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1. Introduction

In the recent few centuries, partial differential equations have provided powerful scientific tools
for describing many mathematical models. However, with the development of science and the further
understanding of natural phenomena, the classical differential equations can not explain random phe-
nomena in the nature and other fields well. In this context, the stochastic partial differential equations
(SPDEs for short) are brought in as the models for depicting a variety of random phenomena [1]. The
general form of such equations is usually formulated as

du = (Au + F(u))dt +G(u)dW(t),
u(0) = u0.

Here, H is a Hilbert space, and u(t) is an H-valued random process. We denote by u0 ∈ H the initial
value. A is a linear, self-adjoint, positive definite, not necessarily bounded operator with a compact
inverse and densely defined in a subspace of H. F and G are usually nonlinear operators on H. W(t) is
an H-valued Q-Wiener process defined in a filtered probability space (Ω,F , P,Ft).
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In this paper, we mainly concern the following SPDE with additive noise,

du + (Au + F(u))dt = GdW(t), inD, 0 ≤ t ≤ T,
u = 0, on ∂D, 0 ≤ t ≤ T,
u(0) = u0, inD,

(1.1)

whereD ⊂ R2 is a polygonal domain and the linear operator G is independent of u.
Up to now, different kinds of numerical methods have been applied to solving the form of the SPDE

(1.1), such as finite difference methods, finite element methods, discontinuous Galerkin methods, WG
methods, etc. In [2], the author presents a finite difference method for stochastic nonlinear second-
order boundary-value problems (BVPs) driven by additive noises, and proves that the finite difference
solution converges to the solution to the original stochastic BVP at O(h) in the mean-square sense.
The stochastic Allen-Cahn equation with additive noise is discretized by means of a spectral Galerkin
method in space and a tamed version of the exponential Euler method in time [3]. A discontinuous
Galerkin method is applied in [4] for stochastic differential equations driven by additive noise, and
convergence analysis is provided. In [5], the authors analyze strong approximation errors of both fi-
nite element semi-discretization and spatio-temporal full discretization for the stochastic Allen-Cahn
equation driven by additive noise in space dimension d ≤ 3. A stochastic analogue of the local dis-
continuous Galerkin method is constructed for a stochastic two-point boundary-value problem driven
by an additive white noise [6]. In [7], the authors adopt the Argyris finite elements to solve (1.1) with
A = −∆2 and obtain the optimal order hβ of error estimates with β > 0. In [8, 9], the linear version
of (1.1) is investigated via the WG methods and the optimal order estimates in the sense of strong
convergence are derived.

In general, WG methods, firstly proposed by Wang and Ye [10], are newly developed numerical
techniques for solving partial differential equations. The essence of this method is the use of weak finite
element functions and their weak derivatives computed with a framework that mimics the distribution
or generalized functions. Since the method was put forward, it has been applied/extended to different
kinds of partial differential equations, such as biharmonic equations [11], Stokes equations [13], linear
elasticity equations [22], poroelasticity problems [14], parabolic problems [15, 16], SPDEs [8, 9], etc.

In this paper, we adopt the WG method with a parameter-free stabilization term for solving the
SPDE (1.1) with A = −∆. The main characteristic of this method is that the WG finite element space
consists of discontinuous functions, which allows the WG method applied to the general polygonal
or polyhedral meshes. This characteristic makes the WG method efficient and highly flexible. The
optimal order for strongly convergent error estimates in L2-norm is studied based on the established
semi-discrete WG scheme. As far as we know, this paper is the first to apply the ideas of WG to
nonlinear stochastic models for error analysis.

This paper is organized as follows. In Section 2, we provide several definitions and assumptions
as the preliminaries for the theoretical analysis. Section 3 introduces the details of WG method and
sets up the semi-discrete WG scheme of the nonlinear stochastic model. Several error estimates for
the related deterministic problem are supplied in Section 4, which is helpful for the derivation of our
later main result. And finally, in Section 5, we derive the optimal order for strongly convergent error
estimates in L2-norm based on the established semi-discrete WG scheme.
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2. Definitions and assumptions

In this section, we introduce several definitions and assumptions as a preparation for the later theo-
retical analysis.

Recall that D ⊂ R2 is a polygonal domain. Unless particularly stated, in this paper, we shall use
the standard notations for Sobolev spaces and their associated norms [17]. Let H = L2(D) whose
inner product and norm are denoted by (·, ·) and ∥ · ∥, respectively. Denote by H s = H s(D) with norm
∥ · ∥s. Let H0 and H s

0 be the subspaces of H and H s, respectively, the elements of which vanish on the
boundary ∂D.

Denote by Q : H → H a linear self-adjoint operator with eigenvalues γi > 0 (i = 1, 2, · · · ) and
corresponding normalized eigenfunctions ei ∈ H (i = 1, 2, · · · ). Then ei (i = 1, 2, · · · ) form a family of
completely orthonormal bases of the space H. We further assume:

(H1): The operator Q is bounded and positive definite.

(H2): The operator Q has bounded trace, i.e., Tr(Q) =
∞∑

i=1
γi < +∞.

Since W(t) is a Q-Wiener process defined on a given filtrated probability space (Ω,F , P,Ft), W(t)
is H-valued. Denote by βi(t) (i = 1, 2, ...) a family of Brownian motions in which the elements are
independently and identically distributed. Then the Wiener process W(t) can be written in the form of
its Fourier expansion [18]:

W(t) =
∞∑

i=1

γ1/2
i eiβi(t).

Next, we define several operator spaces. Let L(Q1/2(H),H) be the space of bounded linear operators
from Q1/2(H) to H and denote by L0

2(Q1/2(H),H) a subspace of L(Q1/2(H),H) satisfying:

L0
2(Q1/2(H),H) = {ϕ ∈ L(Q1/2(H),H) :

∞∑
l=1

∥ ϕQ1/2el ∥
2< ∞}.

Let L(H) be the linear bounded operator space from H to H. Then we define a Hilbert-Schmidt operator
space LHS (H) ⊂ L(H), i.e.,

LHS (H) = {Φ ∈ L(H) :
∞∑

i=1

∥ Φei ∥
2< ∞}

with norm

∥ Φ ∥HS= (
∞∑

i=1

∥ Φei ∥
2)1/2, ∀Φ ∈ LHS (H).

It is not hard to see that for any ψ ∈ L0
2(Q1/2(H),H), the operator ψQ1/2 ∈ LHS (H). Let E represent the

standard mathematical expectation. Then, for any ψ ∈ L0
2(Q1/2(H),H), the following isometry equation

holds.

E ∥
∫ t

0
ψ(s)dW(s) ∥2=

∫ t

0
∥ ψ(s)Q1/2 ∥2HS ds. (2.1)

Additionally, define the space L2(Ω; H),

L2(Ω; H) = {v :
∫
Ω

∥ v ∥2 dP(ω) < ∞} (2.2)
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with norm
∥ v ∥L2(Ω;H)= (

∫
Ω

∥ v ∥2 dP(ω))1/2, ∀v ∈ L2(Ω; H).

Similarly, we can define L∞(Ω; H).
Let A = −∆. Assume the operator A defined on H2

0 has real eigenvalues λi > 0 (i = 1, 2, ...) with
corresponding eigenfunctions gi ∈ H2

0 ⊂ H (i = 1, 2, ...). Then for all v ∈ H2
0 , we have

Av =
∞∑

i=1

λi(v, gi)gi.

For s > 0, we define the space Ḣ s:

Ḣ s = {v ∈ H :∥ As/2v ∥=

 ∞∑
i=1

λs
i (v, gi)2

1/2 < ∞}
with norm | · |s=∥ As/2· ∥. Similar to (2.2), we can define L2(Ω; Ḣ s).

The lemma below provides the relationship between Ḣ s and H s
0.

Lemma 2.1. [19, Lemma 3.1] For any s > 0, we have

Ḣ s = {v ∈ H s : ∆ jv = 0 on ∂D, j < s/2}.

Moreover, | · |s is equivalent to ∥ · ∥s in Ḣ s, where

| v |s=
{
∥ ∆pv ∥, i f s = 2p,
∥ ∇(∆pv) ∥, i f s = 2p + 1.

(2.3)

Now we write three assumptions for the SPDE (1.1) we consider.
(H3): The initial value u0 ∈ L2(Ω; Ḣ2).
(H4): The operator F : H0 → Ḣ1 satisfies:

| F(u1) − F(u2) |1≤ C ∥ u1 − u2 ∥, ∀u1, u2 ∈ H0, (2.4)

where C is a positive constant. In this paper, the letter C denotes a generic positive constant which may
be different at different occurrences. Furthermore, if we take u2 ≡ 0, then

| F(u1) |1≤ C(∥ u1 − u2 ∥ + | F(u2) |1) ≤ C(∥ u1 ∥ +1), ∀u1 ∈ H0. (2.5)

(H5): The operator G ∈ L0
2(Q1/2(H),H) satisfies

∥ A1/2GQ1/2 ∥HS< ∞. (2.6)

Let E(t) = e−tA. Then (1.1) admits a unique mild solution of the form [18]:

u(t) = E(t)u0 −

∫ t

0
E(t − s)F(u(s))ds +

∫ t

0
E(t − s)GdW(s). (2.7)

From [20], the following two lemmas hold true.

Lemma 2.2. If the assumptions H3−H5 hold, u is the mild solution of (1.1). Then for 0 ≤ t1 ≤ t2 ≤ T,
there exists a constant C such that

∥ u(t1) − u(t2) ∥L2(Ω;H)≤ C | t1 − t2 |
1/2 . (2.8)

Lemma 2.3. If the assumptions H3 −H5 hold, u is the mild solution of (1.1). Then

sup
s∈[0,T ]

E[∥ u(s) ∥2] < ∞. (2.9)
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3. The WG method

In this section, the details of WG method is introduced, and the semi-discrete WG scheme for the
SPDE (1.1) is established.

Let Th be a regular partition of the domain D satisfying the shape regularity requirements A1-A4
in [21]. The boundary of each element K ∈ Th is denoted by ∂K. Let hK be the diameter of K and
h = max

K∈Th
hK .

We define the weak function space:

W(K) ≜ {v = {v0, vb}; v0 ∈ L2(K), vb ∈ L2(∂K)}.

Here v0 is the value of v in K and vb is the value of v on the boundary ∂K.
With an inclusion map i : H1(K)→ W(K) [21],

i(v) = {v |K , v |∂K}, ∀v ∈ H1(K),

we can embed H1(K) into the weak function space W(K).
For any u, v ∈ W(K), denote by (u, v)K the standard L2-inner product in K and by ∥ · ∥K the

corresponding norm. Similarly, ⟨u, v⟩∂K represents the L2-inner product on ∂K, and the norm is notated
by ∥ · ∥∂K .

Let r be a non-negative integer. For each K ∈ Th, let Pr+1(K) and Pr+1(∂K) be the sets of polynomi-
als with degree no more than r+ 1 in K and on ∂K, respectively. Define a discrete weak function space
Wr+1(K) ⊂ W(K), i.e.,

Wr+1(K) ≜ {v = {v0, vb}; v0 ∈ Pr+1(K), vb ∈ Pr+1(∂K)}.

For each K ∈ Th, let V(K, r) = [Pr(K)]2. Define the discrete weak gradient operator∇d : Wr+1(K)→
V(K, r), such that for any v = {v0, vb} ∈ Wr+1(K), ∇dv ∈ V(K, r) is the unique vector-valued polynomial
satisfying:

(∇dv,q)K ≜ −(v0, (∇ · q))K + ⟨vb, (q · n)⟩∂K , ∀q ∈ V(K, r). (3.1)

Now we extend the definition of the weak function space W(K) and the discrete weak function
space Wr+1(K) to the whole domain D. Denote by W(D) = {v : v |K∈ W(K)} the weak function space
defined on the domainD. Let S h(r + 1) ⊂ W(D) be the the discrete weak function space satisfying:

S h(r + 1) ≜ {v = {v0, vb}; v |K∈ Wr+1(K),∀K ∈ Th},

and denote by S 0
h(r + 1) the subspace of S h(r + 1) with vanishing values on the boundary ∂D. If no

confusion occurs, we use respectively S h to denote S h(r+1), and use S 0
h to denote S 0

h(r+1) throughout
this paper.

We also define the following global vector-valued polynomial space:

V(r) ≜ {q : q |K∈ V(K, r)}.

Then we extend the definition of the weak gradient operator ∇d from each K ∈ Th to the whole domain
D. That is to say, for any v ∈ S h(r + 1), define the operator ∇d : S h(r + 1)→ V(r), such that

∇dv |K≜ ∇d(v |K). (3.2)
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Next, we bring in several locally defined projection operators which are helpful for our theoretical
analysis. For each K ∈ Th, the L2-projection operators Q0 : L2(K) → Pr+1(K) and Qb : L2(∂K) →
Pr+1(∂K) are defined piecewisely in K and on ∂K, respectively. Define Qhu = {Q0u0,Qbub} : W(D)→
S h(r + 1) satisfying:

Qh |K: W(K)
L2
−→ Wr+1(K), ∀K ∈ Th.

For each K ∈ Th, let Rh : [L2(D)]2 → V(r) be the L2-projection operator defined by

Rh |K: [L2(K)]2 L2
−→ V(K, r), ∀K ∈ Th. (3.3)

Now we introduce a bilinear form as follows: For any uh, vh ∈ S h,

as(uh, vh) =
∑
K∈Th

(∇duh,∇dvh)K +
∑
K∈Th

h−1
K ⟨u0 − ub, v0 − vb⟩∂K , ∀uh, vh ∈ S h.

Take the following elliptic problem into account:

−∆u = f , inD,
u = 0, on ∂D.

(3.4)

The variational formulation for (3.4) is to find u ∈ H1
0(D) such that

(∇u,∇v) = ( f , v), ∀v ∈ H1
0(D). (3.5)

The WG scheme for (3.4) is to find uh ∈ S 0
h such that

as(uh, vh) = ( f , vh) = (Qh f , vh), ∀vh ∈ S 0
h. (3.6)

Let Ah : S 0
h → S 0

h be the operator satisfying:

(Ahuh, vh) = as(uh, vh), ∀vh ∈ S 0
h.

Here Ah is a linear, self-adjoint, symmetric, positive definite operator. Then, the numerical scheme
(3.6) is equivalent to finding uh ∈ S 0

h such that

Ahuh = Qh f . (3.7)

Based on [21, Theorem 8.2] and [8, (4.7)], we have the following lemma about the error estimates
of the elliptic problem (3.4) with WG method.

Lemma 3.1. Assuming u ∈ H2(D) and uh ∈ S h are the solutions of (3.4) and (3.7), respectively. Then
there exists a positive constant C which depends only on the domainD, such that

∥ Qhu − uh ∥≤ Ch2 ∥ f ∥ . (3.8)

Define two operators G = A−1 and Gh = A−1
h . G : H0 → H1

0 and Gh : S 0
h → S 0

h are the solution
operators of (3.4) and (3.7), respectively. In other words, u = G f and uh = GhQh f are respectively

Electronic Research Archive Volume 30, Issue 6, 2321–2334.



2327

the solutions of (3.4) and (3.7). It is easy to see that G and Gh are linear, symmetric, positive definite
operators. Then (3.8) can be written as

∥ (QhG −GhQh) f ∥≤ Ch2 ∥ f ∥ . (3.9)

Now we approximate the stochastic problem (1.1) with WG method. The semi-discrete WG scheme
for (1.1) is to find an H−valued random process uh(·, t) ∈ S 0

h with uh(0) = Qhu0, such that for any
vh ∈ S 0

h and 0 ≤ t ≤ T ,

(uh(t), vh) − (uh(0), vh) +
∫ t

0
(Ahuh, vh)ds +

∫ t

0
(QhF(uh), vh)ds = (

∫ t

0
QhGdW(s), vh). (3.10)

In fact, (3.10) is equivalent to

duh + Ahuhdt + QhF(uh)dt = QhGdW, inD, 0 ≤ t ≤ T,
uh(0) = Qhu0, inD.

(3.11)

Let Eh(t) = e−tAh , t ≥ 0. It is obvious that the equation (3.11) has a mild solution

uh(t) = Eh(t)Qhu0 −

∫ t

0
Eh(t − s)QhF(uh(s))ds +

∫ t

0
Eh(t − s)QhGdW(s). (3.12)

4. Several error estimates for the related deterministic problem

In this section, we provide several error estimates with respect to the related deterministic problem,
which are used in the subsequent section.

Lemma 4.1. [12, Lemma 3.2] For any α, β ∈ R and l ≥ 0, we have

| Dl
tE(t)v |β≤ Ct−(β−α)/2−l | v |α, t > 0, 2l + β ≥ α, (4.1)

and ∫ t

0
sα | Dl

tE(s)v |2β ds ≤ C | v |22l+β−α−1, t > 0, α ≥ 0, (4.2)

where Dl
t is the l-th derivative with respect to t.

Consider the following two problems:

ut + Au = 0, u(0) = u0, (4.3)

and
uh,t + Ahuh = 0, uh(0) = Qhu0. (4.4)

Then u = E(t)u0, uh = Eh(t)Qhu0 are the solutions of (4.3) and (4.4), respectively. Making use of the
forms of u and uh, the error equation is shown as follows:

Ghet + e = ρ, (4.5)

where e(t) = uh(t) − Qhu(t), ρ = (QhG −GhQh)ut and e(0) = uh(0) − Qhu(0) = 0.
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Indeed, by virtue of (4.3) and (4.4), we supply

Ghet + e = (Ghuh,t + uh) − (GhQhut + Qhu)
= Gh(uh,t + Ahuh) − (GhQhut + Qhu)
= (QhG −GhQh)ut.

According to the error equation (4.5), it follows from [8] that∫ t

0
∥ e ∥2 ds ≤

∫ t

0
∥ ρ ∥2 ds, (4.6)

and

t ∥ e ∥2≤
1
4

t ∥ e ∥2 +4t ∥ ρ ∥2 +
∫ t

0
(2s ∥ ρt ∥∥ e ∥ + ∥ e ∥2 +2 ∥ ρ ∥∥ e ∥)ds. (4.7)

Furthermore, we can derive the following two lemmas.

Lemma 4.2. For any t ∈ [0,T ], assume that e(t) ∈ S 0
h, e(0) = 0 and (4.5) holds. Then there exists a

positive constant C, such that

∥ e(t) ∥≤ C( sup
0≤s≤t

s ∥ ρt(s) ∥ + sup
0≤s≤t
∥ ρ(s) ∥), t ≥ 0. (4.8)

Proof. Due to (4.7), (4.6) and the mean inequality, we obtain

∥ e(t) ∥2≤ C( sup
0≤s≤t

s2 ∥ ρt(s) ∥2 + sup
0≤s≤t
∥ ρ(s) ∥2), t ≥ 0,

which completes the proof. □

Lemma 4.3. Under the same assumptions of Lemma 4.2, for any fixed positive number ϵ, there exists
a positive constant Cϵ depending on ϵ, such that

∥ e(t) ∥≤ (ϵ sup
0≤s≤t

s ∥ ρt(s) ∥ +Cϵ sup
0≤s≤t
∥ ρ(s) ∥), t ≥ 0. (4.9)

Proof. The proof is similar to the one in Lemma 4.2. Noticing that

2s ∥ ρt ∥∥ e ∥≤ (ϵ2s2 ∥ ρt ∥
2 +

1
ϵ2 ∥ e ∥2), (4.10)

together with (4.7) and (4.6), we finish the proof. □

Notate Fh(t) = Eh(t)Qh − QhE(t). Then we render the following estimate results.

Lemma 4.4. [8, Lemma 4.4] For v ∈ Ḣ2, then we have

∥ Fhv ∥L∞([0,T ];H)= sup
0≤t≤T

∥ Fhv ∥≤ Ch2 | v |2 . (4.11)

If v ∈ Ḣ1 and 0 ≤ t ≤ T, then

∥ Fhv ∥L2([0,t];H)= (
∫ t

0
∥ Fhv ∥2 ds)1/2 ≤ Ch2 | v |1, (4.12)

where C is a positive constant only depending on the domainD.
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Theorem 4.1. Assuming that u0 ∈ Ḣ1 and t > 0, then we have

∥

∫ t

0
Fhu0ds ∥≤ Ch2 ∥ u0 ∥, (4.13)

where C is a positive constant only depending on the domainD.

Proof. Denote by ẽ(t) and ρ̃(t) the integral
∫ t

0
e(s)ds and

∫ t

0
ρ(s)ds, respectively. Together with e(0) = 0,

we acquire

Ghẽt + ẽ = Ghe(t) +
∫ t

0
e(s)ds =

∫ t

0
(Ghet + e)ds = ρ̃.

It is easy to check ẽ(0) = 0. According to (4.8), we provide

∥ ẽ(t) ∥≤ C( sup
0≤s≤t

s ∥ ρ(s) ∥ + sup
0≤s≤t
∥ ρ̃(s) ∥). (4.14)

It follows from Lemma 4.1 and (3.9) that

s ∥ ρ(s) ∥= s ∥ (GhQh − QhG)ut(s) ∥≤ Ch2s ∥ ut(s) ∥≤ Ch2 ∥ u0 ∥, (4.15)

and

∥ ρ̃(s) ∥=∥
∫ s

0
(GhQh − QhG)ut(τ)dτ ∥=∥ (GhQh − QhG)(u(s) − u0) ∥≤ Ch2 ∥ u0 ∥ . (4.16)

Here we notice that Eh(s) = e−sAh is a bounded operator. Then the proof is completed. □

Theorem 4.2. Under the same assumptions of Theorem 4.1, we supply

∥ Fhu0 ∥≤ Ch2t−1 ∥ u0 ∥, (4.17)

where C is a positive constant only depending on the domainD.

Proof. Define ê(t) = te, then by (4.5),

Ghêt + ê = Ghe +Gh(tet) + te = Ghe + tρ.

We denote χ(t) = Ghe(t) + tρ(t). It is easy to check ê(0) = 0. Due to (4.9), for any ϵ > 0, we present

∥ te(t) ∥=∥ ê(t) ∥≤ ϵ sup
0≤s≤t

s ∥ χt(s) ∥ +Cϵ sup
0≤s≤t
∥ χ(s) ∥ .

For the two parts on the right side of the estimate above, we have

∥ χ(s) ∥≤ s ∥ ρ(s) ∥ + ∥ Ghe(s) ∥,

and it follows from (4.5) that

s ∥ χt(s) ∥ ≤ s2 ∥ ρt(s) ∥ +s ∥ ρ(s) ∥ +s ∥ Ghet(s) ∥
≤ s2 ∥ ρt(s) ∥ +s ∥ ρ(s) ∥ +s(∥ ρ(s) ∥ + ∥ e(s) ∥)
= s2 ∥ ρt(s) ∥ +2s ∥ ρ(s) ∥ + ∥ ê(s) ∥ .

Electronic Research Archive Volume 30, Issue 6, 2321–2334.



2330

Let ϵ = 1/2, then

∥ ê(t) ∥≤ (1/2) sup
0≤s≤t
∥ ê(s) ∥ +C( sup

0≤s≤t
s2 ∥ ρt(s) ∥ + sup

0≤s≤t
s ∥ ρ(s) ∥ + sup

0≤s≤t
∥ Ghe(s) ∥).

Choose 0 ≤ s0 ≤ t such that ∥ ê(s0) ∥= sup
0≤s≤t
∥ ê(s) ∥, then

∥ ê(t) ∥≤∥ ê(s0) ∥≤ (1/2) ∥ ê(s0) ∥ +C( sup
0≤s≤t

s2 ∥ ρt(s) ∥ + sup
0≤s≤t

s ∥ ρ(s) ∥ + sup
0≤s≤t
∥ Ghe(s) ∥).

Hence

t ∥ e(t) ∥=∥ ê(t) ∥≤∥ ê(s0) ∥≤ C( sup
0≤s≤t

s2 ∥ ρt(s) ∥ + sup
0≤s≤t

s ∥ ρ(s) ∥ + sup
0≤s≤t
∥ Ghe(s) ∥). (4.18)

Now we estimate ∥ Ghe(s) ∥. Let ẽ(t) =
∫ t

0
e(s)ds, then

Ghe + ẽ = Ghẽt + ẽ = ρ̃.

By virtue of (4.14), we obtain

∥ Ghe(t) ∥≤∥ ẽ(t) ∥ + ∥ ρ̃(t) ∥≤ C( sup
0≤s≤t

s ∥ ρ(s) ∥ + sup
0≤s≤t
∥ ρ̃(s) ∥). (4.19)

Combining (4.18) with (4.19), we have

∥ e(t) ∥≤ Ct−1( sup
0≤s≤t

s2 ∥ ρt(s) ∥ + sup
0≤s≤t

s ∥ ρ(s) ∥ + sup
0≤s≤t
∥ ρ̃(s) ∥).

Because of Lemma 4.1 and (3.9), we render

s2 ∥ ρt(s) ∥= s2 ∥ (GhQh − QhG)utt(s) ∥≤ Ch2s2 ∥ utt(s) ∥≤ Ch2 ∥ u0 ∥ .

With the help of (4.15) and (4.16), we complete the proof. □

5. The main result

In this section, we derive the optimal order for strongly convergent error estimates between the mild
solution (2.7) of the SPDE (1.1) and its semi-discrete WG approximation (3.12) in L2-norm.

The next lemma plays a very important role in getting our main result.

Lemma 5.1. [20] For all C1,C2 ≥ 0, α > 0, t ∈ [0,T ], let ϕ : [0,T ] → R be a nonnegative and
continuous function. If

ϕ(t) = C1 +C2

∫ t

0
(t − s)α−1ϕ(s)ds, (5.1)

then there exists a constant C = C(C2,T, α) such that for all t ∈ [0,T ],

ϕ(t) ≤ CC1. (5.2)
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Theorem 5.1. Let u and uh be the mild solutions of (1.1) and (3.11), respectively. If the assumptions
H3 − H5 in Section 2 hold, then there exists a constant C depending on the domain D and the upper
bound of time T such that

∥ uh(t) − Qhu(t) ∥L2(Ω;H)≤ Ch2.

Proof. Making use of (2.7) and (3.12), we write

uh(t) − Qhu(t) = Fh(t)u0 +

∫ t

0
(QhE(t − s)F(u(s)) − Eh(t − s)QhF(uh(s))ds)ds

+

∫ t

0
Fh(t − s)GdW(s)

:= F1 + F2 + F3.

We record the three parts on the right side as F1, F2 and F3, respectively, and estimate each part one
by one. Firstly, we can easily obtain ∥ F1 ∥L2(Ω;H)≤ h2 ∥ u0 ∥L2(Ω;Ḣ2) by (4.11).

F2 can be written as a combination of three parts:

F2 =

∫ t

0
QhE(t − s)F(u(s))ds −

∫ t

0
Eh(t − s)QhF(uh(s))ds

=

∫ t

0
Eh(t − s)Qh(F(u(s)) − F(uh(s)))ds

−

∫ t

0
Fh(F(u(s)) − F(u(t)))ds

−

∫ t

0
Fh(F(u(t)))ds

= I1 − I2 − I3.

Next, we estimate I1, I2 and I3, respectively. Eh(t−s) and Qh are both bounded operators. Then together
with (2.4), we find

∥ I1 ∥L2(Ω;H)≤ C
∫ t

0
∥ uh(s) − Qhu(s) ∥L2(Ω;H) ds.

By Theorem 4.2, Lemma 2.1, (2.4) and (2.8), we have

∥ I2 ∥L2(Ω;H) ≤

∫ t

0
∥ Fh(F(u(s)) − F(u(t))) ∥L2(Ω;H) ds

≤ Ch2
∫ t

0
(t − s)−1 ∥ F(u(s)) − F(u(t)) ∥L2(Ω;H) ds

≤ Ch2
∫ t

0
(t − s)−1 ∥ F(u(s)) − F(u(t)) ∥L2(Ω;Ḣ1) ds

≤ Ch2
∫ t

0
(t − s)−1 ∥ u(s) − u(t) ∥L2(Ω;H) ds

≤ Ch2
∫ t

0
(t − s)−1/2ds

≤ Ct1/2h2
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≤ CT 1/2h2.

From Theorem 4.1, Lemma 2.1, (2.5) and (2.9), we supply

∥ I3 ∥L2(Ω;H) ≤ Ch2 ∥ F(u(t)) ∥L2(Ω;H)

≤ Ch2 ∥ F(u(t)) ∥L2(Ω;Ḣ1)

≤ Ch2(∥ u(t) ∥L2(Ω;H) +1)
≤ Ch2( sup

s∈[0,T ]
∥ u(s) ∥L2(Ω;H) +1).

Thus,

∥ F2 ∥L2(Ω;H)≤ Ch2 +C
∫ t

0
∥ uh(s) − Qhu(s) ∥L2(Ω;H) ds.

Now we consider F3. With the help of (2.1), we provide

∥ F3 ∥
2
L2(Ω;H) = E ∥

∫ t

0
Fh(t − s)GdW(s) ∥2

=

∫ t

0
∥ Fh(t − s)GQ1/2 ∥2HS ds

=

∞∑
l=1

∫ t

0
∥ Fh(t − s)GQ1/2el ∥

2 ds.

From (4.12), it follows that

∥ F3 ∥
2
L2(Ω;H)≤ C

∞∑
l=1

h4 | gQ1/2el |
2
1= Ch4 ∥ A1/2gQ1/2 ∥2HS .

Hence,

∥ uh(t) − Qhu(t) ∥L2(Ω;H) ≤ ∥ F1 ∥L2(Ω;H) + ∥ F2 ∥L2(Ω;H) + ∥ F3 ∥L2(Ω;H)

= Ch2 +C
∫ t

0
∥ uh(s) − Qhu(s) ∥L2(Ω;H) ds.

By Lemma 5.1 with α = 1 and ϕ(t) =∥ uh(t) − Qhu(t) ∥L2(Ω;H), the proof is completed. □
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