Many scholars have lately explored fractional-order boundary value issues with a variety of conditions, including classical, nonlocal, multipoint, periodic/anti-periodic, fractional-order, and integral boundary conditions. In this manuscript, the existence and uniqueness of solutions to sequential fractional differential inclusions via a novel set of nonlocal boundary conditions were investigated. The existence results were presented under a new class of nonlocal boundary conditions, Carathéodory functions, and Lipschitz mappings. Further, fixed-point techniques have been applied to study the existence of results under convex and non-convex multi-valued mappings. Ultimately, to support our findings, we analyzed an illustrative example.
Citation: Murugesan Manigandan, Kannan Manikandan, Hasanen A. Hammad, Manuel De la Sen. Applying fixed point techniques to solve fractional differential inclusions under new boundary conditions[J]. AIMS Mathematics, 2024, 9(6): 15505-15542. doi: 10.3934/math.2024750
[1] | Muneerah AL Nuwairan, Ahmed Gamal Ibrahim . The weighted generalized Atangana-Baleanu fractional derivative in banach spaces- definition and applications. AIMS Mathematics, 2024, 9(12): 36293-36335. doi: 10.3934/math.20241722 |
[2] | Adel Lachouri, Naas Adjimi, Mohammad Esmael Samei, Manuel De la Sen . Non-separated inclusion problem via generalized Hilfer and Caputo operators. AIMS Mathematics, 2025, 10(3): 6448-6468. doi: 10.3934/math.2025294 |
[3] | Mouffak Benchohra, John R. Graef, Nassim Guerraiche, Samira Hamani . Nonlinear boundary value problems for fractional differential inclusions with Caputo-Hadamard derivatives on the half line. AIMS Mathematics, 2021, 6(6): 6278-6292. doi: 10.3934/math.2021368 |
[4] | Bashir Ahmad, Badrah Alghamdi, Ahmed Alsaedi, Sotiris K. Ntouyas . Existence results for Riemann-Liouville fractional integro-differential inclusions with fractional nonlocal integral boundary conditions. AIMS Mathematics, 2021, 6(7): 7093-7110. doi: 10.3934/math.2021416 |
[5] | M. Manigandan, Subramanian Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran . Existence results for coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order. AIMS Mathematics, 2022, 7(1): 723-755. doi: 10.3934/math.2022045 |
[6] | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Mohammed S. Abdo, Kamal Shah, Thabet Abdeljawad . Qualitative analysis of a fuzzy Volterra-Fredholm integrodifferential equation with an Atangana-Baleanu fractional derivative. AIMS Mathematics, 2022, 7(9): 15994-16016. doi: 10.3934/math.2022876 |
[7] | Ugyen Samdrup Tshering, Ekkarath Thailert, Sotiris K. Ntouyas . Existence and stability results for a coupled system of Hilfer-Hadamard sequential fractional differential equations with multi-point fractional integral boundary conditions. AIMS Mathematics, 2024, 9(9): 25849-25878. doi: 10.3934/math.20241263 |
[8] | Yige Zhao, Yibing Sun, Zhi Liu, Yilin Wang . Solvability for boundary value problems of nonlinear fractional differential equations with mixed perturbations of the second type. AIMS Mathematics, 2020, 5(1): 557-567. doi: 10.3934/math.2020037 |
[9] | Xiulin Hu, Lei Wang . Positive solutions to integral boundary value problems for singular delay fractional differential equations. AIMS Mathematics, 2023, 8(11): 25550-25563. doi: 10.3934/math.20231304 |
[10] | Abeer Al Elaiw, Murugesan Manigandan, Muath Awadalla, Kinda Abuasbeh . Existence results by Mönch's fixed point theorem for a tripled system of sequential fractional differential equations. AIMS Mathematics, 2023, 8(2): 3969-3996. doi: 10.3934/math.2023199 |
Many scholars have lately explored fractional-order boundary value issues with a variety of conditions, including classical, nonlocal, multipoint, periodic/anti-periodic, fractional-order, and integral boundary conditions. In this manuscript, the existence and uniqueness of solutions to sequential fractional differential inclusions via a novel set of nonlocal boundary conditions were investigated. The existence results were presented under a new class of nonlocal boundary conditions, Carathéodory functions, and Lipschitz mappings. Further, fixed-point techniques have been applied to study the existence of results under convex and non-convex multi-valued mappings. Ultimately, to support our findings, we analyzed an illustrative example.
The following abbreviations are used in this manuscript:
FD | Fractional differential |
FDEs | Fractional differential equations |
SFD | Sequential Fractional differential |
l.s.c | lower semi continuous |
c.c | completely continuous |
u.s.c | upper semi continuous |
HU | Hyers-Ulam |
In recent times, fractional differential (FD) equations have garnered substantial attention as a pivotal area of research. Numerous applications of fractional-order derivatives can be found in various scientific and engineering fields, where they are used to mathematically model physical and biological phenomena. A wealth of literature exists, containing a wide range of results on initial and boundary value problems related to FD equations and inclusions. For recent findings, see [1,2,3,4] and the accompanying references can be consulted. Specifically, differential inclusions have proven to be highly advantageous in the investigation of dynamic systems and stochastic processes. Instances encompass processes like sweeping phenomena, nonlinear dynamics pertaining to wheeled vehicles, granular systems, and control quandaries, among others. Comprehensive insight into pertinent topics within stochastic processes, control theory, differential games, optimization, and their practical implementation across domains such as finance, manufacturing, queuing networks, and climate control can be found in the reference [2]. For a more detailed exploration of the utilization of fractional differential inclusions in synchronization processes, reference [5] offers further information. Notably, efforts in the literature concerning boundary value problems involving FD equations and inclusions have undergone substantial expansion, encompassing a diverse array of outcomes. On the other hand, researchers have also made multiple attempts to establish sufficient conditions for the existence and uniqueness of solutions concerning different classes (inclusions) of initial and boundary value problems incorporating the Caputo fractional derivative.
Integral boundary conditions give rise to a fascinating and significant class of problems, encompassing two, three, multipoint, and nonlocal boundary value problems as distinct instances [6,7,8]. These boundary conditions find application in diverse fields, including population dynamics [9] and cellular systems. In the initial phase of the study, the authors employed the Bohnenblust-Karlin fixed point theorem to establish the existence of solutions pertaining to a specific category of FD inclusions characterized by separated boundary conditions. Subsequently, the endeavors extended to establishing the existence outcomes for a boundary value problem associated with FD inclusions, wherein fractional separated boundary conditions were considered. Notably, anti-periodic boundary conditions have garnered considerable attention and found utility in various domains, such as blood flow problems, chemical engineering, underground water flow, and population dynamics. Ahamad and Otero-Espinar [10] delved into fractional inclusions with anti-periodic boundary conditions, establishing certain sufficient conditions for the existence of solutions using the Bohnenblust-Karlin fixed-point theorem. In addition to the aforementioned investigations, the study encompassed an examination of existence outcomes concerning FD inclusions of higher order, considering nonlocal boundary conditions. Moreover, the research included the reporting of existence results for FD equations of higher order, involving multi-strip Riemann-Liouville fractional integral boundary conditions.
The exploration of coupled systems of fractional differential equations (FDEs) holds immense prominence within the realm of mathematics and across various applied disciplines. These systems manifest across a diverse array of real-world predicaments, imbuing them with relevance and value in unraveling intricate phenomena. For a more profound comprehension of the significance and applications inherent to coupled systems of FDEs, one can turn to the citations [1,11,13,14,15]. These references furnish intricate details and exemplars that spotlight the extensive spectrum of predicaments where such systems retain relevance and practicality. Scientists spanning an array of fields, including physics, engineering, biology, and economics, have duly acknowledged the merits of delving into the study and resolution of these coupled systems to glean insights into multifaceted dynamic processes and occurrences. Inspired by these advancements, considerable headway has been achieved in delving into the existence, uniqueness, and stability of solutions for the coupled system of FD equations featuring distinct boundary conditions.
Furthermore, coupled systems of FDEs manifest in diverse applied problems. For instance, HIV, a retrovirus, specifically targets CD4+ lymphocytes, the predominant white blood cells of the immune system. Perelson [16] formulated a basic model for primary HIV infection, categorizing cells into four groups: uninfected CD4+ T cells, productively infected CD4+ T cells, latently infected CD4+ T cells and the viral population. Subsequently, Perelson et al. [17] introduced a fractional-order model to describe the infection dynamics of CD4+ T-cells. The coupled system is described by the following set of fractional ordinary differential equations of order α1,α2,α3>0:
{Dα1(T)=s−KVT−dT+bI,Dα2(I)=KVT−(b+δ)I,Dα3(I)=NδI−cV. |
In recent times, there has been a growing emphasis on exploring the existence and uniqueness of sequential FD (SFD) equations and inclusions. This heightened attention stems from the recognition that such investigations hold significant potential in advancing our understanding of complex mathematical and applied phenomena. As a result, researchers have directed their efforts toward unraveling the intricate characteristics and properties of these sequential equations and inclusions, aiming to uncover novel insights and establish fundamental principles that contribute to the broader landscape of mathematical analysis and its applications [18]. A notable correlation exists between the SFDs as discussed in [19] and the nonsequential Riemann-Liouville derivatives documented in [11]. For recent advancements in the realm of SFD equations, readers are directed to peruse the works presented in references [2,3,20,21,24,25]. Investigations undertaken in [26,27] have delved into the analysis of SFD equations, encompassing various boundary conditions. Notably, an attempt has engaged in a discussion concerning the existence of solutions pertaining to higher-order SFD inclusions, incorporating nonlocal three-point boundary conditions. Furthermore, the examination of SFD inclusions supplemented by nonlocal Riemann-Liouville-type fractional integral boundary conditions has been documented in reference [28].
We now move to a discussion of numerous studies that have previously addressed the exploration of solution existences in scalar and coupled FD inclusions. These studies, characterized by diverse boundary conditions, have served as a significant source of motivation for undertaking the present research endeavor. For instance, in [29], the authors have considered the FD inclusions to explore existence of solutions with boundary conditions:
CDα1Φ1(φ)∈Θ1(φ,Φ1(φ)), φ∈J:=[0,1],α1∈(1,2),Φ1(0)=α, Φ1(1)=β,α,β≠0, |
where CDα1Φ1(φ) represents the Caputo derivative and the function Θ1:J×R→R is continuous.
Subsequently, an attempt was made to investigate the existence of solutions for SFD inclusions [2]
(CDα1+χC1Dα1−1)Φ1(φ)∈Θ1(φ,Φ1(φ)), τ∈[0,1], 2<α≤3, |
under the boundary conditions
Φ1(0)=0, Φ′1(0)=0,Φ1(ζ)=a∫η0(η−s)α1−1Γ(α1)Φ1(s)ds, 0<η<ζ<1. |
where χ1, a, and α are positive real numbers, and the notation CDα1 signifies the Caputo fractional derivative of order α1. The constants 0<η<ζ<1 define the interval limits, while Θ1:[0,1]×R→P(R) represents a multivalued mapping. The set P(R) encompasses all nonempty subsets of R.
Ahmad et al. [13] examined the existence of solutions in the coupled Caputo-type FD inclusions
{(CDα1)Φ1(φ)∈Θ1(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T],(CDα2)Ω1(φ)∈Θ2(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T], |
with involving the coupled boundary conditions:
Φ1(0)=ν1Ω1(T), Φ1′(0)=ν2Ω′1(T),Φ1(0)=μ1Ω1(T), Φ1′(0)=μ2Ω′1(T), |
where the notations CDα1 and CDα2 represent the Caputo fractional derivatives of orders α1 and α2, respectively. The functions Θ1,Θ2:J×R2→R are multivalued mappings. Φ1 and Ω1 are unknown functions over an arbitrary interval (η,ζ) within the given domain [0,T]. The set P(R) encompasses all nonempty subsets of R. Moreover, the constants ν1, ν2, μ1, and μ2 are real values. Furthermore, in reference [11], the authors have addressed a set of boundary value problems concerning a coupled system utilizing Liouville-Caputo type fractional differential equations,
{(CDα1)Φ1(φ)=Θ1(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T],(CDα2)Ω1(φ)=Θ2(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T], |
with the coupled boundary conditions:
{(Φ1+Ω1)(0)=−(Φ1+Ω1)(T),∫ζη(Φ1−Ω1)(ξ)dξ=A, 0<η<ζ<T, |
where CDαi refers to the Caputo fractional derivative operator of order αi, with i=1,2. The parameters α1,α2∈(1,2], 0<η<ζ<T, and Θ1,Θ2:[0,T]×R×R→P(R) represent continuous functions and P(R) is the class of all nonempty subsets of R.
Recently, Subramanian et al. [14] investigated the coupled differential equations and inclusions involving Caputo-type sequential derivatives
{(CDα1+χ1CDα1−1)Φ1(φ)∈Θ1(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T],(CDα2+χ2CDα2−1)Ω1(φ)∈Θ2(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T],(Φ1+Ω1)(0)=−(Φ1+Ω1)(T),∫ζη(Φ1−Ω1)(ξ)dξ=A. |
where CDα1 and CDα2 are the Caputo derivative operator. α1,α2∈(0,1], Θ1,Θ2:[0,T]×R2→R,Θ1,Θ2:[0,T]×R2→P(R) are continuous functions, and P(R) is the class of all nonempty subsets of R.
Motivated by the abovementioned studies, in this work, we intend to consider a novel category of boundary value problems to unearth the existence of Caputo-type coupled SFD inclusions
{(CDα1+χ1CDα1−1)Φ1(φ)∈Θ1(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T],(CDα2+χ2CDα2−1)Ω1(φ)∈Θ2(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T], | (1.1) |
{(Φ1+Ω1)(0)=−(Φ1+Ω1)(T),∫ζη(Φ1−Ω1)(ξ)dξ−m∑i=0ϱi(Φ1−Ω1)(Ui)−n∑j=0ϑj(Φ1−Ω1)(Wj)=A. | (1.2) |
where, CDα1 and CDα2 are the Caputo fractional derivatives of orders α1∈(1,2] and α2∈(1,2], respectively. Further, for distinct indices i=1,⋯,m and j=1,⋯,n, the inequalities 0<Ui<η<ζ<Wj<T hold, where T defines a specific time scale. The functions Θ1 and Θ2 are continuous mappings on [0,T]×R×R, and their values lie within the real number space R. Within the formulation, the initial condition outlined in (1.2) is characterized by an anti-periodic property. Additionally, the second condition delineates the influence of the disparity between the unknown functions Φ1 and Ω1 over an arbitrary interval (η,ζ) within the given domain [0,T], deviating from the cumulative effect of such influences attributed to arbitrary positions at Ui,i=1,⋯,m and Wj,j=1,2,⋯,n, where a positive constant is involved. Further, within the framework, A is to be understood as nonnegative values.
The primary objective of this study is to establish criteria for solutions to the problems (1.1) and (1.2), specifically addressing both convex and non-convex valued multivalued maps denoted by Θ1 and Θ2. This will be achieved by employing standard fixed point theorems. The subsequent sections delineate the organization of this paper. Section 2 provides essential foundational concepts along with an auxiliary lemma that are indispensable for resolving the presented problem. The main results are developed in Section 3, wherein we leverage fixed point theorems, notably the Covitz-Nadler theorem and the nonlinear alternative to the Kakutani fixed point theorem, to establish our main findings. In Section 4, a specific illustrative example is presented, which aligns with the studied systems and serves to demonstrate the application of the fundamental theorems. We conclude our outcomes in Section 5.
In this section, various definitions of multivalued maps and essential lemmas are explored, which are imperative for substantiating the main results [19,30,31,32].
For a normed space (U,‖.‖), let Wcl(U)={Y is closed }, Wcp(U)={Y is compact }, and Wcp,c(U)={Y is compact and convex }.
A multivalued map denoted by χ:U→W(U) adheres to the following properties:
(a) It is categorized as convex valued if χ(w) is convex for every w∈U.
(b) It is considered upper semicontinuous on U if, for each w0∈U, the set χ(w0) is a nonempty closed subset of U and if, for every open set T within U that encompasses χ(w0), there exists an open neighborhood T0 of w0 such that χ(T0)⊂T.
(c) It is termed lower semicontinuous (l.s.c.) if the set m∈U:χ(m)∩A≠⊘ remains open for any open set A within Θ.
(d) It is classified as completely continuous (c.c) if χ(A) is relatively compact (r.c) for every A∈Wb(U), where Wb(U) signifies the ensemble of bounded multivalued maps M∈W(U).
Define U=C(J,R)×C(J,R) as the Banach space endowed with norm ||((Φ1,Ω1))||=supτ∈J|Φ1| +supx∈J|Ω1|, for (Φ1,Ω1)∈U.}
A multivalued map χ:[c,d]→Wcl(R) is categorized as measurable if, for every m∈R, the function φ⟼d(m,χ(φ))=inf|m−k|:k∈χ(φ) is measurable.
In the case of a multivalued map χ:[c,d]×R→W(R), it is designated as Caratheodory under the following conditions:
(ⅰ) The function φ⟼χ(φ,s,m) is measurable for each s,m∈R.
(ⅱ) The mapping (s,m)⟼χ(φ,s,m) is upper semicontinuous (u.s.c) for almost all φ∈[c,d].
Furthermore, a Caratheodory function χ earns the title of L1-Caratheodory when it satisfies the subsequent criteria:
(ⅰ) For every ϵ>0, there exists a nonnegative ψϵ∈L1([c,d],R+) such that |χ(φ,s,m)|=sup|s|:s∈χ(φ,s,m)≤ψϵ(φ) for all s,m∈R with |s|,|m|≤ϵ, and this holds for almost every φ∈[c,d].
Next, we proceed to revisit fundamental definitions in the realm of fractional calculus.
Definition 2.1. [19] The fractional integral of a function Φ1 with a lower limit of zero, and of order α, is formally expressed as:
IαΦ1(φ)=1Γ(α)∫φ0Φ1(ξ)(φ−ξ)1−αdξ. | (2.1) |
This expression holds true under the condition that the right-hand side is pointwise defined over the interval [0,∞). Here, Γ(⋅) represents the gamma function, which can be mathematically denoted as Γ(α)=∫∞0φα−1e−φdφ.
Definition 2.2. [19] The Caputo derivative of fractional order α for an Φ1:[0,∞)→R can be written as
CDα0+Φ1(φ)=Dα0+(Φ1(φ)−n−1∑k=0φkk!Φ(k)1(0)), Φ1>0,n−1<r<n. |
Throughout the rest of this article, we will employ the notation CDα instead of CDα0+ for the sake of simplicity and convenience.
Lemma 2.1. [31] In the event that G:X→Pcl(Y) is u.s.c, then Gr(G) is established as a closed subset within X×Y. This implies that for any given sequences {xn}n∈N⊂X and {yn}n∈N⊂Y, if xn converges to x∗ and yn converges to y∗ as n approaches infinity, and if yn∈G(xn), then it holds that y∗∈G(x∗). Conversely, in the scenario where G is both completely continuous and exhibits a closed graph, the function is demonstrated to be u.s.c.
Lemma 2.2. [8] Consider a separable Banach space X. Let G : [0,T]×R2→Pcp,c(R) be an L1- Carathedory multivalued map and let X be a linear operator from L1([0,T],R) to C([0,T],R). Under these conditions, it can be established that the mapping forms a closed graph within the space C([0,T],R)×C([0,T],R).
Lemma 2.3. (Nonlinear alternative for kakutani maps.p.no.14)[33] Let E be a closed convex subset of of a Banach space H and Θ1 be an open subset of E with 0∈Θ1. In addition, Θ2:E→Jc,cp(E) is an u.s.c compact map. Then, either
● Θ2 has fixed point in E or
● ∃ u∈∂Θ1 and μ∈(0,1) such that u∈μΘ2(u).
Definition 2.3. [2] A multivalued χ:U→W(U) mapping is called
(ⅰ) δ-Lipschitz if ∃ δ>0 ∋ Πd(χ(c),χ(d))≤δd(c,d) for each c,d∈U; and
(ⅱ) a contraction if it is δ-Lipschitz with δ<1.
Lemma 2.4. [20] Let (H,d) be a complete metric space. If χ:H→Jcl(H) is a contraction, then adopt χ to have at least one fixed point.
Lemma 2.5. Let q>0 and f(τ)∈ACn[0,∞) or C[0,∞). Then
(IqCDqf)(τ)=f(τ)−n−1∑k=0f(k)(0)k!τk,τ>0,n−1<q<n. | (2.2) |
The following lemma deals with the linear variant of the problem.
Lemma 2.6. Let α1,α2∈(1.2],ϱi,ϑj>0 and Ψ1,Ψ2∈C(J,R), then the solution of the following system:
{(CDα1+χ1CDα1−1)Φ1(φ)=Ψ1(φ), φ∈J:=[0,T],(CDα2+χ2CDα2−1)Ω1(φ)=Ψ2(φ), φ∈J:=[0,T],(Φ1+Ω1)(0)=−(Φ1+Ω1)(T),∫ζη(Φ1−Ω1)(ξ)dξ−m∑i=0ϱi(Φ1−Ω1)(Ui)−n∑j=0ϑj(Φ1−Ω1)(Wj)=A. | (2.3) |
is defined by
Φ1(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)Ψ1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)Ψ2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ, | (2.4) |
Ω1(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)Ψ1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)Ψ2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ. | (2.5) |
where
{Δ1=(1+e−χ1T)Δ2=∫ζηe−χ1ξdξ−m∑i=0ϱie−χ1(Ui)−n∑j=0ϑje−χ1(Wj)≠0.I1=(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)I2=(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)Ψ1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)Ψ2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ) | (2.6) |
Proof. Applying the operator Iα1 and Iα2 on both sides of FDEs in (2.3), respectively, and using Lemma 2.5, we obtain
{Φ1(φ)=c0e−χ1φ+∫φ0e−χ1(φ−ξ)(∫φ0(s−a)(α1−2)Γ(α1−1)Ψ1(J)dJ)dξ,Ω1(φ)=d0e−χ2φ+∫φ0e−χ2(φ−ξ)(∫φ0(s−u)(α2−2)Γ(α2−1)Ψ2(J)dJ)dξ, | (2.7) |
where c0,d0∈R. Using the boundary conditions (Φ1+Ω1)(0)=−(Φ1+Ω1)(T),∫ζη(Φ1−Ω1)(ξ)dξ−m∑i=0ϱi(Φ1−Ω1)(Ui)−n∑j=0ϑj(Φ1−Ω1)(Wj)=A. in () and () we obtain
c0+d0=I1 | (2.8) |
c0−d0=I2. | (2.9) |
Solving (2.8) and (2.9) together for c0 and d0, it is found that
c0=12{1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)Ψ1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)Ψ2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)}, |
and
d0=12{1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)Ψ1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)Ψ2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)Ψ1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)Ψ2(J)dJ)dξ)}. |
By inserting the values of c0 and d0 from (2.7), we derive the solutions (2.4) and (2.5), respectively.
Assume that (Φ1,Ω1)∈C(J,R)×C(J,R) satisfying
∫ζη(Φ1−Ω1)(ξ)dξ−m∑i=0ϱi(Φ1−Ω1)(Ui)−n∑j=0ϑj(Φ1−Ω1)(Wj)=A, |
and there exist functions
H1,H2∈L1(J,R)∋H1(φ)∈Θ1(φ,Φ1(φ),Ω1(φ)H2(φ)∈Θ2(φ,Φ1(φ),Ω1(φ)), |
a.e on φ∈J and
Φ1(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, | (3.1) |
and
Ω1(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ, | (3.2) |
is referred to as a coupled solution for a system (1.2).
For the purpose of simplifying calculations, we introduce the following notation:
v=e−χ1φ2, |
Υ1=v[1(1+e−χ1T)(Tα1−1χ1Γ(α1)(1−e−χ1T))+1Δ2{(ζα1−1−ηα1−1χ21Γ(α1))(ζχ1+e−χ1ζ−χ1η−e−χ1η)+m∑i=0ϱi(Uα1−1iχ1Γ(α1)(1−e−χ1Ui))+m∑i=0qi(Wα1−1iχ1Γ(α1)(1−e−χ1Wi))}], | (3.3) |
Υ2=v[1(1+e−χ2T)(Tα2−1χ2Γ(α2)(1−e−χ2T))+1Δ2{(ζα2−1−ηα2−1χ22Γ(α2))(ζχ2+e−χ2ζ−χ2η−e−χ2η)+m∑i=0ϱi(Uα2−1iχ2Γ(α2)(1−e−χ2Ui))+m∑i=0qi(Wα2−1iχ2Γ(α2)(1−e−χ2Wi))}], | (3.4) |
Let
VΘ1(Φ1,Ω1)={H1∈L1(J,R):H1(φ)∈Θ1(φ,Φ1(φ),Ω1(φ)), for a.e φ∈J}, |
and
VΘ2(Φ1,Ω1)={H2∈L1(J,R):H2(φ)∈Θ2(φ,Φ1(φ),Ω1(φ)), for a.e φ∈J} |
describe the sets of Θ1,Θ2 selections for each (Φ1,Ω1)∈U×U. By using Lemma 2.6, the following operators Λ1,Λ2:U×U→W(U×U) by:
Λ1(Φ1,Ω1)(φ)={g1∈U×U:∃ H1∈VΘ1(Φ1,Ω1),H2∈VΘ2(Φ1,Ω1) ∋ g1(Φ1,Ω1)(φ)=P1(Φ1,Ω1)(φ), ∀ φ∈J} | (3.5) |
and
Λ2(Φ1,Ω1)(φ)={g2∈U×U:∃ H1∈VΘ1(Φ1,Ω1),H2∈VΘ2(Φ1,Ω1) ∋ g2(Φ1,Ω1)(φ)=P2(Φ1,Ω1)(φ), ∀ φ∈J}, | (3.6) |
where
P1(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, | (3.7) |
and
P2(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. | (3.8) |
Following that, the operator Λ:U×U→W(U×U) is described by
Λ(Φ1,Ω1)(φ)=(Λ1(Φ1,Ω1)(φ)Λ2(Φ1,Ω1)(φ)), |
where Λ1 and Λ2 are defined in (3.5) and (3.6), respectively.
Now, we establish the existence of solutions for the BVPs (1.1) and (1.2) by utilizing the nonlinear alternative of Leray-Schauder. Subsequently, we introduce the assumptions that form the basis for illustrating the main findings of this study.
(Q1) Θ1,Θ2:J×R2→W(R) are convex and L1-Carathéodory functions.
(Q2) There exist continuous increasing functions γ1,γ2,k1,k2:[0,∞)→[0,∞) and functions l1,l2∈C(J,R+), such that
‖Θ1(φ,Φ1,Ω1)‖W:=sup{|H1|:H1∈Θ1(φ,Φ1,Ω1)}≤l1(φ)[γ1(‖Φ1‖)+k1(‖Ω1‖)] for each (φ,Φ1,Ω1)∈J×R2,‖Θ2(φ,Φ1,Ω1)‖W:=sup{|H2|:H2∈Θ2(φ,Φ1,Ω1)}≤l2(φ)[γ2(‖Φ1‖)+k2(‖Ω1‖)] for each (φ,Φ1,Ω1)∈J×R2. |
(Q3) There exists a constant Z>0 such that
Z(2Υ1)‖l1‖(γ1(Z)+k1(Z))+(2Υ2)‖l2‖(γ2(Z)+k2(Z))>1, |
where Υ1,Υ2 are defined by (3.3) and (3.4).
(Q4) Θ1,Θ2:J×R2→Wcp(R) are such that Θ1(⋅,Φ1,Ω1):J→Wcp(R2) and Θ2(⋅,Φ1,Ω1):J→Wcp(R2) are measurable for each Φ1,Ω1∈R.
(Q5)
Πd(Θ1(φ,Φ1,Ω1),Θ1(φ,^Φ1,^Ω1))≤s1(φ)(|Φ1−^Φ1|+|Ω1−ˆY|) |
and
Πd(Θ2(φ,Φ1,Ω1),Θ2(φ,^Φ1,^Ω1))≤s2(φ)(|Φ1−^Φ1|+|Ω1−ˆY|) |
∀ φ∈J and Φ1,Ω1,^Φ1,^Ω1∈R with s1,s2∈C(J,R+) and d(0,Θ1(φ,0,0))≤s1(φ), d(0,Θ2(φ,0,0))≤s2(φ) ∀ φ∈J.
Theorem 4.1. Under the assumptions (Q1)–(Q3), it can be asserted that the systems (1.1) and (1.2) possesses at least one solution within the interval J.
Proof. Consider Λ1,Λ2:U×U→W(U×U) the operators which are given by (3.5) and (3.6), respectively. Using the assumption (Q1), the sets VΘ1(Φ1,Ω1) and VΘ2(Φ1,Ω1) are nonempty for each (Φ1,Ω1)∈U×U. Then, for H1∈VΘ1(Φ1,Ω1) and H2∈VΘ2(Φ1,Ω1) for (Φ1,Ω1)∈U×U, we have
g1(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, | (4.1) |
and
g2(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. | (4.2) |
where g1∈Λ1(Φ1,Ω1), g2∈Λ2(Φ1,Ω1), and so (g1,g2)∈Λ(Φ1,Ω1).
We will establish that the operator Λ meets the criteria of the Leray-Schauder nonlinear alternative through a series of steps. Initially, we will demonstrate that Λ(Φ1,Ω1) exhibits a convex valued property. Let (gi,^gi)∈(Λ1,Λ2), i=1,2. Then, ∃ H1i∈VΘ1(Φ1,Ω1), H2i∈VΘ2(Φ1,Ω1), i=1,2, ∋ for each φ∈J, and we achieve
gi(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, | (4.3) |
and
^gi(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. | (4.4) |
Let 0≤ν≤1. Then, for each φ∈J, we arrive at
[νg1+(1−ν)g2](φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)[νH11(J)+(1−ν)H11(J)]dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)[νH21(J)+(1−ν)H21(J)]dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)[νH11(m)+(1−ν)H11(m)]dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)[νH21(m)+(1−ν)H21(m)]dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)[νH11(J)+(1−ν)H11(J)]dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)[νH21(J)+(1−ν)H21(J)]dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)[νH11(J)+(1−ν)H11(J)](J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)[νH21(J)+(1−ν)H21(J)]dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)[νH21(J)+(1−ν)H21(J)](J)dJ)dξ, | (4.5) |
and
[ν^g1+(1−ν)^g2](φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)[ν^H11(J)+(1−ν)^H12(J)]dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)[ν^H21(J)+(1−ν)^H22(J)]dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)[ν^H11(m)+(1−ν)^H12(m)]dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)[ν^H21(m)+(1−ν)^H22(m)]dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)[ν^H11(J)+(1−ν)^H12(J)]dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)[ν^H21(J)+(1−ν)^H22(J)]dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)[ν^H11(J)+(1−ν)^H12(J)](J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)[ν^H21(J)+(1−ν)^H22(J)](J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)[ν^H21(J)+(1−ν)^H22(J)](J)dJ)dξ. | (4.6) |
By virtue of the convex values associated with Θ1 and Θ2, it follows that both VΘ1(Φ1,Ω1) and VΘ2(Φ1,Ω1) inherently possess convex values as well. Clearly, for ν∈[0,1], we have νg1+(1−ν)g2∈Λ1, ν^g1+(1−ν)^g2∈Λ2, and, thus, ν(g1,^g1)+(1−ν)(g2,^g2)∈Λ. For a nonnegative number r, let Br={(Φ1,Ω1)∈U×U:‖Φ1,Ω1‖≤r} be a bounded set in U×U. Then ∃ H1∈VΘ1(Φ1,Ω1), H2∈VΘ2(Φ1,Ω1) such that
g1(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, | (4.7) |
and
g2(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. | (4.8) |
Then, we obtain
|g1(Φ1,Ω1)(φ)|≤e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)‖l1‖(γ1(r)+k1(r))dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)‖l2‖(γ2(r)+k2(r))dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)‖l1‖(γ1(r)+k1(r))dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)‖l2‖(γ2(r)+k2(r))dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)‖l1‖(γ1(r)+k1(r))dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)‖l2‖(γ2(r)+k2(r))dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)‖l1‖(γ1(r)+k1(r))dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)‖l2‖(γ2(r)+k2(r))dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)‖l1‖(γ1(r)+k1(r))dJ)dξ,≤Υ1‖l1‖(γ1(r)+k1(r))+Υ2‖l2‖(γ2(r)+k2(r)) |
and
|g2(Φ1,Ω1)(φ)|≤Υ1‖l1‖(γ1(r)+k1(r))+Υ2‖l2‖(γ2(r)+k2(r)). |
Thus we get
‖g1,g2‖=‖g1(Φ1,Ω1)‖+‖g1(Φ1,Ω1)‖≤2Υ1‖l1‖(γ1(r)+k1(r))+2Υ2‖l2‖(γ2(r)+k2(r)). |
Subsequently, we proceed to establish the equicontinuity of the operator Λ. Let φ1,φ2∈J with φ1<φ2. Then, ∃ H1∈VΘ1(Φ1,Ω1), H2∈VΘ2(Φ1,Ω1) such that
g1(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, |
and
g2(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. |
|g1(Φ1,Ω1)(φ2)−g1(Φ1,Ω1)(φ1)|≤|e−χ1φ2−e−χ1φ12[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ)]}|+|∫φ10(e−χ1(φ2−ξ)−e−χ1(φ1−ξ))(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ+∫φ2φ1e−χ1(φ2−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ|, |
Likewise, one can construct
|g2(Φ1,Ω1)(φ2)−g2(Φ1,Ω1)(φ1)|≤|e−χ1φ2−e−χ1φ12[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)||l1||(γ1(r)+k1(r))dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ)]}|+|∫φ10(e−χ1(φ2−ξ)−e−χ1(φ1−ξ))(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ+∫φ2φ1e−χ1(φ2−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)||l2||(γ2(r)+k2(r))dJ)dξ|. |
Consequently, it follows that the operator Λ(Φ1,Ω1) is equicontinuous. Therefore, in accordance with the Ascoli-Arzelá theorem, the operator Λ(Φ1,Ω1) can be classified as a completely continuous operator. As stated in [26], a c.c operator possesses a closed graph when it is also u.s.c. Consequently, our task is to illustrate that Λ indeed possesses a closed graph. Let (Φ1n,Ω1n)→(Φ1∗,Ω1∗), (gn,^gn)∈Λ(Φ1n,Ω1n), and (gn,^gn)→(g∗,g∗), then we must demonstrate (g∗,^g∗)∈Λ(Φ1∗,Ω1∗). Remember that (gn,gn)∈Λ(Φ1n,Ω1n) implies that ∃ H1n∈VΘ1(Φ1,Ω1), and H2n∈VΘ2(Φ1,Ω1) such that
gn(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1n(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2n(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1n(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2n(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1n(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1n(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2n(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1n(J)dJ)dξ, |
and
ˆgn(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1n(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2n(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1n(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2n(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1n(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2n(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1n(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2n(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2n(J)dJ)dξ. |
Consider the Π1,Π2:L1(J,U×U)→C(J,U×U) continuous linear operators given by
Π1(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, | (4.9) |
and
Π2(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. | (4.10) |
It can be inferred from [8] that (Φ1,Ω1)∘(VΘ1,VΘ2) constitutes a closed graph operator. Furthermore, we have (gn,^gn)∈(Φ1,Ω1)∘(VΘ1(Φ1n,Ω1n),VΘ2(Φ1n,Ω1n)) for all n. Since (Φ1n,Ω1n)→(Φ1∗,Ω1∗), (gn,^gn)→g∗,^g∗), it follows that H1n∈VΘ1(Φ1,Ω1), H2n∈VΘ2(Φ1,Ω1) such that
g∗(Φ1∗,Ω1∗)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1∗)(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2∗)(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)(H1∗)(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)(H2∗)(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1∗)(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2∗)(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1∗)(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2∗)(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1∗)(J)dJ)dξ, |
and
ˆg∗(Φ1∗,Ω1∗)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1∗)(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2∗)(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)(H1∗)(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)(H2∗)(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1∗)(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2∗)(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1∗)(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2∗)(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2∗)(J)dJ)dξ, |
(i.e)., (gn,gn)∈Λ(Φ1∗,Ω1∗).
Finally, for a priori, let (Φ1,Ω1)∈υΛ(Φ1,Ω1). Then ∃ H1∈VΘ1(Φ1,Ω1), H2∈VΘ2(Φ1,Ω1) such that
Φ1(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, | (4.11) |
and
Ω1(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. | (4.12) |
For each φ∈J, we achieve
‖Φ1,Ω1‖=‖Φ1‖+‖Ω1‖≤2Υ1l1(γ1(‖Φ1‖)+k1(‖Ω1‖))+2Υ2l2(γ2(‖Φ1‖)+k2(‖Ω1‖)), |
which signifies that
‖(Φ1,Ω1)‖2Υ1l1(γ1(‖Φ1‖)+k1(‖Ω1‖))+2Υ2l2(γ2(‖Φ1‖)+k2(‖Ω1‖))≤1. |
According to (Q3), Z exists such that ‖(Φ1,Ω1)‖≠Z. Let us adopt
E={(Φ1,Ω1)∈U×U:‖(Φ1,Ω1)‖<Z}. |
The operator Λ:¯E→Wcv,cp(U)×Wcv,cp(U) is c.c and u.s.c. There is no (Φ1,Ω1)∈∂E ∋ (Φ1,Ω1)∈υΛ(Φ1,Ω1) for some υ∈(0,1) by E selection. Consequently, based on the Leray–Schauder nonlinear alternative [33], we can infer that Λ possesses a fixed point (Φ1,Ω1)∈¯E, thereby serving as a solution to the system (1.2).
The subsequent outcome leverages Covitz and Nadler's theorem for multivalued maps as presented in [34].
Let (U,d) represent a metric space generated by the normed space (U,‖⋅‖), and let Πd:W(U)×W(U)→R∪{∞} be described by
Πd(Φ1,Ω1)=max{supx∈Φ1d(x,Ω1),supy∈Ω1d(Φ1,y)}, |
where d(Φ1,y)=infx∈Φ1d(x,y) and d(x,Ω1)=infy∈Ω1d(x,y).
Then, (Wcl,b(U),Πd) is a metric space and (Wcl(U),Πd) is a generalized metric space; see [2].
Theorem 5.1. Under the assumptions (Q4) and (Q5), it can be affirmed that the systems (1.1) and (1.2) possess at least one solution within the interval J, provided that:
(2Υ1)‖s1‖+(2Υ2)‖s2‖<1. | (5.1) |
Proof. Assuming (Q4) that the sets VΘ1(Φ1,Ω1) and VΘ2(Φ1,Ω1) are nonempty for each (Φ1,Ω1)∈U×U, H1 and H2 have measurable selections (see Theorem Ⅲ.6 in [35]). Subsequently, we proceed to establish that the operator Λ satisfies the theorem of Covitz and Nadler [34].
Next, we illustrate that Λ(Φ1,Ω1)∈Wcl(U)×Wcl(U) for each (Φ1,Ω1)∈U×U. Let (gn,ˆgn)∈Λ(Φ1n,Ω1n) such that (gn,ˆgn)→(g,ˆg) in U×U. Then (g,ˆg)∈U×U, ∃ H1n∈VΘ1(Φ1n,Ω1n) and H2n∈VΘ1(Φ1n,Ω1n) such that
gn(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1n)(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2n)(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)(H1n)(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)(H2n)(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1n)(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2n)(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1n)(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2n)(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1n)(J)dJ)dξ, |
and
ˆgn(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1n)(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2n)(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)(H1n)(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)(H2n)(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1n)(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2n)(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)(H1n)(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2n)(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)(H2n)(J)dJ)dξ. |
As a consequence of the compact values associated with Θ1 and Θ2, we proceed by selecting subsequences (referred to as sequences) to guarantee the convergence of H1n and H2n to H1 and H2, respectively, in the space L1(J,R). Hence, H1∈VΘ1(Φ1,Ω1) and H2∈VΘ1(Φ1,Ω1) for each φ∈J such that
gn(Φ1n,Ω1n)(φ)→g(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ, |
and
ˆgn(Φ1n,Ω1n)(φ)→ˆg(Φ1,Ω1)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H1(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H2(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H1(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H2(J)dJ)dξ. |
As a consequence, (g,ˆg)∈Λ, such that Λ is closed. Following that, we demonstrate that one gets from (5.1)
Πd(Λ(Φ1,Ω1),Λ(^Φ1,^Ω1))≤ˆρ(‖Φ1−^Φ1‖+‖Ω1−^Ω1‖) for each Φ1,^Φ1,Ω1,^Ω1∈U. |
Let (Φ1,^Φ1),(Ω1,^Ω1)∈U×U and (g1,^g1)∈Λ(Φ1,Ω1). Then, ∃ H11∈VΘ1(Φ1,Ω1) and H21∈VΘ2(Φ1,Ω1) ∋, for each φ∈J, and we have
g1(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H11(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H21(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−)α2−2Γ(α2−1)H21(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ, |
and
^g1(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H11(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H21(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ. |
Utilizing (Q5), we acquire
Πd(Θ1(φ,Φ1,Ω1),Θ1(φ,^Φ1,^Ω1))≤s1(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|), |
and
Πd(Θ2(φ,Φ1,Ω1),Θ2(φ,^Φ1,^Ω1))≤s2(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|). |
So, ∃ H1∈Θ1(φ,Φ1(φ),Ω1(φ)) and H2∈Θ2(φ,Φ1(φ),Ω1(φ)) such that
|H11(φ)−u|≤s1(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|), |
and
|H21(φ)−v|≤s2(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|). |
Define Ω11,Ω12:J→W(R) by
Ω11(φ)={H1∈L1(J,R):s1(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|)}, |
and
Ω12(φ)={H2∈L1(J,R):s2(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|)}. |
There are functions H12(φ), H22(φ) that are an observable selection for Ω11,Ω12 because the multivalued operators Ω11∩Θ1(φ,Φ1(φ),Ω1(φ)) and Ω12∩Θ2(φ,Φ1(φ),Ω1(φ)) are measurable (Proposition Ⅲ.4 in [26]). Also, H12(φ)∈Θ1(φ,Φ1(φ),Ω1(φ)), H22(φ)∈Θ2(φ,Φ1(φ),Ω1(φ)) such that ∀ φ∈J, and we arrive at
|H11(φ)−H12(φ)|≤s1(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|), |
and
|H21(φ)−H22(φ)|≤s2(φ)(|Φ1(φ)−^Φ1(φ)|+|Ω1(φ)−^Ω1(φ)|). |
Let
g2(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H11(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H21(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ, |
and
^g2(Φ1n,Ω1n)(φ)=e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ)−1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)H11(m)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)H21(m)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)H11(J)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ)]+∫φ0e−χ2(φ−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)H21(J)dJ)dξ. |
Hence,
|g1(Φ1,Ω1)(φ)−g2(Φ1,Ω1)(φ)|≤e−χ1φ2[1Δ1(−∫T0e−χ1(T−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)s1(J)(|Φ1(J)−^Φ1(J)|+|Ω1(J)−^Ω1(J)|)dJ)dξ−∫T0e−χ2(T−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)s2(J)(|Φ1(J)−^Φ1(J)|+|Ω1(J)−^Ω1(J)|)dJ)dξ)+1Δ2(A−∫ζη(∫ξ0e−χ1(ξ−J)(∫J0(J−m)α1−2Γ(α1−1)s1(m)(|Φ1(m)−^Φ1(m)|+|Ω1(m)−^Ω1(m)|)dm)dJ)dξ+∫ζη(∫ξ0e−χ2(ξ−J)(∫J0(J−m)α2−2Γ(α2−1)s2(m)(|Φ1(m)−^Φ1(m)|+|Ω1(m)−^Ω1(m)|)dm)dJ)dξ+m∑i=0ϱi∫Ui0e−χ1(Ui−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)s1(J)(|Φ1(J)−^Φ1(J)|+|Ω1(J)−^Ω1(J)|)dJ)dξ−m∑i=0ϱi∫Ui0e−χ2(Ui−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)s2(J)(|Φ1(J)−^Φ1(J)|+|Ω1(J)−^Ω1(J)|)dJ)dξ+n∑i=0qi∫Wj0e−χ1(Wj−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)s1(J)(|Φ1(J)−^Φ1(J)|+|Ω1(J)−^Ω1(J)|)dJ)dξ−n∑j=0ϑj∫Wj0e−χ2(Wj−ξ)(∫ξ0(ξ−J)α2−2Γ(α2−1)s2(J)(|Φ1(J)−^Φ1(J)|+|Ω1(J)−^Ω1(J)|)dJ)dξ)]+∫φ0e−χ1(φ−ξ)(∫ξ0(ξ−J)α1−2Γ(α1−1)s1(J)(|Φ1(J)−^Φ1(J)|+|Ω1(J)−^Ω1(J)|)dJ)dξ≤Υ1‖s1‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖)+Υ2‖s2‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖). |
Thus,
‖H1(Φ1,Ω1)−H2(Φ1,Ω1)‖≤Υ1‖s1‖(‖Φ1−^Φ1‖+‖Ω1−^Ω1‖)+Υ2‖s2‖(‖Φ1−^Φ1‖+‖Ω1−^Ω1‖). |
Similarly, we can define that
‖ˆH1(Φ1,Ω1)−ˆH2(Φ1,Ω1)‖≤Υ1‖s1‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖)+Υ2‖s2‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖). |
Therefore,
‖(H1,ˆH1),(H2,ˆH2)‖≤2Υ1‖s1‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖)+2Υ2‖s2‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖). |
Likewise, by interchanging the positions of (Φ1,Ω1) and (^Φ1,^Ω1), we can acquire
‖Πd(P(Φ1,Ω1),P(^Φ1,^Ω1))‖≤2Υ1‖s1‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖)+2Υ2‖s2‖(‖Φ1−^Φ1‖+‖Ω−^Ω1‖). |
Given the provided assumption, it can be established that Λ satisfies the contraction condition (5.1). Consequently, by virtue of Nadler's fixed point theorem, Λ possesses a fixed point (Φ1,Ω1), which serves as a solution to the system (1.2).
Aligned with the formulations of systems (1.1) and (1.2), and in accordance with the primary theorems, we present illustrative examples within this section.
Example 6.1. Let us examine the following system:
{(CDα1+χ1CDα1−1)Φ1(φ)∈Θ1(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T],(CDα2+χ2CDα2−1)Ω1(φ)∈Θ2(φ,Φ1(φ),Ω1(φ)),φ∈J:=[0,T],(Φ1+Ω1)(0)=−(Φ1+Ω1)(T),∫ζη(Φ1−Ω1)(ξ)dξ−m∑i=0ϱi(Φ1−Ω1)(Ui)−n∑j=0ϑj(Φ1−Ω1)(Wj)=A. | (6.1) |
where α1=3/2,β=4/3,η=3/4,ζ=3/2,T=2, A=1,z1=1,z2=1/5,q1=26/100, q2=6/25,U1=1/4,U2=1/3,W1=7/4,W2=47/25, H1(φ,Φ1,Ω1)=[−116Φ11+|Φ1|,0]∪[0,116|sin(Ω1)|1+|sin(Ω1)|], and H2(φ,Φ1,Ω1)=[−116|Ω1|1+|Ω1|,0]∪[0,116|cos(Φ1)|1+|cos(Φ1)|], and on the other hand,
Πd(H1(φ,Φ1,Ω1),H1(φ,^Φ1,^Ω1))≤116|Φ1−^Φ1|+116|Ω1−^Ω1|, ∀ Φ1,^Φ1,Ω1,^Ω1∈R,Πd(H2(φ,Φ1,Ω1),H2(φ,^Φ1,^Ω1))≤116|Φ1−^Φ1|+116|Ω1−^Ω1|, ∀ Φ1,^Φ1,Ω1,^Ω1∈R. |
Implementing the abovesaid data, we calculate Υ1=0.200876 Υ2=0.0.156334 and (2Υ1)Φ11+(2Υ2)Φ12≈0.04465125<1. Every assumption outlined in Theorem 5.1 is satisfied, thereby leading to the conclusion that ∃ is a solution to the system (6.1).
In this study, our focus has been on introducing a novel category of coupled nonlocal boundary conditions as a means to explore coupled nonlinear SFD inclusions of the Caputo type. Through the utilization of multivalued maps, we have successfully established the existence of solutions. By harnessing established fixed point theorems tailored to cater to multivalued maps, we have obtained intriguing solutions for the specified problem under conditions encompassing both convex and non-convex values within the multivalued maps. The implications of the results presented in this paper hold substantial importance for the scientific community. As an example, if we take ξ=(H)ξ in ∫ζη(Φ1−Ω1)(ξ)d(H)ξ−m∑i=0ϱi(Φ1−Ω1)(Ui)−n∑j=0ϑj(Φ1−Ω1)(Wj)=A in (1.1) and (1.2), our findings align with those for novel coupled Stieltjes boundary conditions. Furthermore, this set allows us to derive new existence results. We believe that the results discussed in this paper are of great significance to the scientific audience. As a potential avenue for future research, the examination of controllability and the dependency of solutions for a system of coupled SFD equations incorporating a combination of Caputo derivatives could be considered as real applied problems. Also what are the real applications of the considered model?
All authors contributed equally and significantly in writing this article.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The first and second authors thank the Center for Computational Modeling, Chennai Institute of Technology, India, CIT/CCM/2024/RP-018, and the rest of the authors thank the Basque Government for Grant IT1555-22 and to MICIU/AEI/ 10.13039/501100011033 and ERDF/E for Grants PID2021-123543OB-C21 and PID2021-123543OB-C22.
The authors declare that they have no conflicts of interest.
[1] |
B. Ahmad, S. K. Ntouyas, Existence results for Caputo-type sequential fractional differential inclusions with nonlocal integral boundary conditions, J. Appl. Math. Comput., 50 (2016), 157–174. https://doi.org/10.1007/s12190-014-0864-4 doi: 10.1007/s12190-014-0864-4
![]() |
[2] | M. Kisielewicz, Stochastic differential inclusions and applications, In: Springer optimization and its applications, New York: Springer, 2013. https://doi.org/10.1007/978-1-4614-6756-4 |
[3] |
H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. De la Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential euations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579
![]() |
[4] |
H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 30 (2024), 632–647. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
![]() |
[5] |
M. F. Danca, Synchronization of piecewise continuous systems of fractional order, Nonlinear Dyn., 78 (2014), 2065–2084. https://doi.org/10.1007/s11071-014-1577-9 doi: 10.1007/s11071-014-1577-9
![]() |
[6] |
Y. Cheng, R. P. Agarwal, D. O. Regan, Existence and controllability for nonlinear fractional differential inclusions with nonlocal boundary conditions and time-varying delay, FCAA, 21 (2018), 960–980. https://doi.org/10.1515/fca-2018-0053 doi: 10.1515/fca-2018-0053
![]() |
[7] |
S. K. Ntouyas, S. Etemad, J. Tariboon, Existence results for multi-term fractional differential inclusions, Adv. Diff. Equ., 2015 (2015), 140. https://doi.org/10.1186/s13662-015-0481-z doi: 10.1186/s13662-015-0481-z
![]() |
[8] | A. Losta, Z. Opial, Application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations or noncompact acyclic-valued map, Bull. Acad. Pol. Sci., Ser. Sci. Math. Astron. Phys., 13 (1965), 781–786. |
[9] | S. Chakraverty, R. M. Jena, S. K. Jena, Computational fractional dynamical systems: Fractional differential equations and applications, John Wiley & Sons, 2022. https://doi.org/10.1002/9781119697060 |
[10] |
B. Ahmad, V. Otero-Espinar, Existence of solutions for fractional differential inclusions with antiperiodic boundary conditions, Bound. Value Probl., 2009 (2009), 625347. https://doi.org/10.1155/2009/625347 doi: 10.1155/2009/625347
![]() |
[11] |
H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
![]() |
[12] |
H. A. Hammad, H. Aydi, M. Zayed, On the qualitative evaluation of the variable-order coupled boundary value problems with a fractional delay, J. Inequal. Appl., 2023 (2023), 105. https://doi.org/10.1186/s13660-023-03018-9 doi: 10.1186/s13660-023-03018-9
![]() |
[13] |
Humaira, H. A. Hammad, M. Sarwar, M. De la Sen, Existence theorem for a unique solution to a coupled system of impulsive fractional differential equations in complex-valued fuzzy metric spaces, Adv. Differ. Equ., 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0 doi: 10.1186/s13662-021-03401-0
![]() |
[14] |
M. Subramanian, M. Manigandan, C. Tunc, T. N. Gopal, J. Alzabut, On the system of nonlinear coupled differential equations and inclusions involving Caputo-type sequential derivatives of fractional order, J. Taibah Uni. Sci., 16 (2022), 1–23. https://doi.org/10.1080/16583655.2021.2010984 doi: 10.1080/16583655.2021.2010984
![]() |
[15] |
M. Manigandan, S. Muthaiah, T. Nandhagopal, R. Vadivel, B. Unyong, N. Gunasekaran, Existence results for a coupled system of nonlinear differential equations and inclusions involving sequential derivatives of fractional order, AIMS Math., 7 (2022), 723–755. https://doi.org/10.3934/math.2022045 doi: 10.3934/math.2022045
![]() |
[16] | A. Perelson, Modeling the interaction of the immune system with HIV, In: Mathematical and statistical approaches to AIDS epidemiology, Berlin: Springer, 1989,350–370. https://doi.org/10.1007/978-3-642-93454-4_17 |
[17] |
A. S. Perelson, D. E. Kirschner, R. De Boer, Dynamics of HIV infection of CD4+ T cells, Math. Biosci., 114 (1993), 81–125. https://doi.org/10.1016/0025-5564(93)90043-a doi: 10.1016/0025-5564(93)90043-a
![]() |
[18] |
D. Baleanu, O. G. Mustafa, R. P. Agarwal, On Lp-solutions for a class of sequential fractional differential equations, Appl. Math. Comput., 218 (2011), 2074–2081. https://doi.org/10.1016/j.amc.2011.07.024 doi: 10.1016/j.amc.2011.07.024
![]() |
[19] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006. |
[20] | K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993. |
[21] |
Z. Wei, W. Dong, Periodic boundary value problems for Riemann-Liouville sequential fractional differential equations, Electron. J. Qual. Theory Differ. Equ., 87 (2011), 1–13. https://doi.org/10.14232/ejqtde.2011.1.87 doi: 10.14232/ejqtde.2011.1.87
![]() |
[22] |
H. A. Hammad, H. Aydi, H. Isik, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Math., 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
![]() |
[23] |
H. A. Hammad, M. De la Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Fract., 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092 doi: 10.3390/fractalfract7010092
![]() |
[24] |
X. Li, D. Chen, On solvability of some p-Laplacian boundary value problems with Caputo fractional derivative, AIMS Math., 6 (2021), 13622–13633. https://doi.org/10.3934/math.2021792 doi: 10.3934/math.2021792
![]() |
[25] |
H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
![]() |
[26] |
Z. Wei, Q. Li, J. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 367 (2010), 260–272. https://doi.org/10.1016/j.jmaa.2010.01.023 doi: 10.1016/j.jmaa.2010.01.023
![]() |
[27] |
M. Klimek, Sequential fractional differential equations with Hadamard derivative, Commun. Nonlinear Sci., 16 (2011), 4689–4697. https://doi.org/10.1016/j.cnsns.2011.01.018 doi: 10.1016/j.cnsns.2011.01.018
![]() |
[28] |
C. Bai, Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative, J. Math. Anal. Appl., 384 (2011), 211–231. https://doi.org/10.1016/j.jmaa.2011.05.082 doi: 10.1016/j.jmaa.2011.05.082
![]() |
[29] |
Y. K. Chang, J. J. Nieto, Some new existence results for fractional differential inclusions with boundary conditions, Math. Comput. Model., 49 (2009), 605–609. https://doi.org/10.1016/j.mcm.2008.03.014 doi: 10.1016/j.mcm.2008.03.014
![]() |
[30] | S. Hu, N. S. Papageorgiou, Handbook of multivalued analysis (theory), Dordrecht: Kluwer Academic Publishers, 1997. |
[31] | K. Deimling, Multivalued differential equations, New York: De Gruyter, 1992. https://doi.org/10.1515/9783110874228 |
[32] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, methods of their solution, and some of their applications, Elsevier, 1998. |
[33] | A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. |
[34] |
H. Covitz, S. B. Nadler, Multi-valued contraction mappings in generalized metric spaces, Israel J. Math., 8 (1970), 5–11. https://doi.org/10.1007/BF02771543 doi: 10.1007/BF02771543
![]() |
[35] | C. Castaing, M. Valadier, Convex analysis and measurable, multifunctions, In: Lecture Notes in Mathematics, Berlin: Springer, 1977. https://doi.org/10.1007/BFb0087685 |
1. | Doha A. Kattan, Hasanen A. Hammad, E. El-Sanousy, Fixed-point methodologies and new investments for fuzzy fractional differential equations with approximation results, 2024, 108, 11100168, 811, 10.1016/j.aej.2024.09.042 | |
2. | Doha A. Kattan, Hasanen A. Hammad, Solving fractional integro-differential equations with delay and relaxation impulsive terms by fixed point techniques, 2024, 2024, 1687-2770, 10.1186/s13661-024-01957-w | |
3. | Hasanen A Hammad, Doha A Kattan, An optimal control for non-autonomous second-order stochastic differential equations with delayed arguments, 2024, 99, 0031-8949, 125205, 10.1088/1402-4896/ad8604 | |
4. | Murugesan Manigandan, Saravanan Shanmugam, Mohamed Rhaima, Elango Sekar, Existence of Solutions for Caputo Sequential Fractional Differential Inclusions with Nonlocal Generalized Riemann–Liouville Boundary Conditions, 2024, 8, 2504-3110, 441, 10.3390/fractalfract8080441 |