Many scholars have lately explored fractional-order boundary value issues with a variety of conditions, including classical, nonlocal, multipoint, periodic/anti-periodic, fractional-order, and integral boundary conditions. In this manuscript, the existence and uniqueness of solutions to sequential fractional differential inclusions via a novel set of nonlocal boundary conditions were investigated. The existence results were presented under a new class of nonlocal boundary conditions, Carathéodory functions, and Lipschitz mappings. Further, fixed-point techniques have been applied to study the existence of results under convex and non-convex multi-valued mappings. Ultimately, to support our findings, we analyzed an illustrative example.
Citation: Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen. Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions[J]. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750
Many scholars have lately explored fractional-order boundary value issues with a variety of conditions, including classical, nonlocal, multipoint, periodic/anti-periodic, fractional-order, and integral boundary conditions. In this manuscript, the existence and uniqueness of solutions to sequential fractional differential inclusions via a novel set of nonlocal boundary conditions were investigated. The existence results were presented under a new class of nonlocal boundary conditions, Carathéodory functions, and Lipschitz mappings. Further, fixed-point techniques have been applied to study the existence of results under convex and non-convex multi-valued mappings. Ultimately, to support our findings, we analyzed an illustrative example.
[1] | B. Ahmad, S. K. Ntouyas, Existence results for Caputo-type sequential fractional differential inclusions with nonlocal integral boundary conditions, J. Appl. Math. Comput., 50 (2016), 157–174. https://doi.org/10.1007/s12190-014-0864-4 doi: 10.1007/s12190-014-0864-4 |
[2] | M. Kisielewicz, Stochastic differential inclusions and applications, In: Springer optimization and its applications, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6756-4 |
[3] | H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. De la Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential euations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579 |
[4] | H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 30 (2024), 632–647. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232 |
[5] | M. F. Danca, Synchronization of piecewise continuous systems of fractional order, Nonlinear Dyn., 78 (2014), 2065–2084. https://doi.org/10.1007/s11071-014-1577-9 doi: 10.1007/s11071-014-1577-9 |
[6] | Y. Cheng, R. P. Agarwal, D. O. Regan, Existence and controllability for nonlinear fractional differential inclusions with nonlocal boundary conditions and time-varying delay, FCAA, 21 (2018), 960–980. https://doi.org/10.1515/fca-2018-0053 doi: 10.1515/fca-2018-0053 |
[7] | S. K. Ntouyas, S. Etemad, J. Tariboon, Existence results for multi-term fractional differential inclusions, Adv. Diff. Equ., 2015 (2015), 140. https://doi.org/10.1186/s13662-015-0481-z doi: 10.1186/s13662-015-0481-z |
[8] | A. Losta, Z. Opial, Application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 13 (1965), 781–786. |
[9] | S. Chakraverty, R. M. Jena, S. K. Jena, Computational fractional dynamical systems: Fractional differential equations and applications, John Wiley & Sons, 2022. https://doi.org/10.1002/9781119697060 |
[10] | B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Bound. Value Probl., 2009 (2009), 625347. https://doi.org/10.1155/2009/625347 doi: 10.1155/2009/625347 |
[11] | H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0 |
[12] | H. A. Hammad, H. Aydi, M. Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, J. Inequal. Appl., 2023 (2023), 105. https://doi.org/10.1186/s13660-023-03018-9 doi: 10.1186/s13660-023-03018-9 |
[13] | Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0 |
[14] | M. Subramanian, M. Manigandan, C. Tunc, T. N. Gopal, J. Alzabut, On the system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order, J. Taibah Uni. Sci., 16 (2022), 1–23. https://doi.org/10.1080/16583655.2021.2010984 doi: 10.1080/16583655.2021.2010984 |
[15] | M. Manigandan, S. Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran, Existence results for a coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order, AIMS Math., 7 (2022), 723–755. https://doi.org/10.3934/math.2022045 doi: 10.3934/math.2022045 |
[16] | A. Perelson, Modeling the interaction of the immune system with HIV, In: Mathematical and statistical approaches to AIDS epidemiology, Berlin: Springer, 1989,350–370. https://doi.org/10.1007/978-3-642-93454-4_17 |
[17] | A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-a doi: 10.1016/0025-5564(93)90043-a |
[18] | D. Baleanu, O. G. Mustafa, R. P. Agarwal, On $L^{p}$-solutions for a class of sequential fractional differential equations, Appl. Math. Comput., 218 (2011), 2074–2081. https://doi.org/10.1016/j.amc.2011.07.024 doi: 10.1016/j.amc.2011.07.024 |
[19] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[20] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[21] | Z. Wei, W. Dong, Periodic boundary value problems for Riemann-Liouville sequential fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 87 (2011), 1–13. https://doi.org/10.14232/ejqtde.2011.1.87 doi: 10.14232/ejqtde.2011.1.87 |
[22] | H. A. Hammad, H. Aydi, H. Isik, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Math., 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350 |
[23] | H. A. Hammad, M. De la Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Fract., 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092 doi: 10.3390/fractalfract7010092 |
[24] | X. Li, D. Chen, On solvability of some p-Laplacian boundary value problems with Caputo fractional derivative, AIMS Math., 6 (2021), 13622–13633. https://doi.org/10.3934/math.2021792 doi: 10.3934/math.2021792 |
[25] | H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159 |
[26] | Z. Wei, Q. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), 260–272. https://doi.org/10.1016/j.jmaa.2010.01.023 doi: 10.1016/j.jmaa.2010.01.023 |
[27] | M. Klimek, Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci., 16 (2011), 4689–4697. https://doi.org/10.1016/j.cnsns.2011.01.018 doi: 10.1016/j.cnsns.2011.01.018 |
[28] | C. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384 (2011), 211–231. https://doi.org/10.1016/j.jmaa.2011.05.082 doi: 10.1016/j.jmaa.2011.05.082 |
[29] | Y. K. Chang, J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model., 49 (2009), 605–609. https://doi.org/10.1016/j.mcm.2008.03.014 doi: 10.1016/j.mcm.2008.03.014 |
[30] | S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis (theory), Dordrecht: Kluwer Academic Publishers, 1997. |
[31] | K. Deimling, Multivalued differential equations, New York: De Gruyter, 1992. https://doi.org/10.1515/9783110874228 |
[32] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, methods of their solution, and some of their applications, Elsevier, 1998. |
[33] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. |
[34] | H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543 |
[35] | C. Castaing, M. Valadier, Convex analysis and measurable, multifunctions, In: Lecture Notes in Mathematics, Berlin: Springer, 1977. https://doi.org/10.1007/BFb0087685 |