We analyze the large deviations for a discrete energy Kac-like walk. In particular, we exhibit a path, with probability exponentially small in the number of particles, that looses energy.
Citation: Giada Basile, Dario Benedetto, Emanuele Caglioti, Lorenzo Bertini. Large deviations for a binary collision model: energy evaporation[J]. Mathematics in Engineering, 2023, 5(1): 1-12. doi: 10.3934/mine.2023001
We analyze the large deviations for a discrete energy Kac-like walk. In particular, we exhibit a path, with probability exponentially small in the number of particles, that looses energy.
[1] | G. Basile, D. Benedetto, L. Bertini, E. Caglioti, On the probability of observing energy increasing solutions to homegeneous Boltzmann equation, unpublished work. |
[2] | G. Basile, D. Benedetto, L. Bertini, C. Orrieri, Large deviations for Kac-Like Walks, J. Stat. Phys., 184 (2021), 10. http://dx.doi.org/10.1007/s10955-021-02794-2 doi: 10.1007/s10955-021-02794-2 |
[3] | L. Bertini, D. Gabrielli, J. L. Lebowitz, Large deviations for a stochastic model of heat flow, J. Stat. Phys., 121 (2005), 843–885. http://dx.doi.org/10.1007/s10955-005-5527-2 doi: 10.1007/s10955-005-5527-2 |
[4] | T. Bodineau, I. Gallagher, L. Saint-Raymond, S. Simonella, Statistical dynamics of a hard sphere gas: fluctuating Boltzmann equation and large deviations, 2021, arXiv: 2008.10403. |
[5] | F. Bouchet, Is the Boltzmann equation reversible? A large deviation perspective on the irreversibility paradox, J. Stat. Phys., 181 (2020), 515–550. http://dx.doi.org/10.1007/s10955-020-02588-y doi: 10.1007/s10955-020-02588-y |
[6] | D. Heydecker, Large deviations of Kac's conservative particle system and energy non-conserving solutions to the Boltzmann equation: a counterexample to the predicted rate function, 2021, arXiv: 2103.14550. |
[7] | C. Kipnis, C. Marchioro, E. Presutti, Heat flow in an exactly solvable model, J. Stat. Phys., 27 (1982), 65–74. http://dx.doi.org/10.1007/BF01011740 doi: 10.1007/BF01011740 |
[8] | C. Léonard, On large deviations for particle systems associated with spatially homogeneous Boltzmann type equations, Probab. Th. Rel. Fields, 101 (1995), 1–44. http://dx.doi.org/10.1007/BF01192194 doi: 10.1007/BF01192194 |
[9] | T. M. Liggett, Continuous time Markov processes: an introduction, Providence: American Mathematical Society, 2010. |
[10] | X. Lu, B. Wennberg, Solutions with increasing energy for the spatially homogeneous Boltzmann equation, Nonlinear Anal. Real, 3 (2002), 243–258. http://dx.doi.org/10.1016/S1468-1218(01)00026-8 doi: 10.1016/S1468-1218(01)00026-8 |
[11] | M. Mariani, A $\Gamma$-convergence approach to large deviations, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), XVIII (2018), 951–976. http://dx.doi.org/10.2422/2036-2145.201301_010 doi: 10.2422/2036-2145.201301_010 |
[12] | S. Mischler, B. Wennberg, On the spatially homogeneous Boltzmann equation, Ann. Inst. Henri Poincaré, Analyse non linéaire, 16 (1999), 467–501. http://dx.doi.org/10.1016/S1468-1218(01)00026-8 doi: 10.1016/S1468-1218(01)00026-8 |
[13] | V. V. Petrov, Sums of independent random variables, Berlin, Heidelberg: Springer, 1975. http://dx.doi.org/10.1007/978-3-642-65809-9 |
[14] | J. Quastel, H.-T. Yau, Lattice gases, large deviations, and the incompressible Navier-Stokes equations, Ann. Math., 148 (1998), 51–108. |
[15] | F. Rezakhanlou, Large deviations from a kinetic limit, Ann. Probab., 26 (1998), 1259–1340. http://dx.doi.org/10.1214/aop/1022855753 doi: 10.1214/aop/1022855753 |
[16] | A. S. Sznitman, Topics in propagation of chaos, In: Ecole d'Eté de Probabilités de Saint-Flour XIX–1989, Berlin, Heidelberg: Springer, 1991,165–251. http://dx.doi.org/10.1007/BFb0085169 |