}-u_{f}^{(s)}\right\|_{L_{\text {loc }}^{\infty}\left(B_{1}\right)} \rightarrow 0 \tag{3.7}
\end{equation*}
$$

Therefore we have that, for each $x \in B_{1}$,

$$
u_{f}^{(s)}(x)=\lim _{k \rightarrow \infty} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f_{k}, e, \rho}(x) d H_{e}^{n-1}\right) d \rho
$$

From this, we claim that there exists a subsequence $\left\{f_{k_{j}}\right\}_{j}$, such that

$$
\begin{align*}
u_{f}^{(s)}(x) & =\lim _{j \rightarrow \infty} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f_{k}, e, \rho}(x) d H_{e}^{n-1}\right) d \rho \\
& =\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}\right) d \rho \tag{3.8}
\end{align*}
$$

For the convenience of the reader, the technical proof of (3.8) can be found in Appendix A.2.
The claim in (3.8) establishes the desired result in (3.1) also for non continuous functions.
To prove the claim in (3.2), we use (1.1) and (1.12) to see that

$$
\begin{aligned}
\mathcal{L}_{f, e, \rho}(x) & =\mathcal{L}_{f_{\rho}}^{Q_{-}^{x / \rho}(e), Q_{+}^{x / \rho}(e)}\left(\frac{x}{\rho}\right) \\
& =\frac{\left(\frac{x}{\rho}-Q_{-}^{x / \rho}(e)\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} f_{\rho}\left(Q_{+}^{x / \rho}(e)\right)+\frac{\left(Q_{+}^{x / \rho}(e)-\frac{x}{\rho}\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} f_{\rho}\left(Q_{-}^{x / \rho}(e)\right) \\
& =\frac{\left(\frac{x}{\rho}-Q_{-}^{x / \rho}(e)\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} f\left(\rho Q_{+}^{x / \rho}(e)\right)+\frac{\left(Q_{+}^{x / \rho}(e)-\frac{x}{\rho}\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} f\left(\rho Q_{-}^{x / \rho}(e)\right) \\
& =\rho^{\gamma}\left[\frac{\left(\frac{x}{\rho}-Q_{-}^{x / \rho}(e)\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} f\left(Q_{+}^{x / \rho}(e)\right)+\frac{\left(Q_{+}^{x / \rho}(e)-\frac{x}{\rho}\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|} f\left(Q_{-}^{x / \rho}(e)\right)\right] \\
& =\rho^{\gamma} \mathcal{L}_{f}^{Q_{-}^{x / \rho}(e), Q_{+}^{x / \rho}(e)}\left(\frac{x}{\rho}\right) \\
& =\rho^{\gamma} \mathcal{L}_{f, e, 1}\left(\frac{x}{\rho}\right) .
\end{aligned}
$$

The claim in (3.2) then follows from this and (3.1). This concludes the proof of Theorem 3.2.
Proof of Theorem 1.4. From Proposition 2.2, we know that, under the hypotheses of Theorem 1.4, the function defined in (2.4) is the unique solution (up to a zero measure subset of $\mathbb{R}^{n} \backslash B_{1}$) to the problem (1.16). Then, the desired result in Theorem 1.4 follows from this and Theorem 3.2.

We now give the proof of the Schwarz result in Theorem 1.8.
Proof of Theorem 1.8. We first suppose that $f \in C\left(\mathbb{R}^{2} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{2} \backslash B_{1}\right)$. Under these assumptions we can apply Theorem 1.6 in dimension 2 and get

$$
u_{f}^{(s)}(x)=2 \pi \int_{1}^{\infty} \mathcal{E}(x, \rho) \tilde{u}_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho,
$$

where $\tilde{u}_{f_{\rho}}$ has been defined in the statement of Theorem 1.6. Therefore, when $n=2$ we can apply Theorem 1.2 to $\tilde{u}_{f_{p}}$ and get

$$
\tilde{u}_{f_{\rho}}\left(\frac{x}{\rho}\right)=\frac{1}{2 \pi} \int_{\partial B_{1}} f_{\rho}\left(Q^{x / \rho}(e)\right) d H_{e}^{n-1}
$$

which leads to (1.21) in the case in which $f \in C\left(\mathbb{R}^{2} \backslash B_{1}\right)$.
Suppose now that $f \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{2} \backslash B_{1}\right)$, and consider a sequence of functions $\left\{f_{k}\right\}_{k} \subset$ $C\left(\mathbb{R}^{2} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{2} \backslash B_{1}\right)$ as in (2.6). We let $u_{f_{k}}^{(s)}$ be the unique pointwise continuous solution to the problem (2.5), according to Theorem 2.1. From the previous step, we have that, for each $x \in B_{1}$,

$$
u_{f_{k}}^{(s)}(x)=\int_{1}^{\infty} \mathcal{E}(x, \rho)\left(\int_{\partial B_{1}} f_{k}\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho
$$

By this and (3.7), we have that, for each $x \in B_{1}$,

$$
u_{f}^{(s)}(x)=\lim _{k \rightarrow \infty} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) f_{k}\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho
$$

From this, one sees that there exists a subsequence $\left\{f_{k_{j}}\right\}_{j}$ such that

$$
\begin{align*}
u_{f}^{(s)}(x) & =\lim _{j \rightarrow \infty} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) f_{k_{j}}\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho \tag{3.9}\\
& =\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) f\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho
\end{align*}
$$

For the facility of the reader, a detailed proof of (3.9) is given in Appendix A.3.
We observe that the proof of Theorem 1.8 is completed, thanks to (3.9).
We now deal with the convergence result in Proposition 1.5.
Proof of Proposition 1.5. Let $f \in C\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$, for each $s \in\left(s_{0}, 1\right]$. Furthermore let $u_{f}^{(s)}$ and u_{f} as in the statement of Proposition 1.5. Then, Theorem 1.1 implies that the following identity holds for each $\rho \in(1, R)$

$$
\begin{equation*}
u_{f_{\rho}}\left(\frac{x}{\rho}\right)=f_{\partial B_{1}} \mathcal{L}_{f_{\rho}}^{\mathcal{X}_{\rho}^{x / \rho}(e), Q_{+}^{X / \rho}(e)}\left(\frac{x}{\rho}\right) d H_{e}^{n-1}=f_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}, \tag{3.10}
\end{equation*}
$$

thanks to (1.12), where $u_{f_{p}}$ is the unique solution to the classical Dirichlet problem (1.18).
In particular, we have that

$$
\begin{equation*}
u_{f}\left(\frac{x}{\rho}\right)=f_{\partial B_{1}} \mathcal{L}_{f}^{Q_{-}^{x / \rho}(e), Q_{+}^{x / \rho}(e)}\left(\frac{x}{\rho}\right) d H_{e}^{n-1}=f_{\partial B_{1}} \mathcal{L}_{f, e, 1}\left(\frac{x}{\rho}\right) d H_{e}^{n-1} . \tag{3.11}
\end{equation*}
$$

Now, using (1.17), (1.22) and (3.10) we obtain for each $x \in B_{1}$ and $R_{0} \in(1, R)$ the following identity

$$
\begin{align*}
& u_{f}^{(s)}(x)-u_{f}(x) \\
= & \int_{1}^{\infty}\left|\partial B_{1}\right| \mathcal{E}(x, \rho)\left(f_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}-u_{f}(x)\right) d \rho \\
= & \int_{1}^{R_{0}}\left|\partial B_{1}\right| \mathcal{E}(x, \rho)\left(u_{f_{\rho}}\left(\frac{x}{\rho}\right)-u_{f}(x)\right) d \rho \tag{3.12}\\
& \quad+\int_{R_{0}}^{\infty}\left|\partial B_{1}\right| \mathcal{E}(x, \rho)\left(f_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}-u_{f}(x)\right) d \rho .
\end{align*}
$$

By the continuity of u_{f} and f, we have that for each $\delta>0$ there exists some $R_{0} \in(1, R)$ such that for each $\rho \in\left(1, R_{0}\right)$

$$
\begin{align*}
& \quad\left|u_{f}\left(\frac{x}{\rho}\right)-u_{f}(x)\right| \leqslant \delta \quad \text { for all } x \in B_{1} \tag{3.13}\\
& \text { and } \quad\left\|f_{\rho}-f\right\|_{L^{\infty}\left(\partial B_{1}\right)} \leqslant \delta
\end{align*}
$$

Also, we point out that

$$
\mathcal{L}_{f, e, 1}\left(\frac{x}{\rho}\right)=\mathcal{L}_{f_{\rho}}^{Q^{x / \rho}(e), Q_{+}^{x / \rho}(e)}\left(\frac{x}{\rho}\right)=\mathcal{L}_{f, e, \rho}(x),
$$

thanks to (1.12).
Therefore, from this, (3.10), (3.11), and (3.13), for all $x \in B_{1}$, we deduce that, if $\rho \in\left(1, R_{0}\right)$,

$$
\begin{align*}
\left|u_{f_{\rho}}\left(\frac{x}{\rho}\right)-u_{f}(x)\right| & \leqslant\left|u_{f_{\rho}}\left(\frac{x}{\rho}\right)-u_{f}\left(\frac{x}{\rho}\right)\right|+\left|u_{f}\left(\frac{x}{\rho}\right)-u_{f}(x)\right| \\
& =\left|f_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x)-\mathcal{L}_{f, e, 1}\left(\frac{x}{\rho}\right) d H_{e}^{n-1}\right|+\left|u_{f}\left(\frac{x}{\rho}\right)-u_{f}(x)\right| \tag{3.14}\\
& =\left|f_{\partial B_{1}} \mathcal{L}_{f_{\rho}-f, e, 1}\left(\frac{x}{\rho}\right) d H_{e}^{n-1}\right|+\left|u_{f}\left(\frac{x}{\rho}\right)-u_{f}(x)\right| \\
& \leqslant f_{\partial B_{1}}\left|\mathcal{L}_{f_{\rho}-f, e, 1}\left(\frac{x}{\rho}\right)\right| d H_{e}^{n-1}+\delta .
\end{align*}
$$

Now, if $x \in B_{1}$ and $\rho \in\left(1, R_{0}\right)$, we see that

$$
\begin{align*}
\mid Q_{+}^{x / \rho}(e)- & Q_{-}^{x / \rho}(e) \left\lvert\,=2 \sqrt{\left(\frac{x}{\rho} \cdot e\right)^{2}-\frac{|x|^{2}}{\rho^{2}}+1} \geqslant 2 \sqrt{1-\frac{|x|^{2}}{\rho^{2}}}\right. \tag{3.15}\\
& =\frac{2}{\rho} \sqrt{\rho^{2}-|x|^{2}} \geqslant \frac{2}{R_{0}} \sqrt{1-|x|^{2}}
\end{align*}
$$

and thus, according to (1.1),

$$
\begin{align*}
& \left|\mathcal{L}_{f_{\rho}-f, e, 1}\left(\frac{x}{\rho}\right)\right| \\
= & \left|\frac{\left(\frac{x}{\rho}-Q_{-}^{x / \rho}(e)\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|}\left(f_{\rho}-f\right)\left(Q_{+}^{x / \rho}(e)\right)+\frac{\left(Q_{+}^{x / \rho}(e)-\frac{x}{\rho}\right) \cdot e}{\left|Q_{+}^{x / \rho}(e)-Q_{-}^{x / \rho}(e)\right|}\left(f_{\rho}-f\right)\left(Q_{-}^{x / \rho}(e)\right)\right| \tag{3.16}\\
\leqslant & 4 \frac{R_{0}}{2 \sqrt{1-|x|^{2}}}\left\|f_{\rho}-f\right\|_{L^{\infty}\left(\partial B_{1}\right)} \\
\leqslant & \frac{2 R_{0} \delta}{\sqrt{1-|x|^{2}}}
\end{align*}
$$

and therefore, plugging this information into (3.14), we obtain that, if $x \in B_{1}$ and $\rho \in\left(1, R_{0}\right)$,

$$
\begin{equation*}
\left|u_{f_{\rho}}\left(\frac{x}{\rho}\right)-u_{f}(x)\right| \leqslant\left(\frac{2 R_{0}}{\sqrt{1-|x|^{2}}}+1\right) \delta . \tag{3.17}
\end{equation*}
$$

Furthermore, employing the change of variable $e:=\omega /|\omega|$ and recalling (1.13),

$$
\begin{align*}
& \int_{R_{0}}^{\infty} \mathcal{E}(x, \rho)\left(\int_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}-\left|\partial B_{1}\right| u_{f}(x)\right) d \rho \\
= & \int_{R_{0}}^{\infty} \frac{\mathcal{E}(x, \rho)}{\rho^{n-1}}\left(\int_{\partial B_{\rho}} \mathcal{L}_{f, \omega| | \omega|,|\omega|}(x) d H_{\omega}^{n-1}-\left|\partial B_{1}\right| u_{f}(x)\right) d \rho \tag{3.18}\\
= & c(n, s)\left(1-|x|^{2}\right)^{s} \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{|y|^{2}}{} \frac{\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)|y|^{n}}{}\left(\mathcal{L}_{f, y| | y|,|y|}(x)-\left|\partial B_{1}\right| u_{f}(x)\right) d y .
\end{align*}
$$

We also deduce from (1.1) the following pointwise estimate

$$
\begin{align*}
& \left|\mathcal{L}_{f, y /|y||y|}(x)\right| \\
= & \left|\frac{\left(\frac{x}{|y|}-Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right) \cdot \frac{y}{|y|}}{\left|Q_{+}^{x /|y|}\left(\frac{y}{|y|}\right)-Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right|} f_{|y|}\left(Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right)+\frac{\left(Q_{+}^{x /|y|}\left(\frac{y}{|y|}\right)-\frac{x}{|y|}\right) \cdot \frac{y}{|y|}}{\left|Q_{+}^{x|y|}\left(\frac{y}{|y|}\right)-Q_{-}^{x|y|}\left(\frac{y}{|y|}\right)\right|} f_{|y|}\left(Q_{-}^{x|y|}\left(\frac{y}{|y|}\right)\right)\right| \tag{3.19}\\
& \left.\left.\leqslant \frac{1}{\sqrt{1-|x|^{2}}}\left(\left|f_{|y|}\left(Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right)\right|+\left\lvert\, f_{|y|}\left(Q_{+}^{x /|y|}\left(\frac{y}{|y|}\right)\right)\right.\right) \right\rvert\,\right) .
\end{align*}
$$

We claim that

$$
\begin{equation*}
\text { the right hand side in (3.19) is } L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right) \text { for each } s \in\left(s_{0}, 1\right] . \tag{3.20}
\end{equation*}
$$

Indeed, if we define the following function

$$
\begin{align*}
F_{ \pm}: \mathbb{R}^{n} \backslash B_{1} & \rightarrow \mathbb{R}^{n} \backslash B_{1} \\
y & \mapsto|y| Q_{ \pm}^{x /|y|}(y /|y|), \tag{3.21}
\end{align*}
$$

we see that it is C^{1} and invertible. Note that, recalling also the limits in (1.4), one finds that

$$
\begin{equation*}
\| \operatorname{det}\left(D F_{ \pm}^{-1}(z) \|_{L^{\infty}\left(\mathbb{R}^{n} \backslash B_{1}\right)} \leqslant C,\right. \tag{3.22}
\end{equation*}
$$

for some positive constant C, depending on x. Therefore by applying Theorem 2 in Section 3.3.3 of [10], we obtain that

$$
\begin{align*}
& \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{\left|f_{|y|}\left(Q_{ \pm}^{x|y|}(y /|y|)\right)\right|}{|y|^{n+2 s}} d y=\int_{\mathbb{R}^{n} \backslash B_{1}} \frac{\mid f_{|y|}\left(Q_{ \pm}^{x / y \mid}(y /|y|) \mid\right.}{| | y\left|Q_{ \pm}^{x|y|}(y /|y|)\right|^{n+2 s}} d y \tag{3.23}\\
&=\int_{\mathbb{R}^{n} \backslash B_{1}} \frac{|f(z)|}{|z|^{n+2 s}}\left|\operatorname{det}\left(D F_{ \pm}^{-1}(z)\right)\right| d z \leqslant C \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{|f(z)|}{|z|^{n+2 s}} d z .
\end{align*}
$$

This and the fact that $f \in L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ for each $s \in\left(s_{0}, 1\right]$ entail that (3.20) holds true.
As a consequence of (3.19) and (3.20) we have that the integrals in (3.18) are finite and bounded in s.

Using this information and (3.17), we deduce from (3.12) that for each $\delta>0$ there exists some $R_{0} \in$ $(1, R)$ such that for each $\rho \in\left(1, R_{0}\right)$ we have

$$
\begin{aligned}
& \left|u_{f}^{(s)}(x)-u_{f}(x)\right| \\
& \leqslant \int_{1}^{R_{0}}\left|\partial B_{1}\right| \mathcal{E}(x, \rho)\left|u_{f_{\rho}}\left(\frac{x}{\rho}\right)-u_{f}(x)\right| d \rho \\
& +\left|\int_{R_{0}}^{\infty}\right| \partial B_{1}\left|\mathcal{E}(x, \rho)\left(f_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}-u_{f}(x)\right) d \rho\right| \\
& \leqslant \int_{1}^{R_{0}}\left|\partial B_{1}\right| \mathcal{E}(x, \rho)\left(\frac{2 R_{0}}{\sqrt{1-|x|^{2}}}+1\right) \delta d \rho \\
& +\left|\int_{R_{0}}^{\infty}\right| \partial B_{1}\left|\mathcal{E}(x, \rho)\left(f_{\partial B_{1}} \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1}-u_{f}(x)\right) d \rho\right| \\
& \leqslant C(x, R) \delta+c(n, s)\left(1-|x|^{2}\right)^{s} \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{|y|^{2}}{\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)|y|^{n}}\left(\mathcal{L}_{f, y /|y|,|y|}(x)-\left|\partial B_{1}\right| u_{f}(x)\right) d y \\
& \leqslant C(x, R) \delta+c(n, s)\left(1-|x|^{2}\right)^{s} \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{|y|^{2}}{\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)|y|^{n}} \\
& \left.\times\left(\left.\frac{1}{\sqrt{1-|x|^{2}}}\left(\left|f_{|y|}\left(Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right)\right|+\left\lvert\, f_{|y|}\left(Q_{+}^{x /|y|}\left(\frac{y}{|y|}\right)\right)\right.\right) \right\rvert\,\right)-\left|\partial B_{1}\right| u_{f}(x)\right) d y
\end{aligned}
$$

where $C\left(x, R_{0}\right)$ depends only on x and R_{0}.
By taking the limit as $s \nearrow 1$, we see that

$$
\begin{aligned}
& \lim _{s>1} c(n, s)\left(1-|x|^{2}\right)^{s} \int_{\mathbb{R}^{n} \mid B_{R_{0}}} \frac{|y|^{2}}{\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)|y|^{n}} \\
& \quad \times\left(\frac{1}{\sqrt{1-|x|^{2}}}\left(\left|f_{|y|}\left(Q_{-}^{x|y|}\left(\frac{y}{|y|}\right)\right)\right|+\left|f_{|y|}\left(Q_{+}^{x / y \mid}\left(\frac{y}{|y|}\right)\right)\right|\right)-\left|\partial B_{1}\right| u_{f}(x)\right) d y=0
\end{aligned}
$$

since $c(n, s) \rightarrow 0$ for $s \nearrow 1$ by (1.14). As a consequence

$$
\lim _{s \nearrow 1}\left|u_{f}^{(s)}(x)-u_{f}(x)\right| \leqslant C(x, R) \delta .
$$

This and the arbitrariness of δ give the desired claim in Proposition 1.5.

4. Harnack inequality

In this section we provide a new proof of the Harnack inequality for s-harmonic functions as stated in Theorem 1.7. Our strategy is to use the Fractional Malmheden Theorem to show that this result can be directly inferred from the classical Harnack inequality for harmonic functions.

Proof of Theorem 1.7. For convenience we call $\left.u\right|_{\mathbb{R}^{n} \backslash B_{1}}=f$. Let us first assume that $f \in C\left(\mathbb{R}^{n} \backslash B_{1}\right) \cap$ $L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$. Under this assumption, we can apply Theorem 1.6 and obtain that

$$
u(x)=\left|\partial B_{1}\right| \int_{1}^{\infty} \mathcal{E}(x, \rho) u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho,
$$

for each $x \in B_{1}$, where $u_{f_{\rho}}$ has been defined in the statement of Theorem 1.6. Therefore, we have that

$$
\begin{equation*}
u(0)=c(n, s)\left|\partial B_{1}\right| \int_{1}^{\infty} \frac{u_{f_{\rho}}(0)}{\rho\left(\rho^{2}-1\right)^{s}} d \rho \tag{4.1}
\end{equation*}
$$

Now we fix $r \in(0,1)$ and we consider $x \in B_{r}$. Applying the Harnack inequality for classical harmonic functions to $u_{f_{\rho}}$, we have that

$$
u_{f_{\rho}}(0) \leqslant \frac{(1+|x| / \rho)^{n-1}}{1-|x| / \rho} u_{f \rho}\left(\frac{x}{\rho}\right) .
$$

From this, (1.13) and (4.1) we obtain that

$$
\begin{align*}
u(0) & \leqslant c(n, s)\left|\partial B_{1}\right| \int_{1}^{\infty} \frac{1}{\rho\left(\rho^{2}-1\right)^{s}} \frac{(1+|x| / \rho)^{n-1}}{1-|x| / \rho} u_{f \rho}\left(\frac{x}{\rho}\right) d \rho \\
& =\left|\partial B_{1}\right| \int_{1}^{\infty} \mathcal{E}(x, \rho) \frac{\left(\rho^{2}-|x|^{2}\right)}{\rho^{2}\left(1-|x|^{2}\right)^{s}} \frac{(\rho+|x|)^{n-1}}{\rho^{n-2}(\rho-|x|)} u_{f \rho}\left(\frac{x}{\rho}\right) d \rho \\
& =\left|\partial B_{1}\right| \int_{1}^{\infty} \mathcal{E}(x, \rho) \frac{(\rho+|x|)^{n}}{\rho^{n}\left(1-|x|^{2}\right)^{s}} u_{f \rho}\left(\frac{x}{\rho}\right) d \rho \tag{4.2}\\
& =\left|\partial B_{1}\right| \int_{1}^{\infty} \mathcal{E}(x, \rho) g(\rho, t) u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho,
\end{align*}
$$

where for convenience we have called $t:=|x|$ in the last line and defined

$$
g(\rho, t):=\frac{(\rho+t)^{n}}{\rho^{n}\left(1-t^{2}\right)^{s}},
$$

with $(\rho, t) \in[1, \infty) \times[0, r]$.
Since $g(\rho, t)$ is decreasing in ρ and increasing in t, we have that

$$
\frac{(1+r)^{n}}{\left(1-r^{2}\right)^{s}}=\sup _{(\rho, t) \in[1, \infty) \times[0, r]} g(\rho, t)
$$

Therefore, from this, (1.19) and (4.2) we obtain that

$$
u(0) \leqslant\left|\partial B_{1}\right| \frac{(1+r)^{n}}{\left(1-r^{2}\right)^{s}} \int_{1}^{\infty} \mathcal{E}(x, \rho) u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho=\frac{(1+r)^{n}}{\left(1-r^{2}\right)^{s}} u(x),
$$

which establishes the first inequality in (1.20).
To prove the second inequality in (1.20), we make use of the Harnack inequality for harmonic functions, thus obtaining that

$$
u_{f_{\rho}}\left(\frac{x}{\rho}\right) \leqslant \frac{1+|x| / \rho}{(1-|x| / \rho)^{n-1}} u_{f_{\rho}}(0) .
$$

Using this and (1.13) into (4.1), we find that

$$
u(0)=c(n, s)\left|\partial B_{1}\right| \int_{1}^{\infty} \frac{u_{f_{\rho}}(0)}{\rho\left(\rho^{2}-1\right)^{s}} d \rho
$$

$$
\begin{aligned}
& \geqslant c(n, s)\left|\partial B_{1}\right| \int_{1}^{\infty} \frac{1}{\rho\left(\rho^{2}-1\right)^{s}} \frac{(1-|x| / \rho)^{n-1}}{1+|x| / \rho} u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho \\
& =c(n, s)\left|\partial B_{1}\right| \int_{1}^{\infty} \frac{(\rho-|x|)^{n-1}}{\rho^{n-1}\left(\rho^{2}-1\right)^{s}(\rho+|x|)} u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho \\
& =\left|\partial B_{1}\right| \int_{1}^{\infty} \mathcal{E}(x, \rho) \frac{(\rho-|x|)^{n}}{\rho^{n}\left(1-|x|^{2}\right)^{s}} u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho .
\end{aligned}
$$

Using again the notation $t:=|x|$, we define the following function

$$
\begin{equation*}
g_{1}(\rho, t):=\frac{(\rho-t)^{n}}{\rho^{n}\left(1-t^{2}\right)^{s}}, \tag{4.3}
\end{equation*}
$$

with $(\rho, t) \in[1, \infty) \times[0, r]$, and we see that

$$
\begin{equation*}
u(0) \geqslant\left|\partial B_{1}\right| \int_{1}^{\infty} \mathcal{E}(x, \rho) g_{1}(\rho, t) u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho \tag{4.4}
\end{equation*}
$$

Since g_{1} is increasing in ρ, we have that, for all $(\rho, t) \in[1, \infty) \times[0, r]$,

$$
g_{1}(\rho, t) \geqslant g_{1}(1, t)=\frac{(1-t)^{n}}{\left(1-t^{2}\right)^{s}}=\frac{(1-t)^{n-s}}{(1+t)^{s}}=: g_{2}(t)
$$

Notice also that g_{2} is decreasing, and therefore, for all $(\rho, t) \in[1, \infty) \times[0, r]$,

$$
g_{1}(\rho, t) \geqslant g_{2}(r)=\frac{(1-r)^{n-s}}{(1+r)^{s}}=\frac{(1-r)^{n}}{\left(1-r^{2}\right)^{s}}
$$

Plugging this information into (4.4) and recalling (1.19), we get

$$
u(0) \geqslant\left|\partial B_{1}\right| \frac{(1-r)^{n}}{\left(1-r^{2}\right)^{s}} \int_{1}^{\infty} \mathcal{E}(x, \rho) u_{f_{\rho}}\left(\frac{x}{\rho}\right) d \rho \geqslant \frac{(1-r)^{n}}{\left(1-r^{2}\right)^{s}} u(x),
$$

which completes the proof of (1.20) under the additional continuity assumption on f.
To deal with the general case, we perform an approximation argument, whose details go as follows. If $f \in L^{\infty}\left(B_{R} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$, we take a sequence $\left\{f_{k}\right\}_{k} \subset C\left(\mathbb{R}^{n} \backslash B_{1}\right) \cap L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ as in (2.6). Then for $u_{f_{k}}^{(s)}$ the two-sided inequality in (1.20) holds true, thanks to the previous step. Also, by (3.7), we have the local uniform convergence

$$
\left\|u_{f_{k}}^{(s)}-u\right\|_{L_{\text {loc }}^{\infty}\left(B_{1}\right)} \rightarrow 0 \quad \text { as } k \rightarrow+\infty,
$$

and therefore we deduce the two sided inequality (1.20) also in this case.
It is only left to prove that the constants provided in equation (1.20) are optimal. To show this let us fix some direction $e \in \partial B_{1}$, a constant $\epsilon>0$ and the function

$$
f_{\epsilon}(y):= \begin{cases}0 & \text { if } y \in \mathbb{R}^{n} \backslash B_{\epsilon}((1+\epsilon) e), \\ \left(|y|^{2}-1\right)^{s} & \text { if } y \in B_{\epsilon}((1+\epsilon) e) .\end{cases}
$$

Then the function

$$
u_{f_{\epsilon}}^{(s)}(x):=c(n, s) \int_{B_{\epsilon}((\epsilon+1) e)} \frac{\left(1-|x|^{2}\right)^{s}}{|y-x|^{n}} d y
$$

is s-harmonic in B_{1}, as a consequence of Proposition 2.2. Therefore, if we fix $x=-r e$ for $r \in(0,1)$, we have that

$$
\frac{u_{f_{\epsilon}}^{(s)}(0)}{u_{f_{\epsilon}}^{(s)}(-r e)}=\frac{\int_{B_{\epsilon}((\epsilon+1) e)} \frac{\frac{d y}{|y|^{n}}}{}}{\int_{B_{\epsilon}((\epsilon+1) e)} \frac{\left(1-r^{2}\right)^{s}}{|y+r e|^{n}} d y}
$$

and thus, by Lebesgue Differentiation Theorem, we conclude that

$$
\lim _{\epsilon \rightarrow 0} \frac{u_{f_{\epsilon}}^{(s)}(0)}{u_{f_{\epsilon}(s)}^{(s)}(-r e)}=\frac{(1+r)^{n}}{\left(1-r^{2}\right)^{s}} .
$$

This proves that the constant on the left hand side inequality in (1.20) is optimal.
Similarly, taking $x=r e$, one sees that

$$
\lim _{\epsilon \rightarrow 0} \frac{u_{f_{\epsilon}}^{(s)}(r e)}{u_{f_{\epsilon}}^{(s)}(0)}=\frac{\left(1-r^{2}\right)^{s}}{(1-r)^{n}},
$$

which shows that the constant on the right hand side inequality in (1.20) is also optimal. This concludes the proof of Theorem 1.7.

Acknowledgments

SD and EV are members of AustMS. Supported by the Australian Laureate Fellowship FL190100081 "Minimal surfaces, free boundaries and partial differential equations" and by the Australian Research Council DECRA DE180100957 "PDEs, free boundaries and applications".

Conflict of interest

The authors declare no conflict of interest.

References

1. M. Agranovsky, D. Khavinson, H. S. Shapiro, Malmheden's theorem revisited, Expo. Math., 28 (2010), 337-350. http://doi.org/10.1016/j.exmath.2010.03.002
2. H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York, NY: Springer, 2011. http://doi.org/10.1007/978-0-387-70914-7
3. C. Bucur, Some observations on the Green function for the ball in the fractional Laplace framework, Commun. Pure Appl. Anal., 15 (2016), 657-699. http://doi.org/10.3934/cpaa.2016.15.657
4. C. Bucur, S. Dipierro, E. Valdinoci, On the mean value property of fractional harmonic functions, Nonlinear Anal., 201 (2020), 112112. http://doi.org/10.1016/j.na.2020.112112
5. C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Cham: Springer, 2016. http://doi.org/10.1007/978-3-319-28739-3
6. L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245-1260. http://doi.org/10.1080/03605300600987306
7. S. Dipierro, O. Savin, E. Valdinoci, All functions are locally s-harmonic up to a small error, J. Eur. Math. Soc., 19 (2017), 957-966. http://doi.org/10.4171/JEMS/684
8. S. Dipierro, E. Valdinoci, Elliptic partial differential equations from an elementary viewpoint, 2021, arXiv:2101.07941.
9. R. J. Duffin, A note on Poisson's integral, Quart. Appl. Math., 15 (1957), 109-111. http://doi.org/10.1090/qam/86885
10. L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Boca Raton: CRC Press, 2015. http://doi.org/10.1201/9780203747940
11. M. Kassmann, Harnack-Ungleichungen für nichtlokale Differentialoperatoren und DirichletFormen, (German), Bonn: Universität Bonn, Mathematisches Institut, 2001.
12. M. Kassmann, A new formulation of Harnack's inequality for nonlocal operators, C. R. Math., 349 (2011), 637-640. http://doi.org/10.1016/j.crma.2011.04.014
13. H. W. Malmheden, Eine neue Lösung des dirichletschen problems für sphärische bereiche, (German), Fysiogr. Sällsk. Lund Förh., 4 (1934), 1-5.
14. S. G. Mikhlin, Multidimensional singular integrals and integral equations, Oxford-New YorkParis: Pergamon Press, 1965.
15. T. Needham, The geometry of harmonic functions, Mathematics Magazine, 67 (1994), 92-108. http://doi.org/10.2307/2690683
16. T. Needham, Visual complex analysis, Oxford University Press, 1997.
17. C. Neumann, Vorlesungen über Riemann's Theorie der Abel'schen Integrale. Zweite vollständig umgearbeitete und wesentlich vermehrte Auflage, (German), Leipzig: Teubner, 1884.
18. H. A. Schwarz, Gesammelte mathematische Abhandlungen. Band I, II, (German), Bronx, N.Y.: Chelsea Publishing Co., 1972.

A. Appendices

A.1. Averaging the fractional Poisson kernel

Here we give a direct proof of the identity pointed out in the footnote on page 5. Namely, we establish that, if $x \in B_{1}$ and $\rho>1$,

$$
\begin{equation*}
\mathcal{E}(x, \rho)=\rho^{n-1} f_{\partial B_{\rho}} P(x, y) d H_{y}^{n-1}, \tag{A.1}
\end{equation*}
$$

being P the fractional Poisson kernel in (2.1).
The identity in (A.1) has its own interest and it can be deduced from our fractional Malmheden theorem, by taking a datum f concentrating along a given sphere ∂B_{ρ}. For the sake of completeness however, we provide here an independent proof, only based on elementary computations and standard integral formulas.

More specifically, we aim at showing that

$$
\begin{equation*}
f_{\partial B_{1}} \frac{d H_{\omega}^{n-1}}{|x-\rho \omega|^{n}}=\frac{\rho^{2-n}}{\rho^{2}-|x|^{2}} . \tag{A.2}
\end{equation*}
$$

Indeed, once (A.2) is established, we deduce from it, (1.13) and (2.1) that

$$
\begin{aligned}
f_{\partial B_{\rho}} & P(x, y) d H_{y}^{n-1}=c(n, s)\left(1-|x|^{2}\right)^{s} f_{\partial B_{\rho}} \frac{d H_{y}^{n-1}}{\left(|y|^{2}-1\right)^{s}|x-y|^{n}} \\
& =\frac{c(n, s)\left(1-|x|^{2}\right)^{s}}{\left|\partial B_{1}\right| \rho^{n-1}} \int_{\partial B_{1}} \frac{\rho^{n-1} d H_{\omega}^{n-1}}{\left(\rho^{2}-1\right)^{s}|x-\rho \omega|^{n}} \\
& =\frac{c(n, s)\left(1-|x|^{2}\right)^{s}}{\left(\rho^{2}-1\right)^{s}} f_{\partial B_{1}} \frac{d H_{\omega}^{n-1}}{|x-\rho \omega|^{n}}=c(n, s) \frac{\rho^{2-n}\left(1-|x|^{2}\right)^{s}}{\left(\rho^{2}-1\right)^{s}\left(\rho^{2}-|x|^{2}\right)} \\
& =\rho^{1-n} \mathcal{E}(x, \rho)
\end{aligned}
$$

and this would complete the proof of (A.1).
Hence, we focus now on proving (A.2). To this end, we use spherical coordinates on ∂B_{1}, with θ, θ_{1}, $\ldots, \theta_{n-3} \in[0, \pi]$ and $\theta_{n-2} \in[0,2 \pi$), see e.g., Eq (A.23) in [3] or pages 60-61 in [14], which correspond to $\omega=\omega(\theta)$ of the form

$$
\left\{\begin{array}{l}
\omega_{1}=\sin \theta \sin \theta_{1} \ldots \sin \theta_{n-3} \sin \theta_{n-2}, \\
\omega_{2}=\sin \theta \sin \theta_{1} \ldots \sin \theta_{n-3} \cos \theta_{n-2}, \\
\omega_{3}=\sin \theta \sin \theta_{1} \ldots \cos \theta_{n-3} \\
\vdots \\
\omega_{n}=\cos \theta
\end{array}\right.
$$

and produce a surface element of the form

$$
\sin ^{n-2} \theta \sin ^{n-3} \theta_{1} \ldots \sin ^{2} \theta_{n-4} \sin \theta_{n-3} d \theta d \theta_{1} \ldots d \theta_{n-2}
$$

Also, up to a rotation, to prove (A.2) we can assume that $x=(0, \ldots, 0,|x|)$. In this way, we find that

$$
|x-\rho \omega|^{2}=|x|^{2}+\rho^{2}-2 \rho x \cdot \omega=|x|^{2}+\rho^{2}-2 \rho|x| \omega_{n}=|x|^{2}+\rho^{2}-2 \rho|x| \cos \theta,
$$

whence it follows that

$$
\begin{aligned}
& \int_{\partial B_{1}} \frac{d H_{\omega}^{n-1}}{|x-\rho \omega|^{n}}=\int_{\substack{\theta, \theta_{1}, \ldots, \theta_{2-3}\left[\mid[0, \pi] \\
n_{n-2}[0,2,2 \pi\right.}} \frac{\sin ^{n-2} \theta \sin ^{n-3} \theta_{1} \ldots \sin ^{2} \theta_{n-4} \sin \theta_{n-3} d \theta d \theta_{1} \ldots d \theta_{n-2}}{\left(|x|^{2}+\rho^{2}-2 \rho|x| \cos \theta\right)^{\frac{n}{2}}} \\
& \quad=2 \pi\left(\prod_{j=1}^{n-3} \int_{0}^{\pi} \sin ^{n-j-2} \theta_{j} d \theta_{j}\right) \int_{\theta \in[0, \pi]} \frac{\sin ^{n-2} \theta d \theta}{\left(|x|^{2}+\rho^{2}-2 \rho|x| \cos \theta\right)^{\frac{n}{2}}} .
\end{aligned}
$$

Thus, we use the notation $\tau:=\frac{\rho}{|x|} \in(1,+\infty)$ and, by Proposition A. 9 in [3], we deduce that

$$
\int_{\partial B_{1}} \frac{d H_{\omega}^{n-1}}{|x-\rho \omega|^{n}}=\frac{2 \pi}{|x|^{n}}\left(\prod_{k=1}^{n-3} \int_{0}^{\pi} \sin ^{k} \vartheta d \vartheta\right) \int_{0}^{\pi} \frac{\sin ^{n-2} \theta d \theta}{\left(\tau^{2}+1-2 \tau \cos \theta\right)^{\frac{n}{2}}}
$$

$$
\begin{aligned}
& =\frac{2 \pi}{|x|^{n} \tau^{n-2}\left(\tau^{2}-1\right)}\left(\prod_{k=1}^{n-3} \int_{0}^{\pi} \sin ^{k} \vartheta d \vartheta\right) \int_{0}^{\pi} \sin ^{n-2} \alpha d \alpha \\
& =\frac{2 \pi}{|x|^{n} \tau^{n-2}\left(\tau^{2}-1\right)}\left(\prod_{k=1}^{n-2} \int_{0}^{\pi} \sin ^{k} \vartheta d \vartheta\right) .
\end{aligned}
$$

This and Proposition A. 10 in [3] yield that

$$
\int_{\partial B_{1}} \frac{d H_{\omega}^{n-1}}{|x-\rho \omega|^{n}}=\frac{2 \pi^{\frac{n}{2}}}{|x|^{n} \tau^{n-2}\left(\tau^{2}-1\right) \Gamma\left(\frac{n}{2}\right)}=\frac{\left|\partial B_{1}\right|}{|x|^{n} \tau^{n-2}\left(\tau^{2}-1\right)}=\frac{\left|\partial B_{1}\right| \rho^{2-n}}{\rho^{2}-|x|^{2}}
$$

The proof of (A.2) is thereby complete.

A.2. Proof of (3.8)

We recall (1.13) and we employ the change of variable $e:=\omega /|\omega|$ to see that

$$
\begin{align*}
& \frac{1}{c(n, s)\left(1-|x|^{2}\right)^{s}} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f_{k}, e, \rho}(x) d H_{e}^{n-1}\right) d \rho \\
= & \int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-1\right)^{s}\left(\rho^{2}-|x|^{2}\right)}\left(\int_{\partial B_{1}} \mathcal{L}_{f_{k}, e, \rho}(x) d H_{e}^{n-1}\right) d \rho \\
= & \int_{1}^{\infty} \frac{\rho^{2}}{\rho^{n}\left(\rho^{2}-1\right)^{s}\left(\rho^{2}-|x|^{2}\right)}\left(\int_{\partial B_{\rho}} \mathcal{L}_{f_{k}, \omega| | \omega| |,|\omega|}(x) d H_{\omega}^{n-1}\right) d \rho \tag{A.3}\\
= & \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{|y|^{2}}{} \frac{|y|^{n}\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)}{\mathcal{L}_{f_{k}, y|y| y|y|}(x) d y .}
\end{align*}
$$

It also follows from (2.6) that, for a.e. $y \in \mathbb{R}^{n} \backslash B_{1}$,

$$
\begin{equation*}
\mathcal{L}_{f_{k}, y / y,|y| y}(x) \rightarrow \mathcal{L}_{f, y / y,|y|}(x) \quad \text { as } k \rightarrow+\infty . \tag{A.4}
\end{equation*}
$$

Now we take $R_{0} \in(1, R)$ and we deduce from (A.3) that

$$
\begin{align*}
& \quad \frac{1}{c(n, s)\left(1-|x|^{2}\right)^{s}} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f_{k}, e, \rho}(x) d H_{e}^{n-1}\right) d \rho \\
& = \tag{A.5}\\
& \int_{B_{R_{0}} \backslash B_{1}} \frac{|y|^{2}}{} \frac{|y|^{n}\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)}{} \mathcal{L}_{f_{k}, y /|y,|y|}(x) d y \\
& \quad+\int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{|y|^{2}}{|y|^{n}\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)} \mathcal{L}_{f_{k}, y / y| | y|y|}(x) d y .
\end{align*}
$$

Recalling the computation in (3.16), for k large enough we have that

$$
\left\|\mathcal{L}_{f_{k}, y / y,|y| y \mid}(x)\right\|_{L^{\infty}\left(B_{R_{0}} \backslash B_{1}\right)} \leqslant \frac{2 R_{0}}{\sqrt{1-|x|^{2}}}\|f\|_{L^{\infty}\left(B_{R} \backslash B_{1}\right)} .
$$

Consequently, using this, (A.4) and the dominated convergence theorem,

$$
\begin{align*}
\lim _{k \rightarrow+\infty} \int_{B_{R_{0}} \backslash B_{1}} & \frac{|y|^{2}}{|y|^{n}\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)} \mathcal{L}_{f_{k}, y / y|y| y \mid}(x) d y \\
& =\int_{B_{R_{0} \backslash B_{1}}} \frac{|y|^{2}}{|y|^{n}\left(|y|^{2}-1\right)^{s}\left(|y|^{2}-|x|^{2}\right)} \mathcal{L}_{f, y|y| y|y|}(x) d y \tag{A.6}
\end{align*}
$$

Also, we claim that there exists a subsequence $\left\{f_{k_{j}}\right\}_{j}$ such that

$$
\begin{equation*}
\left\|\mathcal{L}_{f_{k_{j}}, y / y|y| y \mid}(x)-\mathcal{L}_{f, y /|y|,|y|}(x)\right\|_{L_{s}^{s}\left(\mathbb{R}^{n} \backslash B_{R_{0}}\right)} \rightarrow 0 \quad \text { as } j \rightarrow+\infty . \tag{A.7}
\end{equation*}
$$

To show (A.7), we recall (3.15) and we observe that, for every $x \in B_{1}$ and $y \in \mathbb{R}^{n} \backslash B_{R_{0}}$,

$$
\begin{align*}
& \left|\mathcal{L}_{f_{k}, y / y|y| y \mid}(x)\right| \\
= & \left\lvert\, \frac{\left(\frac{x}{|y|}-Q_{-}^{x|y|}\left(\frac{y}{|y|}\right)\right) \cdot \frac{y}{|y|}}{\left|Q_{+}^{x / y \mid}\left(\frac{y}{|y|}\right)-Q_{-}^{x / y \mid}\left(\frac{y}{|y|}\right)\right|} f_{k}\left(|y| Q_{+}^{x /|y|}\left(\frac{y}{|y|}\right)\right)\right. \\
& \left.\quad+\frac{\left(Q_{+}^{x /|y|}\left(\frac{y}{|y|}\right)-\frac{x}{|y|}\right) \cdot \frac{y}{|y|}}{\left|Q_{+}^{x /|y|}\left(\frac{y}{|y|}\right)-Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right|} f_{k}\left(Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right) \right\rvert\, \tag{A.8}\\
\leqslant & \frac{R_{0}}{\sqrt{1-|x|^{2}}}\left[\left|f_{k}\left(|y| Q_{-}^{x /|y|}\left(\frac{y}{|y|}\right)\right)\right|+\left|f_{k}\left(|y| Q_{-}^{x / y \mid}\left(\frac{y}{|y|}\right)\right)\right|\right] .
\end{align*}
$$

Moreover, by (2.6) there exists a subsequence $\left\{f_{k_{j}}\right\}_{j}$ and a function $h \in L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ such that $\left|f_{k_{j}}(y)\right| \leqslant$ $h(y)$ for a.e. $y \in \mathbb{R}^{n} \backslash B_{1}$ (see for instance Theorem 4.9 in [2]). Therefore, using this information into (A.8), we have

$$
\begin{equation*}
\left|\mathcal{L}_{f_{k_{j}}, y /|y||y|}(x)\right| \leqslant \frac{R_{0}}{\sqrt{1-|x|^{2}}}\left[h\left(|y| Q_{-}^{x / y \mid}\left(\frac{y}{|y|}\right)\right)+h\left(|y| Q_{+}^{x / y \mid}\left(\frac{y}{|y|}\right)\right)\right] \tag{A.9}
\end{equation*}
$$

for a.e. $y \in \mathbb{R}^{n} \backslash B_{R_{0}}$.
Now we recall the map $F_{ \pm}$defined in (3.21), which is C^{1} and invertible, and therefore, by Theorem 2 in Section 3.3.3 of [10] and (3.22), we get that

$$
\begin{aligned}
\int_{\mathbb{R}^{n} \backslash B_{R_{0}}} & \frac{h\left(|y| Q_{ \pm}^{x /|y|}(y /|y|)\right)}{|y|^{n+2 s}} d y=\int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{h\left(|y| Q_{ \pm}^{x / y \mid}(y /|y|)\right)}{| | y\left|Q_{ \pm}^{x /|y|}(y /|y|)\right|^{n+2 s}} d y \\
& =\int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{h(z)}{|z|^{n+2 s}}\left|\operatorname{det}\left(D F_{ \pm}^{-1}(z)\right)\right| d z \leqslant C \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{h(z)}{|z|^{n+2 s}} d z .
\end{aligned}
$$

Accordingly, we deduce that

$$
h\left(|y| Q_{ \pm}^{x /|y|}(y /|y|)\right) \in L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{R_{0}}\right) .
$$

This, the bound in (A.9), the pointwise convergence in (A.4) and the dominated convergence theorem lead to (A.7), as desired.

Hence, putting together (A.5)-(A.7), we obtain that

$$
u_{f}(x)=\int_{1}^{\infty} \int_{\partial B_{1}} \mathcal{E}(x, \rho) \mathcal{L}_{f, e, \rho}(x) d H_{e}^{n-1} d \rho
$$

for each $x \in B_{1}$, which completes the proof of (3.8).

A.3. Proof of (3.9)

The proof of (3.9) is similar to the one of (3.8). We provide here the details for the convenience of the reader.

From (1.13) with $n=2$ and the change of variable $e:=\omega /|\omega|$,

$$
\begin{align*}
& \frac{1}{c(2, s)\left(1-|x|^{2}\right)^{s}} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) f_{k}\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho \\
= & \int_{1}^{\infty} \frac{\rho}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{1}} f_{k}\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho \\
= & \int_{1}^{\infty} \frac{1}{\left(\rho^{2}-|x|^{2}\right)\left(\rho^{2}-1\right)^{s}}\left(\int_{\partial B_{\rho}} f_{k}\left(|\omega| Q^{x /|\omega|}(\omega /|\omega|)\right) d H_{\omega}^{n-1}\right) d \rho \tag{A.10}\\
= & \int_{\mathbb{R}^{n} \backslash B_{1}} \frac{1}{\left(|y|^{2}-|x|^{2}\right)\left(|y|^{2}-1\right)^{s}} f_{k}\left(|y| Q^{x /|y|}(y /|y|)\right) d y
\end{align*}
$$

By (2.6), we have that, for a.e. $y \in \mathbb{R}^{n} \backslash B_{1}$,

$$
\begin{equation*}
f_{k}\left(|y| Q^{x /|y|}(y /|y|)\right) \rightarrow f\left(|y| Q^{x /|y|}(y /|y|)\right) \quad \text { as } k \rightarrow+\infty . \tag{A.11}
\end{equation*}
$$

Now we take $R_{0} \in(1, R)$ and we get from (A.10) that

$$
\begin{align*}
& \frac{1}{c(2, s)\left(1-|x|^{2}\right)^{s}} \int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) f_{k}\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho \\
= & \int_{B_{R_{0} \backslash B_{1}}} \frac{1}{\left.\left.|y|\right|^{2}-|x|^{2}\right)\left(|y|^{2}-1\right)^{s}} f_{k}\left(|y| Q^{x /|y|}(y /|y|)\right) d y \tag{A.12}\\
& \quad+\int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{1}{\left(|y|^{2}-|x|^{2}\right)\left(|y|^{2}-1\right)^{s}} f_{k}\left(|y| Q^{x / y \mid}(y /|y|)\right) d y
\end{align*}
$$

Notice that, for k large enough,

$$
\left\|f_{k}\right\|_{L^{\infty}\left(B_{R_{0}} \backslash B_{1}\right)} \leqslant\|f\|_{L^{\infty}\left(B_{R} \backslash B_{1}\right)} .
$$

As a consequence,

$$
\begin{align*}
\lim _{k \rightarrow+\infty} \int_{B_{R_{0} \backslash B_{1}}} & \frac{1}{\left(|y|^{2}-|x|^{2}\right)\left(|y|^{2}-1\right)^{s}} f_{k}\left(|y| Q^{x /|y|}(y /|y|)\right) d y \\
\quad & =\int_{B_{R_{0} \backslash} \backslash B_{1}} \frac{1}{\left(|y|^{2}-|x|^{2}\right)\left(|y|^{2}-1\right)^{s}} f\left(|y| Q^{x /|y|}(y /|y|)\right) d y \tag{A.13}
\end{align*}
$$

Furthemore, recalling (2.6) (see also Theorem 4.9 in [2]) we deduce the existence of a subsequence $\left\{f_{k_{j}}\right\}_{j}$ and of a function $h \in L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{1}\right)$ such that

$$
\begin{equation*}
\left|f_{k_{j}}\left(|y| Q^{x / y \mid}(y|y|)\right)\right| \leqslant h\left(|y| Q^{x / y \mid}(y /|y|)\right) \tag{A.14}
\end{equation*}
$$

for a.e. $y \in \mathbb{R}^{n} \backslash B_{R_{0}}$.

Furthermore, we claim that

$$
\begin{equation*}
h\left(|y| Q^{x /|y|}(y /|y|)\right) \text { belongs to } L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{R_{0}}\right) . \tag{A.15}
\end{equation*}
$$

Indeed, the function

$$
\begin{aligned}
F: \mathbb{R}^{n} \backslash B_{R_{0}} & \rightarrow \mathbb{R}^{n} \backslash B_{R_{0}} \\
& y
\end{aligned}>|y| Q^{x /|y|}(y /|y|) .
$$

is C^{1} and invertible. Moreover, since

$$
\lim _{|y| \rightarrow \infty} Q^{x /|y|}(y /|y|)=i d_{\partial B_{1}},
$$

we find that

$$
\left\|\operatorname{det}\left(D F^{-1}(z)\right)\right\|_{L^{\infty}\left(\mathbb{R}^{n} \backslash B_{R_{0}}\right)} \leqslant \tilde{C},
$$

for some positive constant $\tilde{C}>0$.
From this and Theorem 2 in Section 3.3.3 of [10] we have that

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{h\left(|y| Q^{x /|y|}(y /|y|)\right)}{|y|^{2+2 s}} d y=\int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{h\left(|y| Q^{x /|y|}(y /|y|)\right)}{\left.|y| Q^{x /|y|}(y /|y|)\right|^{2+2 s}} d y \\
& \quad=\int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{h\left(\left.z\right|^{2+2 s}\right.}{}\left|\operatorname{det}\left(D F^{-1}(z)\right)\right| d z \leqslant \tilde{C} \int_{\mathbb{R}^{n} \backslash B_{R_{0}}} \frac{h(z)}{|z|^{2+2 s}} d z,
\end{aligned}
$$

which establishes (A.15).
From (A.11), (A.14) and (A.15) and the Dominated Convergence Theorem, we deduce that

$$
\left\|f_{k_{j}}\left(|y| Q^{x /|y|}(y|y|)\right)-f\left(|y| Q^{x / \mid y}(y|y|)\right)\right\|_{L_{s}^{1}\left(\mathbb{R}^{n} \backslash B_{R_{0}}\right)} \rightarrow 0 \quad \text { as } j \rightarrow+\infty .
$$

Gathering together this, (A.12) and (A.13), we conclude that

$$
u_{f}^{(s)}(x)=\int_{1}^{\infty}\left(\int_{\partial B_{1}} \mathcal{E}(x, \rho) f\left(\rho Q^{x / \rho}(e)\right) d H_{e}^{n-1}\right) d \rho
$$

This finishes the proof of (3.9).

AIMS Press

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)

