Research article Special Issues

A matrix Harnack inequality for semilinear heat equations

  • Received: 28 July 2021 Revised: 26 November 2021 Accepted: 05 December 2021 Published: 10 January 2022
  • We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [5] for the standard heat equation. We then apply these estimates to obtain some Harnack–type inequalities, which give local bounds on the solutions in terms of the geometric quantities involved.

    Citation: Giacomo Ascione, Daniele Castorina, Giovanni Catino, Carlo Mantegazza. A matrix Harnack inequality for semilinear heat equations[J]. Mathematics in Engineering, 2023, 5(1): 1-15. doi: 10.3934/mine.2023003

    Related Papers:

  • We derive a matrix version of Li & Yau–type estimates for positive solutions of semilinear heat equations on Riemannian manifolds with nonnegative sectional curvatures and parallel Ricci tensor, similarly to what R. Hamilton did in [5] for the standard heat equation. We then apply these estimates to obtain some Harnack–type inequalities, which give local bounds on the solutions in terms of the geometric quantities involved.



    加载中


    [1] D. Castorina, G. Catino, C. Mantegazza, Semilinear Li & Yau inequalities, unpublished work.
    [2] S. Gallot, D. Hulin, J. Lafontaine, Riemannian geometry, Berlin, Heidelberg: Springer, 1990. http://dx.doi.org/10.1007/978-3-642-18855-8
    [3] R. S. Hamilton, Four-manifolds with positive curvature operator, J. Differential Geom., 24 (1986), 153–179. http://dx.doi.org/10.4310/jdg/1214440433 doi: 10.4310/jdg/1214440433
    [4] R. S. Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom., 37 (1993), 225–243. http://dx.doi.org/10.4310/jdg/1214453430 doi: 10.4310/jdg/1214453430
    [5] R. S. Hamilton, A matrix Harnack estimate for the heat equation, Commun. Anal. Geom., 1 (1993), 113–126. http://dx.doi.org/10.4310/CAG.1993.v1.n1.a6 doi: 10.4310/CAG.1993.v1.n1.a6
    [6] R. S. Hamilton, The Harnack estimate for the mean curvature flow, J. Differential Geom., 41 (1995), 215–226. http://dx.doi.org/10.4310/jdg/1214456010 doi: 10.4310/jdg/1214456010
    [7] P. Li, S.-T. Yau, On the parabolic kernel of the Schrödinger operator, Acta Math., 156 (1986), 153–201. http://dx.doi.org/10.1007/BF02399203 doi: 10.1007/BF02399203
    [8] C. Mantegazza, Lecture notes on mean curvature flow, Basel: Springer, 2011. http://dx.doi.org/10.1007/978-3-0348-0145-4
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2183) PDF downloads(238) Cited by(1)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog