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1. Introduction

Large deviations associated to Boltzmann-type equations have been the object of recent
investigations. The most challenging case of Newtonian dynamics of hard spheres in the
Boltzmann-Grad limit has been heuristically discussed in [5] and rigorously, by means of cluster
expansion, in [4]. The case of microscopic stochastic dynamics has been originally analyzed in [8],
where a large deviation upper bound is derived. In [15] a large deviation principle is obtained for a
space inhomogeneous model with a finite set of velocities. More recently, in [2] it is considered a
homogeneous model which conserves momentum but not energy. The large deviation upper bound is
achieved, while the lower bound is obtained for a restricted class of paths. In [6] the analogous results
are provided for the Kac walk, which conserves also the energy.

We emphasize that, except in the case of bounded velocities, a proof of a large deviation principle
with matching upper and lower bound is still missing, even in the homogeneous case. A key issue is the
possible occurrence of macroscopic paths with finite rate function that violate the conservation of the
energy. A class of examples has been constructed in [6] by exploiting the solutions of homogeneous
Boltzmann equations provided by Lu and Wennberg in [10], for which the energy is increasing.
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Here we consider a Kac-like microscopic dynamics with discrete energy, that is inspired by the
so-called KMP model [3, 7], and described as follows: N particles, with equally spaced energy levels,
evolve via random binary collisions such that in each collision the total energy is preserved. At the
kinetic level the one-particle energy distribution evolves according to a discrete homogeneous
Boltzmann equation, that is an infinite system of coupled ordinary differential equations. We focus on
the large deviation properties of the pair empirical measure and flux and propose a candidate rate
function I when the initial distribution of the energies satisfies the micro-canonical constraint, i.e., the
total energy is fixed. By the arguments in [1, 2, 6], it can be shown that the large deviation upper
bound holds with rate function I, and a matching lower bound can be proven for a restricted class of
paths which conserve the energy. Our main novel point is the construction of a path ( f̄ , Q̄) which
looses the energy and whose probability is exponentially small with rate I( f̄ , Q̄). This result quantifies
the probability to violate the conservation of the energy, which is exponentially small in the number
of particles N. It can be compared with the result in [14] where, in the contest of the derivation of
incompressible Navier-Stokes equations from stochastic lattice gas, it is shown that the probability of
violating the incompressibility condition is of the order e−N2

.
Referring to [1] for a general discussion, we emphasize that, due to the micro-canonical constraint,

at the kinetic level the energy cannot increase and the candidate rate function I is different from the
one in [6, 8].

1.1. The model

Given N ≥ 2, a configuration is defined by N energies in N. The configuration space is therefore
given by ΣN = NN . Elements of ΣN are denoted by ε B (ε1, .., εN) and we denote by ΣN,E the
configuration space with total energy E ∈ N, i.e.,

ΣN,E B
{
ε ∈ NN :

N∑
i=1

εi = E
}
.

The microscopic dynamics is defining by choosing at random a pair {i, j} and redistributing uniformly
the corresponding energies. Therefore we consider the Markov processes on ΣN whose generator acts
on bounded functions f : ΣN → R as

LN f =
1
N

∑
{i, j}

Li j f ,

where the sum is carried over the unordered pairs {i, j} ⊂ {1, ..,N}, i , j, and

Li j f (ε) =
1

εi + ε j + 1

εi+ε j∑
`=0

[
f (T `

i jε) − f (ε)
]
, (1.1)

in which

(
T `

i jε
)

k B


` if k = i

εi + ε j − ` if k = j

εk otherwise.

Observe that, for each E > 0, the dynamics preserves ΣN,E. Moreover, it is ergodic when restricted to
ΣN,E and reversible with respect to the uniform measure on ΣN,E.
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We denote by (ε(t))t≥0 the continuous time Markov chain generated by LN . In particular, the path
ε(·) is piecewise constant, and the transition probability of its jumps is given in (1.1). Fix hereafter
T > 0. Given a probability ν on ΣN,E we denote by PN

ν the law of this chain on the time interval [0,T ],
when the initial datum is sampled according to ν. Observe that PN

ν is a probability on the Skorokhod
space D([0,T ]; ΣN,E). As usual if ν = δε for some ε ∈ ΣN,E, the corresponding law is simply denoted
by PN

ε . We refer to [9] for a gentle introduction to continuous time Markov chains.

1.2. Empirical observables

Given e ∈ (0,+∞), we denote by Pe(N) the set of probability measures π on N with mean bounded
by e, i.e., such that

∑
ε επ(ε) ≤ e. We consider Pe(N) as a closed subset of the space of probability

measure on N equipped with the weak topology. Then Pe(N) endowed with the relative topology is a
compact Polish space. Indeed, Pe(N) is the weak closure of the set of probabilities on N with mean
e. The empirical measure records the energy of the particles forgetting their labels, for E = bN ec it is
defined as the map πN : ΣN,E → Pe(N) given by

πN(ε) B
1
N

N∑
i=1

δεi . (1.2)

Let D
(
[0,T ];Pe(N)

)
the set of Pe(N)-valued cádlág paths endowed with the Skorokhod topology

and the corresponding Borel σ-algebra. With a slight abuse of notation we denote also by πN the map
from D

(
[0,T ]; ΣN,E

)
to D

(
[0,T ];Pe(N)

)
defined by πN

t (ε) B πN(ε(t)), t ∈ [0,T ].
We also introduce the empirical flow that records the collisions of the particles forgetting their

labels. To this end, we denote by M the subset of the finite measures Q on [0,T ]×N2 ×N2 that satisfy
Q(dt; ε, ε∗, ε′, ε′∗) = Q(dt; ε∗, ε, ε′, ε′∗) = Q(dt; ε, ε∗, ε′∗, ε

′). We endow M with the weak* topology and
the associated Borel σ-algebra. The empirical flow is the map QN : D

(
[0,T ]; ΣN,E

)
→M defined by

QN(ε)(F) B
1
N

∑
{i, j}

∑
k≥1

F
(
τ

i, j
k ; εi(τ

i, j
k −), ε j(τ

i, j
k −), εi(τ

i, j
k ), ε j(τ

i, j
k )

)
(1.3)

where F : [0,T ] × N2 × N2 → R is continuous, bounded, and F(t; ε, ε∗, ε′, ε′∗) = F(t; ε∗, ε, ε′, ε′∗) =

F(t; ε, ε∗, ε′∗, ε
′), while (τi, j

k )k≥1 are the jump times of the pair (εi, ε j). Here, εi(t−) = lims↑t εi(s). In view
of the conservation of the energy, the measure QN(dt; ·) is supported on E B {ε+ε∗ = ε′+ε′∗} ⊂ N

2×N2.
For each ε ∈ ΣN,E, with PN

ε probability one, the pair (πN ,QN) satisfies the following balance equation
that express the conservation of probability. For each φ : [0,T ] × N → R bounded and continuously
differentiable with respect to time

πN
T (φT ) − πN

0 (φ0) −
∫ T

0
dt πN

t (∂tφt)

+

∫ T

0

∑
ε,ε∗,ε′,ε

′
∗

QN(dt; ε, ε∗, ε′, ε′∗)
[
φt(ε) + φt(ε∗) − φt(ε′) − φt(ε′∗)

]
= 0.

(1.4)

1.3. Law of large numbers

Fix m ∈ P(N) and assume one of the following condition: m is a point mass or the support of m
does not generate a proper sub-lattice of Z. Note that in the second case m satisfies the condition for
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the local central limit theorem for i.i.d. lattice random variables, see [13, §VII.1]. For γ ∈ R we set

Zγ = Zγ(m) B
∑
ε

m(ε)eγε. (1.5)

We assume that there exists γ∗ ∈ (0,+∞] such that Zγ < +∞ for γ ∈ (0, γ∗) and Zγ ↑ +∞ for γ ↑ γ∗. For
e ∈ (0,+∞), we then define the probability µN,e on ΣN,bNec by considering i.i.d. m-distributed energies
and conditioning to the total energy, i.e.,

µN,e B m⊗N(
· |

N∑
i=1

εi = bNec
)
, (1.6)

that will be chosen as the initial distribution of the microscopic dynamics. In the case of point mass,
we require that {e} is exactly the support of m. Observe that, by the equivalence of the ensembles, as
N → +∞ the one-marginal of µN,e converges to the probability me given by

me(ε) B
eγeεm(ε)

Zγe

, where γe < γ
∗ is such that

∑
ε

εme(ε) = e. (1.7)

Denoting by B the collision kernel in (1.1), i.e.,

B(ε, ε∗, ε′, ε′∗) =
1

ε + ε∗ + 1
1I{ε+ε∗=ε′+ε′∗}1I{{ε,ε∗},{ε′,ε′∗}}, (1.8)

the law of the large numbers for the empirical measure is described by the following discrete
homogeneous Boltzmann equation

∂t ft(ε) =
∑
ε∗,ε′,ε

′
∗

B(ε, ε∗, ε′, ε′∗)
[
ft(ε′) ft(ε′∗) − ft(ε) ft(ε∗)

]
. (1.9)

More precisely, in probability with respect to PN
µN,e

, the empirical path
(
πN

t
)

t∈[0,T ] converges to
(
ft
)

t∈[0,T ]
where ft is the unique solution of the Cauchy problem associated to (1.9) with initial datum f0 = me.
As the proof of this statement can be achieved by adapting the chaos propagation arguments in [16],
we omit the details. The law of the large numbers of the empirical flow QN reads

QN(dt; ε, ε∗, ε′, ε′∗) −→
1
2

dt ft(ε) ft(ε∗)B(ε, ε∗, ε′, ε′∗), (1.10)

where the convergence is in probability with respect to PN
µN,e

. We refer to Lemma 3.3 below for the
proof.

In the general contest of homogeneous Boltzmann equations, uniqueness of the Cauchy problem
associated to (1.9) holds for paths ft that conserves the energy, see e.g., [12]. However in the present
case, since the supε,ε∗

∑
ε′,ε′∗

B(ε, ε∗, ε′, ε′∗) is bounded, Gronwall’s inequality implies the uniqueness
without assuming the energy conservation, see e.g., Lemma 4.1 in [2]. In particular, by uniqueness,
for this model Lu and Wennberg like solutions do not exist. We finally observe that (1.9) admits a
one-parameter family of stationary solutions given by fstat(ε) = p(1 − p)ε, p ∈ (0, 1].
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1.4. The candidate rate function

For e ∈ (0,+∞), let Se be the (closed) subset of D
(
[0,T ];Pe(N)

)
×M given by elements (π,Q) that

satisfies the balance equation

πT (φT ) − π0(φ0) −
∫ T

0
dt πt(∂tφt)

+

∫ T

0

∑
ε,ε∗,ε′,ε

′
∗

Q(dt; ε, ε∗, ε′, ε′∗)
[
φt(ε) + φt(ε∗) − φt(ε′) − φt(ε′∗)

]
= 0

(1.11)

for each φ : [0,T ] × N → R bounded and continuously differentiable in t. We consider Se endowed
with the relative topology and the corresponding Borel σ-algebra.

For π ∈ D
(
[0,T ];Pe(N)

)
let Qπ be the measure defined by

Qπ(dt; ε, ε∗, ε′, ε′∗) B
1
2

dt πt(ε)πt(ε∗)B(ε, ε∗, ε′, ε′∗), (1.12)

where B is the collision kernel in (1.8). Observe that Qπ(dt, ·) is supported on E. Let Sac
e be the subset

of Se given by the elements (π,Q) such that π ∈ C
(
[0,T ];Pe(N)

)
and Q � Qπ. The dynamical rate

function J : Se → [0,+∞] is defined by

J(π,Q) B



∫ T

0

∑
ε,ε∗,ε′,ε

′
∗

dQπ
[ dQ

dQπ
log

dQ
dQπ

−
dQ
dQπ

+ 1
]

if (π,Q) ∈ Sac
e

+∞ otherwise

(1.13)

Given two probabilities µ1, µ2, the relative entropy Ent(µ2|µ1) is defined as
Ent(µ2|µ1) =

∫
dµ1ρ log ρ, where dµ2 = ρ dµ1, understanding that Ent(µ2|µ1) = +∞ if µ2 is not

absolutely continuous with respect to µ1. Let He : Pe(N)→ [0,+∞] be defined by

He(π) = Ent(π|me) + (γ∗ − γe)
[
e −

∑
ε

ε π(ε)
]
, (1.14)

where me and γe are as in (1.7). When m is the point mass on e, He(π) is zero when π = δe and +∞

otherwise. The candidate large deviation rate function is given by

I(π,Q) B He(π0) + J(π,Q). (1.15)

As discussed in [1], the (static) large deviations of the empirical measure with respect to the probability
µN,e are described by the rate function He, where the second term on the r.h.s. of (1.14) is the cost of
having energy less than e. Note that if γ∗ = +∞, then He(π) is finite only if the energy of π is e. A
key ingredient in the proof is the local central limit theorem for the sum of independent me distributed
random variables.

Denote by Ŝe the subset of S given by the pair (π,Q) such that∫ T

0

∑
ε,ε∗,ε′,ε

′
∗

Q(dt, ε, ε∗, ε′, ε′∗)(ε + ε∗) < +∞.
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If (π,Q) ∈ Ŝe, the balance equation (1.11) implies that the path πt conserves the energy.
As already mentioned, a proof of a large deviations principle for the pair (πN ,QN) with matching

upper and lower has not been yet achieved. The analysis in [2, 6] implies however the large deviation
upper bound with rate I with a matching lower bound on the set Ŝe. The precise statement is the
following.

Theorem 1.1. Fix e ∈ (0,+∞) and let µN,e be the family of probabilities on ΣN,bNec defined in (1.6). The
family {PN

µN,e
◦ (πN ,QN)−1} satisfies a large deviations upper bound with good rate function I : Se →

[0,+∞], namely I has compact level sets and for each closed C ⊂ S

lim
N→+∞

1
N

logPN
µN,e

(
(πN ,QN) ∈ C

)
≤ − inf

(π,Q)∈C
I(π,Q). (1.16)

Moreover, for each open O ⊂ Se

lim
N→+∞

1
N

logPN
µN,e

(
(πN ,QN) ∈ O

)
≥ − inf

(π,Q)∈O∩Ŝe

I(π,Q). (1.17)

Referring to [2, 6] for comments on the technicalities involved in the lower bound, we now turn
to the novel point of the present analysis, that is the construction of paths (π,Q) – with π not energy
conserving – whose probability is precisely of the order exp{−NI(π,Q)}. Since these paths do not
belong to Ŝe, this result provides insights on the large deviations properties of Kac’s walk not covered
by (1.17). As the large deviations upper bound is already covered by (1.16), we focus on the matching
lower bound.

Theorem 1.2. Fix e ∈ (0,+∞) and let µN,e be the family of probabilities on ΣN,bNec defined in (1.6). For
each t∗ ∈ (0,T ) there exists a path ( f̄ , Q̄), satisfying

∑
ε f̄t(ε)ε = e for t ∈ [0, t∗) and

∑
ε f̄t(ε)ε < e for

t ∈ [t∗,T ], such that I( f̄ , Q̄) < +∞ and

lim
N→∞

1
N

logPN
µN,e

(
(πN ,QN) ∈ O

)
≥ −I( f̄ , Q̄), (1.18)

for any open neighborhood O 3 ( f̄ , Q̄).

We will provide a self-contained proof of this statement that do not rely on Theorem 1.1. In the
argument we take advantage of the fact that the energies are in N. However we expect that the strategy
can be extended also to the continuous case. In Section 2 we construct a path ( f̄ , Q̄) satisfying the
above requirements, i.e., with evaporating energy for t > t∗ and such that I( f̄ , Q̄) < +∞. The lower
bound (1.18) is then proven in Section 3. For the sake of concreteness, the proposed path ( f̄ , Q̄) has
zero energy for t ∈ (t∗,T ].

2. Perturbed Boltzmann equation

Fix t∗ ∈ (0,T ). In order to construct a path ( f̄ , Q̄), satisfying
∑
ε f̄t(ε)ε = e for t ∈ [0, t∗) and∑

ε f̄t(ε)ε < e for t ∈ (t∗,T ], we start by considering a solution to a perturbed Boltzmann equation,
namely a Boltzmann equation with a suitable modified collision kernel.

Mathematics in Engineering Volume 5, Issue 1, 1–12.



7

Consider the collision kernel B̃ given by

B̃(ε, ε∗, ε′, ε′∗) =
1
2
δε,ε∗δε+ε∗,ε′+ε′∗

[
δε′,ε+ε∗ + δε′∗,ε+ε∗

]
1I{
{ε,ε∗},{ε′,ε

′
∗}
}, (2.1)

that describes a scenario in which only particles with the same energy collide, and in each collision the
whole energy is transferred to a single particle. The Cauchy problem for the corresponding modified
homogeneous Boltzmann equation reads

∂t ft(ε) =
∑
ε∗,ε′,ε

′
∗

[
B̃(ε′, ε′∗, ε, ε∗) ft(ε′) ft(ε′∗) − B̃(ε, ε∗, ε′, ε′∗) ft(ε) ft(ε∗)

]
,

f0(ε) = m(ε).
(2.2)

Proposition 2.1. Assume that m has energy e, and let f be the unique solution to (2.2). Then its energy
is conserved, i.e., for any t ∈ [0,+∞)

∑
ε≥0 ft(ε)ε = e, while ft weakly converges to δ0, as t → +∞.

Moreover, for every t ≥ 0,

i) ft(ε) ≤
2

1 + t
, for ε ≥ 1,

ii)
∑
ε≥1

ft(ε) ≤
c

√
1 + t

,

iii)
∑
ε≥1

ft(ε) log ε ≤ c
1
√

1 + t

(
1 + log(1 + t)

) (2.3)

where c = c(e) does not depend on t and the initial datum m.

Proof. We prove Eq (2.3), from which the convergence of ft follows. The modified Boltzmann equation
reads as

ḟt(0) =
1
2

∑
ε≥1

ft(ε)2,

ḟt(ε) = − ft(ε)2 for ε ≥ 1 odd,

ḟt(ε) =
1
2

ft(ε/2)2 − ft(ε)2 for ε ≥ 2 even.

(2.4)

Note that the equation for ft(ε) involves only ft(ε′) with ε′ ≤ ε, then the system has global and unique
solution. If ε is odd,

ft(ε) =
f0(ε)

1 + t f0(ε)
≤

1
1 + t

.

If ε is even, set ξt(ε) = (1 + t) ft(ε). Let T0 be the first time t such that ξt(ε′) = 2 for some ε′ ≤ ε. The
time T0 is strictly positive, since ξ0(ε′) ≤ 1 for any ε′. For t < T0 it holds

ξ̇t(ε) =
1

1 + t

(
ξt(ε) − ξ2

t (ε) +
1
2
ξ2

t (ε/2)
)
< ξt(ε) − ξ2

t (ε) + 2 ≤ 3(2 − ξt(ε)),

then T0 = +∞, and this concludes the proof of i) in (2.3).
In order to prove ii) and iii) we first note that

2n∑
0

ε ft(ε) =

2n∑
0

ε f0(ε) −
∫ t

0
ds

2n∑
2n−1+1

ε fs(ε)2, (2.5)
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and then
∑+∞

0 ε ft(ε) ≤ e. Inequality ii) and iii) follows by using this fact and the Chebyshev’s
inequality. We conclude the proof by noticing that the energy is in fact conserved, since ft(ε) ≤ e/ε
and then for any h ≥ 1,

+∞∑
h

ε ft(ε)2 ≤ e max
ε≥h

ft(ε) ≤
e2

h
,

which assures that the right-hand-side of Eq (2.5), is vanishing as n→ +∞. �

For the modified Boltzmann equation with rate in (2.1) the energy vanishes for dispersion to infinity
as t → +∞. We reparametrize the time so that this happens at a finite time. Fixed t∗ ∈ (0,T ), let
α : [0, t∗)→ [0,+∞) given by α(t) = t

1−t/t∗ . Letting f the solution to (2.2), set

f̄t(ε) =

 fα(t)(ε) t ∈ [0, t∗)
δε,0 t ∈ [t∗,T ],

(2.6)

which satisfies the homogeneous Boltzmann equation with time dependent collision kernel

B̄t(ε, ε∗, ε′, ε′∗) =

α̇(t)B̃(ε, ε∗, ε′, ε′∗) t ∈ [0, t∗)
0 t ∈ [t∗,T ].

(2.7)

We define the corresponding flux dQ̄ = dt q̄t, where

q̄t(ε, ε∗, ε′, ε′∗) =
1
2

f̄t(ε) f̄t(ε∗)B̃t(ε, ε∗, ε′, ε′∗), (2.8)

so that the pair ( f̄ , Q̄) satisfies the balance equation (1.11). Observe that, by construction,
∑
ε f̄t(ε)ε = e

for t ∈ [0, t∗) and
∑
ε f̄t(ε)ε = 0 for t ∈ [t∗,T ]. We now show that the pair ( f̄ , Q̄) is such that I( f̄ , Q̄) <

+∞. Since f̄0 = m, it is enough to show J( f̄ , Q̄) < +∞. This is stated in the next Proposition.

Proposition 2.2. For ( f̄ , Q̄) defined above the dynamical rate function J( f̄ , Q̄) is finite.

Proof. Since ( f̄ , Q̄) ∈ Sac
e , the dynamical rate function defined in Eq (1.13) is given by

1
2

∫ t∗

0
dt

∑
ε,ε∗,ε′,ε

′
∗

f̄t(ε) f̄t(ε∗)B̄t

(
log

B̄t

B
− 1

)
+

1
2

∫ T

0
f̄t(ε) f̄t(ε∗)B. (2.9)

For t < t∗ we have that

B̄t

(
log

B̄t

B
− 1

)
= α̇B̃

(
log α̇ + log

1 + 2ε
2
− 1

)
.

Since log α̇ = 2 log(1 + α/t∗), the first integral is

1
2

∫ +∞

0
dα

∑
ε≥1

f 2
α (ε)

(
2 log

(
1 +

α

t∗

)
+ log

1 + 2ε
2
− 1

)
.

Using (2.3) we bound this term by

c
∫ +∞

0

1
(1 + α)3/2 (1 + log(1 + α)) < +∞,
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where c depend only on e and t∗.
The second integral in Eq (2.9) is

1
2

∫ t∗

0
dt

∑
ε≥1

fα(t)

2

+
1
2

(T − t∗) ≤
T
2
,

which completes the proof. �

3. Large deviations lower bound

In order to explain the strategy to prove (1.18), we recall some basic facts on the large deviations
lower bound. Let {Pn} be a sequence of probabilities on a topological space X. Fix x ∈ X and a
open neighborhood O 3 x. To obtain a lower bound for Pn(O) we modify the probability Pn so that
x becomes the typical behavior. If we are able to do so by paying – as measured by the relative
entropy with respect to Pn – not too much then we obtain a good lower bound. The precise statement
is summarized in the next lemma, see e.g., [11] for its proof.

Lemma 3.1. Let {Pn}n∈N be a sequence of probabilities on a completely regular topological space X

and fix x ∈ X. Assume that there exists a sequence {Px
n} weakly convergent to δx and such that

lim
n→∞

1
n

Ent
(
Px

n

∣∣∣Pn
)
≤ I(x) (3.1)

for some I : X→ [0,+∞]. Then for any open neighborhood O 3 x

lim
n→∞

1
n

log Pn(O) ≥ −I(x).

In most of the applications, and indeed also in our case, the strategy suggested by the above lemma
is implemented together with a density argument. The family of perturbed probabilities Px

n is not
constructed for the point x itself but rather for an approximation xk; if the function I is continuous
along the sequence xk then this will do as well. We emphasize that in typical infinite dimensional
applications – as in the present case – the rate function I is only lower semicontinuous so the sequence
xk has to be properly chosen. We summarize the argument in the next statement which is deduced from
Lemma 3.1 by a straightforward diagonal argument.

Lemma 3.2. Let {Pn}n∈N be a sequence of probabilities on a completely regular topological space X,
fix x ∈ X, and a sequence xk → x. Assume that there exists I : X → [0,+∞] meeting the following
conditions:

(i) for each k ∈ N there exists a family {Pxk
n }n∈N satisfying the conditions in Lemma 3.1;

(ii) limk I(xk) ≤ I(x).

Then, for any open neighborhoods O 3 x

lim
n→∞

1
n

log Pn(O) ≥ −I(x).
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To implement condition (i) and (ii) in the previous lemma, for 0 < δ < t∗, define the pair ( f̄ δ, Q̄δ) by

f̄ δt (ε) =

 f̄t(ε) t ∈ [0, t∗ − δ)
f̄t∗−δ(ε) t ∈ [t∗ − δ,T ],

(3.2)

and dQ̄δ = dt q̄δt with q̄δt = q̄t1I[0,t∗−δ)(t). Let µN,e as in the statement of Theorem 1.2, and denote by P̄N,δ
µN,e

the law of the microscopic dynamics with the perturbed collision kernel B̄δ = B̄1I[0,t∗−δ)(t), B̄ in (2.7).
Then the following two Lemmata imply the large deviation lower bound (1.18).

Lemma 3.3. For each δ ∈ (0, t∗) as N → +∞ the pair (πN ,QN) converges in P̄N,δ
µN,e probability to

( f̄ δ, Q̄δ). Furthermore,

lim
N→+∞

1
N

Ent(P̄N,δ
µN,e
|PN
µN,e

) = I( f̄ δ, Q̄δ). (3.3)

Lemma 3.4. As δ ↓ 0 we have ( f̄ δ, Q̄δ)→ ( f̄ , Q̄) and I( f̄ δ, Q̄δ)→ I( f̄ , Q̄).

Proof of Lemma 3.3. By definition of B̄δ, supt supε,ε′
∑
ε′,ε′∗

B̄δ
t (ε, ε

′, ε′∗) ≤ cδ. Therefore, by classical
chaos propagation argument, πN converges in P̄N,δ

µN,e probability to f̄ δ. To deduce the convergence of the
empirical flow, it is enough to observe that for each bounded Ft(ε, ε∗, ε′, ε′∗)

MF
t B

∫ t

0

∑
ε,ε∗,ε′,ε

′
∗

QN(ds, ε, ε∗, ε′, ε′∗)Fs(ε, ε∗, ε′, ε′∗)

−
1
2

∫ t

0
ds

∑
ε,ε∗,ε′,ε

′
∗

πN
s (ε)πN

s (ε∗)B̄δ
s(ε, ε∗, ε

′, ε′∗)Fs(ε, ε∗, ε′, ε′∗)

+
1
2

1
N

∫ t

0
ds

∑
ε,ε′,ε′∗

πN
s (ε)B̄δ

s(ε, ε, ε
′, ε′∗)Fs(ε, ε, ε′, ε′∗)

(3.4)

is a P̄N,δ
µN,e martingale with predictable quadratic variation

〈MF〉t =
1
2

1
N

∫ t

0
ds

∑
ε,ε∗,ε′,ε

′
∗

πN
s (ε)πN

s (ε∗)B̄δ
s(ε, ε∗, ε

′, ε′∗)F
2
s (ε, ε∗, ε′, ε′∗)

−
1
2

1
N2

∫ t

0
ds

∑
ε,ε′,ε′∗

πN
s (ε)B̄δ

s(ε, ε, ε
′, ε′∗)F

2
s (ε, ε, ε′, ε′∗).

Set Fδ
t (ε, ε∗, ε′, ε′∗) = log(B̄δ

t /B). By standard Markov chain computation, the relative entropy of P̄N,δ
µN,e

with respect to PN
µN,e

is given by

1
N

Ent(P̄N,δ
µN,e
|PN
µN,e

)

= ĒN,δ
µN,e

(
QN(Fδ) −

1
2

∫ T

0
dt

∑
ε,ε∗,ε′,ε

′
∗

πN
t (ε)πN

t (ε∗)
[
B̄δ

t (ε, ε∗, ε
′, ε′∗) − B(ε, ε∗, ε′, ε′∗)

]
+

1
N

1
2

∫ T

0
dt

∑
ε,ε′,ε′∗

πN
t (ε)

[
B̄δ

t (ε, ε, ε
′, ε′∗) − B(ε, ε, ε′, ε′∗)

])
.

(3.5)
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Since supt supε,ε′
∑
ε′,ε′∗

B̄δ
t (ε, ε

′, ε′∗) ≤ cδ, by the law of large numbers

lim
N→∞
ĒN,δ
µN,e

(1
2

∫ T

0
dt

∑
ε,ε∗,ε′,ε

′
∗

πN
t (ε)πN

t (ε∗)
[
B̄δ

t (ε, ε∗, ε
′, ε′∗) − B(ε, ε∗, ε′, ε′∗)

])
=

1
2

∫ T

0
dt

∑
ε,ε∗,ε′,ε

′
∗

f̄ δt (ε) f̄ δt (ε∗)
[
B̄δ

t (ε, ε∗, ε
′, ε′∗) − B(ε, ε∗, ε′, ε′∗)

]
,

while the last term on the right hand side of (3.5) vanishes as N diverges. Again, by the law of large
numbers, in order to prove ĒN,δ

µN,e

(
QN(Fδ)

)
→ Q̄δ(Fδ) it is enough to show the uniform integrability of

QN(Fδ) with respect to P̄N,δ
µN,e . By exploiting the martingale decomposition (3.4), since |Fδ| ≤ cδ(1 +

log(1 + ε + ε∗)), a direct computation yields ĒN,δ
µN,e

(
QN(Fδ)2

)
≤ cδ, which implies the requested uniform

integrability. Observing that He( f̄ δ0 ) = 0, and recalling (1.13) and (1.15), the proof is concluded. �

Proof of Lemma 3.4. The convergence of ( f̄ δ, Q̄δ) to ( f̄ , Q̄) follows from (3.2), the continuity of t 7→ f̄t,
and the integrability of q̄t. The convergence of the rate function is achieved by the arguments in the
proof of Proposition 2.2 and dominated convergence.
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