The aim of this work is to show a non-sharp quantitative stability version of the fractional isocapacitary inequality. In particular, we provide a lower bound for the isocapacitary deficit in terms of the Fraenkel asymmetry. In addition, we provide the asymptotic behaviour of the $ s $-fractional capacity when $ s $ goes to $ 1 $ and the stability of our estimate with respect to the parameter $ s $.
Citation: Eleonora Cinti, Roberto Ognibene, Berardo Ruffini. A quantitative stability inequality for fractional capacities[J]. Mathematics in Engineering, 2022, 4(5): 1-28. doi: 10.3934/mine.2022044
The aim of this work is to show a non-sharp quantitative stability version of the fractional isocapacitary inequality. In particular, we provide a lower bound for the isocapacitary deficit in terms of the Fraenkel asymmetry. In addition, we provide the asymptotic behaviour of the $ s $-fractional capacity when $ s $ goes to $ 1 $ and the stability of our estimate with respect to the parameter $ s $.
[1] | F. J. Almgren, E. H. Lieb, Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc., 2 (1989), 683–773. doi: 10.1090/S0894-0347-1989-1002633-4 |
[2] | V. Andrievskiĭ, W. Hansen, N. Nadirashvili, Isoperimetric inequalities for capacities in the plane, Math. Ann., 292 (1992), 191–195. doi: 10.1007/BF01444617 |
[3] | L. Brasco, E. Cinti, S. Vita, A quantitative stability estimate for the fractional Faber-Krahn inequality, J. Funct. Anal., 279 (2020), 108560. doi: 10.1016/j.jfa.2020.108560 |
[4] | L. Brasco, G. De Philippis, Spectral inequalities in quantitative form, In: Shape optimization and spectral theory, Warsaw, Poland: De Gruyter Open Poland, 2017,201–281. |
[5] | L. Brasco, D. Gómez-Castro, J. L. Vázquez, Characterisation of homogeneous fractional Sobolev spaces, Calc. Var., 60 (2021), 60. doi: 10.1007/s00526-021-01934-6 |
[6] | L. Brasco, S. Mosconi, M. Squassina, Optimal decay of extremals for the fractional Sobolev inequality, Calc. Var., 55 (2016), 23. doi: 10.1007/s00526-016-0958-y |
[7] | L. Brasco, E. Parini, M. Squassina, Stability of variational eigenvalues for the fractional $p$-Laplacian, DCDS, 36 (2016), 1813–1845. |
[8] | L. Brasco, A. Salort, A note on homogeneous Sobolev spaces of fractional order, Annali di Matematica, 198 (2019), 1295–1330. doi: 10.1007/s10231-018-0817-x |
[9] | C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Bologna: Springer Cham, 2016. |
[10] | X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians, Ⅰ: Regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23–53. doi: 10.1016/j.anihpc.2013.02.001 |
[11] | L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. doi: 10.1080/03605300600987306 |
[12] | A. Cianchi, N. Fusco, Functions of bounded variation and rearrangements, Arch. Rational Mech. Anal., 165 (2002), 1–40. doi: 10.1007/s00205-002-0214-9 |
[13] | M. Cicalese, G. P. Leonard, A selection principle for the sharp quantitative isoperimetric inequality, Arch. Rational Mech. Anal., 206 (2012), 617–643. doi: 10.1007/s00205-012-0544-1 |
[14] | A. Cotsiolis, N. K. Tavoularis, Best constants for Sobolev inequalities for higher order fractional derivatives, J. Math. Anal. Appl., 295 (2004), 225–236. doi: 10.1016/j.jmaa.2004.03.034 |
[15] | S. Dipierro, M. Medina, E. Valdinoci, Fractional elliptic problems with critical growth in the whole of $\mathbb{R}^n$, Pisa: Edizioni della Normale, 2017. |
[16] | L. C. Evans, R. F. Gariepy, Measure theory and fine properties of functions, Boca Raton, FL: CRC Press, 2015. |
[17] | A. Figalli, F. Maggi, A. Pratelli, A mass transportation approach to quantitative isoperimetric inequalities, Invent. Math., 182 (2010), 167–211. doi: 10.1007/s00222-010-0261-z |
[18] | L. E. Fraenkel, On the increase of capacity with asymmetry, Comput. Methods Funct. Theory, 8 (2008), 203–224. doi: 10.1007/BF03321684 |
[19] | R. L. Frank, R. Seiringer, Non-linear ground state representations and sharp Hardy inequalities, J. Funct. Anal., 255 (2008), 3407–3430. doi: 10.1016/j.jfa.2008.05.015 |
[20] | N. Fusco, F. Maggi, A. Pratelli, The sharp quantitative isoperimetric inequality, Ann. Math., 168 (2008), 941–980. doi: 10.4007/annals.2008.168.941 |
[21] | N. Fusco, F. Maggi, A. Pratelli, Stability estimates for certain Faber-Krahn, isocapacitary and Cheeger inequalities, Ann. Sc. Norm. Super. Pisa Cl. Sci., 8 (2009), 51–71. |
[22] | N. Fusco, V. Millot, M. Morini, A quantitative isoperimetric inequality for fractional perimeters, J. Funct. Anal., 261 (2011), 697–715. doi: 10.1016/j.jfa.2011.02.012 |
[23] | R. R. Hall, W. K. Hayman, A. W. Weitsman, On asymmetry and capacity, J. Anal. Math., 56 (1991), 87–123. doi: 10.1007/BF02820461 |
[24] | W. Hansen, N. Nadirashvili, Isoperimetric inequalities in potential theory, Potential Anal., 3 (1994), 1–14. doi: 10.1007/BF01047833 |
[25] | W. Hansen, N. Nadirashvili, Isoperimetric inequalities for capacities, In: Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum, New York, 1992,193–206. |
[26] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities, 2 Eds., Cambridge University Press, 1952. |
[27] | J. Malý, W. P. Ziemer, Fine regularity of solutions of elliptic partial differential equations, Providence, RI: American Mathematical Society, 1997. |
[28] | E. Mukoseeva, The sharp quantitative isocapacitary inequality (the case of p-capacity), Adv. Calc. Var., 2021, doi: 10.1515/acv-2020-0106. |
[29] | G. de Philippis, M. Marini, E. Mukoseeva, The sharp quantitative isocapacitary inequality, Rev. Mat. Iberoam., 37 (2021), 2191–2228. doi: 10.4171/rmi/1259 |
[30] | O. Savin, E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal., 43 (2011), 2675–2687. doi: 10.1137/110831040 |
[31] | Y. Sire, S. Terracini, S. Vita, Liouville type theorems and regularity of solutions to degenerate or singular problems part Ⅰ: even solutions, Commun. Part. Diff. Eq., 46 (2021), 310–361. doi: 10.1080/03605302.2020.1840586 |
[32] | M. Warma, The fractional relative capacity and the fractional Laplacian with Neumann and Robin boundary conditions on open sets, Potential Anal., 42 (2015), 499–547. doi: 10.1007/s11118-014-9443-4 |